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Abstract
Background  Delays to breast cancer treatment can lead to more aggressive and extensive treatments, increased expenses, 
increased psychological distress, and poorer survival. We explored the individual and area level factors associated with the 
interval between diagnosis and first treatment in a population-based cohort in Queensland, Australia.
Methods  Data from 3216 Queensland women aged 20 to 79, diagnosed with invasive breast cancer (ICD-O-3 C50) between 
March 2010 and June 2013 were analysed. Diagnostic dates were sourced from the Queensland Cancer Registry and treat-
ment dates were collected via self-report. Diagnostics-treatment intervals were modelled using flexible parametric survival 
methods.
Results  The median interval between breast cancer diagnosis and first treatment was 15 days, with an interquartile range of 
9–26 days. Longer diagnostic-treatment intervals were associated with a lack of private health coverage, lower pre-diagnostic 
income, first treatments other than breast conserving surgery, and residence outside a major city. The model explained a mod-
est 13.7% of the variance in the diagnostic-treatment interval 
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 . Sauerbrei’s D was 0.82, demonstrating low to moderate 
discrimination performance.
Conclusion  Whilst this study identified several individual- and area-level factors associated with the time between breast 
cancer diagnosis and first treatment, much of the variation remained unexplained. Increased socioeconomic disadvantage 
appears to predict longer diagnostic-treatment intervals. Though some of the differences are small, many of the same factors 
have also been linked to screening and diagnostic delay. Given the potential for accumulation of delay at multiple stages 
along the diagnostic and treatment pathway, identifying and applying effective strategies address barriers to timely health 
care faced by socioeconomically disadvantaged women remains a priority.
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Introduction

In 2020 breast cancer surpassed lung cancer as the most 
diagnosed cancer worldwide, with an estimated 2.3 million 
new cases [1]. Amongst women, breast cancer accounts for 
approximately 1 in 4 cancer diagnoses and 1 in 6 cancer-
related deaths globally [1]. In Australia, the age-stand-
ardised incidence rate of breast cancer has been steadily 
increasing, and it was estimated that approximately 20,000 
Australian women were diagnosed with breast cancer in 
2021 [2]. Understanding the factors that contribute to 
and exacerbate the breast cancer burden remains a high 
priority.

In Australia, 5-year survival varies from as high as 99% 
for stage I breast cancer to 20–35% for stage IV breast 
cancer [2]. Critically, prolonged pathways to treatment are 
associated with larger tumour sizes, the presence of cancer 
cells in the lymph nodes, later stage cancers [3–9], and 
reduced survival [8, 10–12]. Moreover, increased wait-
times for treatment can result in the need for more aggres-
sive and extensive treatments [13], increased expenses and 
increased psychological distress [14]. At present, timely 
detection and treatment offer the best chance of improving 
breast cancer outcomes, and, consequently, are a key focus 
of breast cancer management and care [15]. However, 
improving timely care and treatment first requires iden-
tifying the factors that contribute to unnecessary delay.

There is an extensive literature examining time to detec-
tion and diagnosis [16], with socioeconomic disadvantage 
typically associated with later detection and longer wait 
times for diagnosis [15, 17–19]. However, the interval 
between diagnosis and treatment has received relatively 
less attention in the literature. Studies carried out in vari-
ous countries suggest that many of the factors associated 
with later detection and diagnosis also predict the length 
of the diagnosis-treatment interval, for example, ethnicity/
race [20, 21], education [13], and remoteness [22]. How-
ever, we are aware of no large-scale studies investigating 
the extent to which individual and area level factors affect 
the time interval between diagnosis and treatment in an 
Australian context. Given that accumulation of delay at 
multiple stages along the diagnostic and treatment path-
way may harm outcomes and contribute to the breast 
cancer outcome gradients seen in Australia [19, 23], it is 
important to identify factors that potentially may affect the 
wait-time for initial treatment following a breast cancer 
diagnosis. As such, we analysed data from a large popula-
tion-based study of women diagnosed with breast cancer 
in Queensland, Australia to quantify the wait time between 
diagnosis and first treatment and to identify any individual 
and area level factors that predict the interval.

