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Abstract
Purpose  The key problem raised in the paper is the change in the position of the breast tumor due to magnetic resonance 
imaging examinations in the abdominal position relative to the supine position during the surgical procedure. Changing the 
position of the patient leads to significant deformation of the breast, which leads to the inability to indicate the location of 
the neoplastic lesion correctly.
Methods  This study outlines a methodological process for treating cancer patients. Pre-qualification assessments are con-
ducted for magnetic resonance imaging (MRI), and 3D scans are taken in three positions: supine with arms raised, supine 
surgical position (SS), and standing. MRI and standard ultrasonography (USG) imaging are performed, and breast and cancer 
tissue are segmented from the MRI images. Finite element analysis is used to simulate tissue behavior in different positions, 
and an artificial neural network is trained to predict tumor dislocation. Based on the model, a 3D-printed breast with a high-
lighted tumor is manufactured. This computer-aided analysis is used to create a detailed surgical plan, and lumpectomy sur-
gery is performed in the SS. In addition, the geometry of the tumor is presented to the medical staff as a 3D-printed element.
Results  By utilizing a comprehensive range of techniques, including pre-qualification assessment, 3D scanning, MRI and 
USG imaging, segmentation of breast and cancer tissue, model analysis, image fusion, finite element analysis, artificial 
neural network training, and additive manufacturing, a detailed surgical plan can be created for performing lumpectomy 
surgery in the supine surgical position.
Conclusion  The new approach developed for the pre-operative assessment and surgical planning of breast cancer patients 
has demonstrated significant potential for improving the accuracy and efficacy of surgical procedures. This procedure may 
also help the pathomorphological justification. Moreover, transparent 3D-printed breast models can benefit breast cancer 
operation assistance. The physical and computational models can help surgeons visualize the breast and the tumor more 
accurately and detailedly, allowing them to plan the surgery with greater precision and accuracy.
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Abbreviations
AI	� Artificial intelligence
BCT	� Breast-conserving therapy
CAD	� Computer-aided design
CAE	� Computer-aided engineering
DNN	� Deep neural network
FE	� Finite element
FEA	� Finite element analysis
FEM	� Finite element method
MRI	� Magnetic resonance imaging
ROI	� Region of interest
S	� Standing position
SS	� Supine surgical position
SU	� Supine position with arms raised (up)
SVM	� Support vector machine
USG	� Ultrasonography

Introduction

Breast cancer is the most diagnosed cancer among women 
worldwide and the fifth leading cause of cancer-related death 
[1]. The risk factors for developing breast cancer include 
female sex, age, positive family history of breast or ovarian 
cancer, genetic mutations, ethnic origin, number of pregnan-
cies and breastfeeding, age at onset of menstruation and at 
menopause, breast tissue composition, and history of breast 
cancer or hormone replacement therapy [2].

The GLOBOCAN 2020 database, released by the Inter-
national Agency for Research on Cancer (IARC), reported 
2.3 million new cases of breast cancer [1]. At the same time, 
age-standardized incidence rates (ASIR) of breast cancer 
demonstrate a strong correlation with human development 
index (HDI) scores: clear evidence was provided that the 
incidence of breast cancer in the most developed countries 
was significantly higher in younger patients, which makes 
this an even more pressing issue, both economically and 
socially [3].

Breast cancer diagnosis and treatment constitute a multi-
stage and interdisciplinary process that involves specialists 
from various fields, including surgeons, clinical oncolo-
gists, radiotherapists, radiologists, pathomorphologists, 
and psycho-oncologists. The guiding principle of combina-
tion therapy is surgical treatment, either currently widely 
implemented breast-conserving therapy (BCT) or, in spe-
cific cases, mastectomy, i.e., complete amputation of the 
breast. BCT is associated with significantly better esthetic 
outcomes, reduced psychological distress for the patient 
and fewer postoperative complications [4]. Although BCT 
appears much more beneficial to patients, those who have 
received this treatment often require reoperation with total 
mastectomy because the primary intervention did not meet 
the curative surgery criteria [5]. According to the literature, 

the rate of nonradical BCT resections averages 20% to 30% 
[6] and reaches as high as 31% to 46% for patients diagnosed 
with ductal carcinoma in situ (DCIS) [7, 8]. Therefore, the 
recommended surgical approach for patients with early-stage 
breast cancer in the guidelines of the European Society for 
Medical Oncology (ESMO) is based on tumor size, quali-
fication for a specific type of surgery, clinical phenotype 
and the preferences of the patient. The preparation of an 
adequate surgical plan for a breast-conserving procedure 
requires detailed information about the lesion's location and 
margins, which raises the issue of accurately locating breast 
lesions on imaging tests.

Because the patient may take different positions during 
imaging diagnostic tests (standing during MMG or prone 
during MRI) than her position during surgery (lying on her 
back with the upper limb in abduction) and because breast 
tissue movement is influenced by gravity and the position 
of other body parts, a