Methods

Study population

Analyses were conducted using data from the Breast Can-
cer Outcome Study—a longitudinal study of women from 
Queensland, Australia aged 20 to 79 years with a histo-
logically confirmed diagnosis of invasive breast cancer 
between the 1st of March 2010 and the 30th of June 2013. 
The study used telephone and self-administered question-
naires to collect individual-level data from English speak-
ing women diagnosed with invasive breast cancer, iden-
tified through the Queensland Cancer Register. Clinical, 
diagnostic, and treatment information was obtained from 
medical records at 12 months post-diagnosis. A total of 
5426 potentially eligible women were identified through 
the Queensland Cancer Register, of whom 3326 (61%) met 
all eligibility criteria and responded. Full details of the eli-
gibility criteria, data sourcing, and the telephone interview 
are described in [23]. Women living in major cities were 
less likely to participate (p = 0.04), and non-respondents 
were more likely to be diagnosed with advanced disease 
(p = 0.03) [23].

Data preparation

Date of breast cancer diagnosis and clinical data was 
sourced from the Queensland Cancer Register, where 
diagnostic date reflects the first date of investigation 
from pathology, or the date indicated on hospital admis-
sion notification. First treatment date and type were col-
lected through self-report. Patient self-reported date of 
surgeries (94% of the breast conserving surgery, 87% of 
the mastectomy) was cross checked with clinical records 
and the correlation was high (r = 0.99), indicating a high 
degree of reliability for the 95.1% of women whose first 
treatment was surgical. The diagnostic-treatment interval 
was modelled as the number of days between diagnosis 
and first treatment. Specifically, we modelled diagnostic-
treatment intervals up to a maximum of 3 months (90 
days). Thirteen cases with intervals greater than 90 days 
were treated as censored. Left uncensored, these extreme 
observations increased model complexity, in the form are 
greater degrees of freedom and the need for additional 
time-dependencies, and, in some cases, caused model 
convergence issues. Importantly, censoring these extreme 
values had minimal effect on the coefficient estimates and 
model fit. Ninety-seven respondents reported their first 
treatment occurring prior to the date of diagnosis. That is, 
they had a negative diagnostic-treatment interval. Many 
of these intervals, if not most, can be assumed to reflect 



577Breast Cancer Research and Treatment (2024) 203:575–586	

1 3

data entry errors given the median length of the nega-
tive diagnostic-treatment intervals was − 168 days. As the 
negative intervals cannot be modelled here, all negative 
intervals were removed. Negative diagnostic-treatment 
intervals were associated with later stage breast cancer at 
diagnosis (p = 0.04) and first treatments other than BCS 
or mastectomy (p < 0.001). Separately, 123 participants 
reported inconsistent information with respect to first 
treatment type and first treatment date and were removed. 
These discrepant cases overlapped greatly (58%) with neg-
ative diagnostic-treatment intervals (p < 0.001) and were 
strongly associated with first treatment types other than 
BCS and mastectomy (p < 0.001).

One-hundred and eighty-seven women reported the same 
date for diagnosis and first-treatment—an interval of zero 
days. The majority of these intervals likely reflect confir-
mation of diagnosis at treatment and were recoded as 0.5 
to allow for the modelling of log-time. Importantly, inspec-
tion of interval data revealed a severely compressed distribu-
tion—many ties concentrated below the median. To break 
ties and resolve model convergence issues that arose with 
increasing model complexity, we applied uncorrelated uni-
form noise—Unif (0,± 0.01) days—to the diagnostic-treat-
ment interval. To discount the introduction of bias, we com-
pared coefficient estimates derived from the original interval 
data to those derived from the transmuted (plus noise) data, 
using simplified Weibull (df = 1) models. Only negligible 
differences were observed that did not affect interpretation.

Finally, all treatment types other than breast conserving 
surgery (BCS) or mastectomy (chemotherapy, Herceptin, 
hormone, radiotherapy, other surgery, or therapy) were 
aggregated as ‘other’ due to small counts in each of these 
categories. Remoteness of residence when diagnosed with 
breast cancer was categorised using the Australian Bureau 
of Statistics Remoteness Index (ARIA+), which is a meas-
ure of accessibility and remoteness based on geographical 
location [24]. We aggregated the Outer Regional, Remote 
and Very Remote categories due to small counts in each of 
these categories. Age at diagnosis was mean centred and 
visual inspection of martingale residuals showed that age at 
diagnosis appeared approximately linear on the log cumula-
tive hazard scale.

Model derivation

The length of the diagnostic-treatment interval (days) 
was modelled using flexible parametric survival analysis 
(Royston–Parmar models). The approach involves fitting 
restricted cubic polynomial splines to flexibly model the 
baseline log-cumulative hazard. The method allows the esti-
mation of absolute measures of effect (e.g. baseline hazard 
rates) at all time points, and extrapolation of the time-to-
event function. Additionally, the use of splines addresses 

the potentially unrealistic assumption of constant or mono-
tonic hazard inherent to parametric survival models [25]. 
The selection of scales and number of degrees of freedom 
(knots) for the baseline spline function was made using the 
Bayesian information criterion (BIC) statistic and Akaike 
information criterion (AIC). Knot position was set using 2 
boundary knots (smallest and largest uncensored log inter-
val-times) and m interior knots based on empirical centiles 
of the log treatment-time distribution [26]. The data were 
best captured using the log cumulative hazard (proportional 
hazard) scale with 3 degrees of freedom—log cumulative 
odds models with degrees of freedom > 2 failed to converge.

Candidate predictors and potential confounders were 
identified from a literature search of individual and area level 
factors previously associated with delays to cancer detection, 
diagnosis and treatment, and cancer outcomes more broadly. 
Potential model covariates were identified using univariable 
analyses coupled with likelihood ratio tests. Covariates with 
evidence of an association with the diagnostic-treatment 
interval at p < 0.3 were tested in the multivariable build-
ing process. We then used an iterative backwards selection 
process and removed predictors one at time to arrive at the 
final adjusted multivariable model. To test for time-depend-
ent effects (TD), we first entered a time-dependent effect 
for each covariate into the multivariable model separately. 
We then used a forward selection process, entering time-
dependent terms into the model one at a time, in order of 
greatest evidence of time-dependency (lowest p value). Time 
dependencies were identified using likelihood-ratio tests and 
were only included in the final model when p < 0.01. A more 
conservative threshold was used to buffer against over-fitting 
and multiple testing. For simplicity, time-dependent effects 
were initially modelled using the same degrees of freedom 
as the baseline spline function (df = 3). Once appropriate 
time-dependent effects had been identified, BIC and AIC 
criteria indicated that a solution with 2 degrees of freedom 
for time-dependent effects provided the best model fit.

In contrast to typical applications of survival analysis, 
here we are modelling time to treatment—a desirable out-
come—so the interpretation of model coefficients is in a 
sense reversed. Specifically, coefficients less than 1 convey 
a disadvantage—less likely to have received treatment by 
a given timepoint. For clarity, where one might otherwise 
refer to survival curves, here we refer to treatment curves, 
and their shape is the inverse to traditional survival curves. 
Additionally, hazard ratios are referred to as treatment ratios. 
Analyses were run in Stata (version 16.1, StataCorp) using 
the stpm2 package.

Model discrimination

The discrimination performance reflects the ability of a 
time-to-event model to assign higher risks to individuals 



578	 Breast Cancer Research and Treatment (2024) 203:575–586

1 3

who experience earlier events—those who indeed have 
higher risk of the event. We assessed the discrimination per-
formance of our model using Royston and Sauberbrei’s D 
statistic. Royston and Sauberbrei’s D statistic measures the 
separation of the treatment curves and can be interpreted as 
an estimate of the log treatment ratio comparing two groups 
of equal size [27]. The goodness of fit for the full model was 
calculated using Royston and Sauberbrei’s R2

D
 . Finally, to 

assess the discrimination performance of individual predic-
tors in the model, we calculated Royston and Sauberbrei’s 
D for the model after removing predictors from the model 
one at a time, adding them sequentially to the model, and 
as individual predictors (see Supplementary Table 1). It is 
important to note that, in non-proportional hazard models, 
R2

D
 is analogous to but not strictly interpretable as a measure 

of explained variance. However, it is still a useful index of 
determination and for comparing the relative contributions 
of the individual predictors in the model [28].

Cluster analysis

As an alternative to using the model to generate treatment 
curves for hypothetical cases, we utilised cluster analysis to 
identify actual sub-populations within our sample potentially 

at greater risk of longer diagnostic-treatment intervals. 
K-medoid clustering [29] (partitioning around medoids—
the point within a cluster where dissimilarity with all other 
points is a minimum) using Gower’s distance [30] to meas-
ure (dis) similarity was performed over the model covari-
ates. Age and Stage at diagnosis were excluded from the 
cluster analysis on the grounds that they carried minimal 
prognostic information. The optimal number of clusters was 
determined using the Silhouette method. The clusters were 
then entered into a flexible parametric model (df = 3) with 
a time-dependent component (df = 2) to derive treatment 
curves for each cluster.

Results

Sample characteristics

The final model was run over a sample of 3216 partici-
pants. The mean age at diagnosis was 57.6 (SD 10.9) years 
and the median interval between breast cancer diagno-
sis and first treatment was 15 days, with an interquartile 
range of 9–26 days. The treatment curves varied by key 
factors (Fig. 1). Details regarding the sample breakdown 
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Fig. 1   a Kaplan–Meier diagnostic-treatment interval estimates by covariate group, and b the distribution of diagnostic-treatment intervals. Note 
the x-axes of the Kaplan–Meier plots have been truncated for display purposes. Outer regional includes remote and very remote areas
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and definitions for all variables retained in the final model 
and candidate variables can be found in Tables 1 and 2, 
respectively.

Coefficient estimates from the final flexible parametric 
model are presented in Table 3. Private health insurance and 
remoteness category were modelled as time-dependent (TD) 
effects. Adding time-dependencies to the model increases the 
model’s complexity and makes interpreting the time-depend-
ent coefficients (treatment ratios) difficult. This is because 
the time-dependent treatment ratios, by definition, vary over 
the interval. Additionally, when multiple time-dependencies 
are added, the treatment ratio of time-dependent covariates 
depends on the levels of the other time-dependent covariates 

in the model. Here we report treatment ratios (TR) at two 
timepoints—15- and 30-day intervals—where the treatment 
ratios for private health insurance and remoteness category 
have been calculated at the most common level of the other 
time-varying covariate—living in a major city and full pri-
vate health insurance, respectively. Treatment ratios calcu-
lated across the other levels of the time-varying covariates 
showed only minimal differences. Treatment ratios over the 
full distribution for private health insurance and remoteness 
category are reported in Supplementary Fig. 1. To better 
highlight differences amongst the covariates, we refer to the 
treatment probabilities at discrete timepoints (see Table 4).

Table 1   Sample characteristics for all covariates retained in the final multivariable model, and explicit treatment delay

*The ‘DVA/some private health insurance’ category included cases with basic hospital cover only, extras cover only, and health insurance pol-
iciesprovided by the Department of Veterans Affairs, which offers a limited degree of private hospital cover. These policies may not have cov-
ered aspects of treatment for breast cancer. Moreover, Private health insurance grants access to private hospital treatment, rather than treatment 
in public hospitals which is available to all Australians for free but can involve waiting lists that are prioritised according to need

Model covariates n (%) Description Fpm (df = 3) - p

Age 3216 Age at diagnosis 0.001
 Range 26–80
 Median 58

Private health insurance* Self report: “Do you have any private health insurance? 0.001
 Full health insurance 2037 (63.3)
 DVA/some private health Insurance 334 (10.4)
 No private health insurance 845 (26.3)

Remoteness category Categorised using the ARIA + classification 0.001
 Major city 1899 (59.0)
 Inner regional 780 (24.3)
 Outer regional and remote 537 (16.7)

Treatment type Extracted from clinician and hospital records 0.001
 BCS 2181 (67.8)
 Mastectomy 877 (27.3)
 Other (e.g. radiation, chemotherapy) 158 (4.9)

Pre-diagnostic income Self-report: “Prior to your diagnosis, what was your annual household 
income before tax?”

0.001

 $0–$41,199 930 (28.9)
 $41,200–$83,199 904 (28.1)
 $83,200–$129,999 580 (18.0)
 + $130,000 457 (14.2)
 Unknown 345 (10.7)

Stage at diagnosis Clinical stage at diagnosis obtained 12 months after diagnosis from 
patient medical records

 Stage I 1562 (48.6)
 Stage II/III 1235 (38.4)
 Stage IV 363 (11.3)
 Unknown 56 (1.7)

Explicit treatment delay Self-report: “Were there any personal or practical delays in having this 
{insert relevant treatment}?”

0.001

 Treatment delay 446 (13.9)
 No treatment delay 2769 (86.1)
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Broadly speaking, the final model shows that, on average, 
wait-times for first treatment following breast cancer diagno-
sis were shorter for those with full private health insurance, 
those living in a major city, those with higher pre-diagnostic 
income, and those whose initial treatment was BCS. Note 
that we observed a significant but small association between 
tumour grade and the diagnostic-treatment interval in the 
multivariable model. However, we chose to exclude tumour 
grade from the final model on the grounds that the effect was 
not clinically relevant—differences of 1 day between grade 3 
and grade 1—and added additional complexity to the model 
by adding an additional time dependency. Stage at diagno-
sis was included in the final model to control for potential 

confounding, particularly of treatment type, and given its 
prognostic importance in other contexts. Note though that it 
was not associated with the outcome here and produced only 
minimal changes to the coefficients of the other variables. To 
better capture the difference between groups, particularly for 
time-dependent effects, the treatment probabilities for each 
group at 15 (sample median) and 30 days after diagnosis—
a loose treatment guideline [22]—are shown in Table 4, 
along with the predicted treatment curves in Fig. 2. Treat-
ment probabilities and curves for the levels of each predictor 
are derived from directly adjusted treatment curves. This 
approach involves estimating a treatment curve for every 
combination of covariates and averaging them according to 

Table 2   Additional candidate variables explored but not retained in the final multivariable model

Associations reflect univariable analyses

Covariates n (%) Description Fpm (df = 3) - p

Highest level of education Self-report: “What is the level of highest education you have com-
pleted?”

0.001

 Bachelor’s or higher 703 (21.9)
 Certificate or diploma 1259 (39.1)
 High School or less 1254 (39.0)

Born in Australia Self-report: “Were you born in Australia?” 0.001
 Yes 2518 (78.3%)
 No 698 (21.7%)

Aboriginal and Torres Straight Islander Collected from Queensland 0.038
 Yes 3169 (98.5) Cancer Register records and
 No 47 (1.5) Crossed check with self-report

Family history of breast cancer Self-report: “Do any of your first-degree relatives {} have now or in 
the past had breast cancer?”

0.05

 Yes 703 (21.9)
 No 2431 (75.6)
 Don’t know 82 (2.5)

Drive Self-report: “Do you drive or have access to a car?” 0.001
 Yes 2985 (92.9)
 No 229 (7.1)
 Miss 2 (0.1)

Employed pre-diagnosis Self-report: “After your diagnosis, what was your annual household 
income before tax?”

0.001

 Full-time 1002 (31.2)
 Part-time/casual 891 (27.7)
 Home duties/carer/not working 339 (10.5)
 Retired 984 (30.6)

Detection: Symptom v. screen Self-report: “How was your breast cancer first detected?” 0.36
 Symptom 1597 (49.7)
 Screen 1619 (50.3)

Tumour grade Histological tumour grade. Obtained 12 months after diagnosis from 
patient medical records

0.05

 Low 599
 Intermediate 1541
 High grade 1032
 Unknown 44
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Table 3   Multivariable flexible 
parametric model (df = 3) with 
TD (df = 2)

*p < 0.05

Predictor n (%) TR 15 days (95% CI) TR 30 days (95% CI) p value

Age at diagnosis 3216 0.99 0.99 (0.99, 0.99) 0.001
Private health insurance (TD)  < 0.001
 Full insurance 2037 (63.3) 1.00 1.00
 Some private insurance 334 (10.4) 0.66 (0.58, 0.74) 0.67 (0.56, 0.80) *
 No private insurance 845 (26.3) 0.31 (0.28, 0.35) 0.57 (0.50, 0.64) *

Remoteness category (TD)  < 0.001
 Major city 1899 (59.0) 1 1
 Inner regional 780 (24.3) 0.81 (0.74, 0.88) 0.94 (0.83, 1.07) *
 Outer regional and remote 537 (16.7) 0.71 (0.64, 0.79) 0.84 (0.73, 0.97) *

Treatment type 0.001
 BCS 2181 (67.8) 1.00 1.00
 Mastectomy 877 (27.3) 0.84 (0.77, 0.91) 0.84 (0.77, 0.91) *
 Other 158 (4.9) 0.60 (0.50, 0.71) 0.60 (0.50, 0.71) *

Pre-diagnostic income 0.001
 0–$41,199 930 (28.9) 1.00 1.00
 $41,200–$83,199 904 (28.1) 1.07 (0.97, 1.18) 1.07 (0.97, 1.18)
 $83,200, $129,999 580 (18.0) 1.16 (1.04, 1.30) 1.16 (1.04, 1.30) *
 $130,000+  457 (14.2) 1.26 (1.11, 1.44) 1.26 (1.11, 1.44) *
 Unknown 345 (10.7) 1.09 (0.96, 1.24) 1.09 (0.96, 1.24)

Stage at diagnosis
 Stage I 1562 (48.6) 1.00 1.00 0.05
 Stage IIA/IIB 1235 (38.4) 1.07 (0.99, 1.16) 1.07 (0.99, 1.16)
 Stage IIIA/IIIB/IV 363 (11.3) 1.17 (1.04, 1.32) 1.17 (1.04, 1.32)
 Unknown 56 (1.7) 1.07 (0.82, 1.42) 1.07 (0.82, 1.42)

Table 4   Proportion treated by 
select diagnostic-treatment 
intervals, and median 
diagnostic-treatment interval 
(rounded to nearest day) by 
covariate

Estimates have been calculated from direct adjusted treatment curves

Covariate Proportion treated Median diagnostic-
treatment interval 
(days)15 days (sample 

median)
30 days

Total 0.47 0.83 15
Private health insurance
 Full private insurance 0.58 0.92 13
 Some private insurance 0.44 0.82 16
 No private insurance 0.20 0.63 25

Pre-diagnostic income
 0–$41,599 0.44 0.81 17
 $41,600–$83,199 0.46 0.83 16
 $83,200, $129,999 0.49 0.85 15
 $130,000+ 0.51 0.87 15

Remoteness category
 Major city 0.51 0.86 15
 Inner regional 0.43 0.81 17
 Outer regional and remote 0.39 0.78 18

Treatment type
 BCS 0.49 0.85 15
 Mastectomy 0.44 0.81 17
 Other 0.35 0.72 20
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weights defined by the frequency of the covariate pattern. 
The resulting estimates reflect the probability of having 
received treatment at a given point in time, if each group had 
the distribution of covariates in the study sample. The final 
column of Table 4 shows the estimated median diagnostic-
treatment interval by covariate level and gives a sense of the 
differences in wait-times for treatment between the groups.

The final model explained approximately 13.8% 
of the variance in diagnostic-treatment intervals, 

R2

D
= 0.138(95%CI 0.118, 0.158) , with a Royston and 

Sauerbrei’s D of 0.82, demonstrating low to moderate 
discrimination performance of the model. Nearly all the 
prognostic information is carried by private health insur-
ance, R2

D
= 0.211(95%CI 0.179, 0.243) as a single pre-

dictor model. Separately, the remaining predictors, age 
at diagnosis, pre-diagnostic income, and treatment type 
together accounted for approximately 4.9% of the variance, 
R2

D
= 0.049(95%CI 0.037, 0.061) (Supplementary Table 1). 

The unusual pattern whereby R2

D
 decreased with the addi-

tion of significant predictors in the model, to the extent that 
private health insurance alone appears to account for more 
variance than the final model, is likely related to a shifting 
baseline function, from which R2

D
 is derived.

Much of the variance in the diagnostic-treatment interval 
remains unexplained, however, some of this variation may 
be unrelated to the specific characteristics and circumstances 
of the women in the study. That is, some of the variation 
may reflect the randomness of daily routine and situation; 
for example, some patients reported delays to treatment 
due to the major floods in Brisbane in 2011, factors that 
are of less interest in a model aimed at capturing system-
atic differences. We extended the model to include ‘explicit 
treatment delay’ to potentially capture and quantify some 
of this additional variance. Those who explicitly reported 
experiencing personal or practical delays to their first breast 
cancer treatment experienced longer intervals between diag-
nosis and first treatment, on average, than those who did 
not report a delay, p < 0.001. Inclusions of explicit treat-
ment delay into the model improved discrimination perfor-
mance (Sauerbrei’s D = 1.03) and explained an additional 
6.5% of the variance in diagnostic-treatment intervals, 
R2

D
= 0.202(95%CI 0.182, 0.224).

Cluster analysis

The Silhouette method identified five optimal clusters. 
Figure 3 shows (a) the distribution of diagnostic-treatment 
intervals for all clusters, (b) the covariate patterns for each 
cluster, and (c) the adjusted treatment curves for each cluster. 
Importantly, the clusters are differentiated along the diag-
nostic-treatment interval. The median diagnostic-treatment 
interval increases across the clusters, where the cluster 1 
median is 12 days between diagnosis and first treatment 
compared to 27 days for cluster 6. At the sample median of 
15 days, 64% and 19% of women in cluster 1 and cluster 6 
had received their first treatment, respectively (see Fig. 3). 
At 30 days post-diagnosis, only 6% of women in cluster 1 
had not received their first treatment, whilst 40% of women 
in cluster 6 were still waiting for their first treatment.

Clusters 5 and 6—the clusters with the longest wait 
times for first treatment—are dominated by women who 
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had no private health insurance, and a minority that had 
partial insurance. Remoteness also characterised the clus-
ters: amongst Clusters 1–3, in which most women had full 
insurance, treatment times increased as the predominant 
remoteness category changed from major city to outer 
regional and remote. Clusters in which most women had 
less physical access to health services (that is, lived out-
side major cities) but had greater financial access in terms 
of full health insurance tended to have faster treatment 
times than women who lived nearer services but did not 
have full health insurance. The clusters with high propor-
tions of women with full health insurance had approxi-
mately equal numbers from each of the categories for pre-
diagnostic income. Women in the clusters without full 

private health insurance also tended to be in the lowest 
or second to lowest categories for pre-diagnostic income.

Discussion

A central tenet of breast cancer management and care is 
early detection and diagnosis to expedite treatment, where 
timely treatment is associated with improved breast cancer 
outcomes [8, 31–34]. Delays to the initiation of treatment 
can lead to poorer prognosis if disease is allowed to advance 
[3, 4, 11, 31, 34]. Whilst prevention where possible is ideal, 
timely treatment following diagnosis offers the best chance 
of reducing breast cancer burden. In the current study, we 
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examined how long women waited for their first treatment 
following a breast cancer diagnosis, and the factors that pre-
dicted their wait-time.

That the median interval between breast cancer diagno-
sis and first treatment was 15 days, with 84% of the cohort 
receiving treatment within 30 days of diagnosis, is encourag-
ing from the perspective of breast cancer biology. The esti-
mated breast tumour doubling times vary widely, between 45 
and 260 days [4]. Guidelines for an acceptable diagnostic-
treatment interval length are scarce. However, it has been 
suggested that diagnostic-treatment intervals of 30 days 
or less are unlikely to negatively affect survival [22], and 
Cancer Australia [35] recommends surgery occurs within 
30 days of diagnosis for those not receiving neoadjuvant 
therapy. We found that approximately one in six women 
(16%) waited longer than 30 days post-diagnosis for treat-
ment. Bleicher [4] suggests that surgeries should proceed 
within 90 days of a breast cancer diagnosis, where diagnos-
tic-treatment intervals greater than 90 days have been asso-
ciated with poorer survival [36]. It is therefore encouraging 
that only 13 out of 3216 women in our study waited 90 days 
or longer. Of course, the urgency of treatment may depend 
heavily on the previous detection and diagnostic pathway.

We identified several socioeconomic factors associated 
with the breast cancer diagnostic-treatment interval. The 
predictor with the largest effect size was private health 
insurance. On average, those with full private health 
insurance received first-treatment nearly 2 weeks sooner 
than those with no private health insurance. Moreover, 
more than 1 in 3 women (37%) with no private health 
insurance waited longer than 30 days for their first treat-
ment following diagnosis. Note that the effect of health 
insurance was time-dependent though, and the benefits 
associated with full private health insurance relative to 
no private health insurance diminished as the length of 
the diagnostic-treatment interval increased. Other predic-
tors of treatment wait time included pre-diagnostic income 
and remoteness, where those earning more and residing 
in major cities tended to experience shorter wait-times 
between diagnosis and first treatment. Though small, note 
that the effect of pre-diagnostic income is independent of 
private health insurance, indicating that there is advantage 
attached to income beyond granting access to full private 
health insurance. Possibly income affords greater flexibil-
ity when it comes to the scheduling of treatments, and or 
the ability to organise existing commitments to prioritise 
urgent health care. Additionally, we observed an effect of 
treatment type, whereby patients waited less time for BCS 
relative to mastectomy and other treatment types, after 
adjusting for stage at diagnosis. Note that only a small 
percentage (3.2%) of women in the study cohort received 
pre-operative neoadjuvant chemotherapy (NAC), where 
the proportion of patients receiving NAC in Australia has 

steadily increased over the last decade towards a target of 
20% [37, 38]. Importantly, NAC can extend the interval to 
treatment due to increased multidisciplinary discussion of 
treatment planning and management [39], suggesting that 
the interval differences observed here for treatment type 
may underestimate current differences. Overall, much of 
the variation in the diagnostic-treatment interval remained 
unexplained though, even after accounting for a source of 
variance unrelated to the inherent characteristics of the 
women in the study—explicit treatment delay. Finally, the 
underrepresentation of advanced disease in our sample is 
worth noting. Such bias is difficult to avoid in the study 
of serious disease, and it is difficult to know what conse-
quence it should have for our interpretation of the results. 
Given that private health insurance was negatively associ-
ated with disease advancement in our sample (p < 0.001), 
it’s possible that non-responders were less likely to have 
full private health insurance, and consequently may indi-
cate an underestimation of the true diagnostic-treatment 
intervals differences reported here.

Whilst many of the differences in diagnostic-treatment 
intervals we observed were small, it is important to consider 
that some of these same factors have also been linked to 
screening and diagnostic delay, and accumulation of delay at 
multiple stages along the diagnostic and treatment pathway 
may harm outcomes. Moreover, the cluster analysis sug-
gests that there are dependencies between these predictors 
in the population, and small effects across multiple factors 
accumulate, potentially resulting in poorer breast cancer out-
comes for those individuals. Although these data are approx-
imately 10 years old now, and may reflect dated treatment 
pathways, they provide unique insights that are otherwise 
not possible with more recent, routinely collected data from 
cancer registers—they do not routinely collect the breadth 
of socioeconomic data we have reported here. Though breast 
cancer treatment pathways may have changed, increasing 
costs in healthcare and growing gaps in health outcomes 
across socioeconomic groups in Australia [40], suggest that 
the effects reported here likely persist, and highlights the 
need for more contemporary data. Additionally, the conse-
quences of variation in cancer treatment and care can take 
years to manifest and identify. The data reported here are 
relevant to understanding current inequalities in breast can-
cer outcomes in Queensland, Australia, and potentially, more 
broadly wherever socio-economic gradients resemble those 
in this study. Indeed, Australia boasts one of the best health 
care systems in the world [41], the patterns of treatment 
inequality reported here may even be exaggerated in other 
regions with less equitable and efficient healthcare systems. 
Identifying effective strategies to reduce the disparity in 
wait-times for breast cancer treatment faced by socioeco-
nomically disadvantaged women should remain a priority.
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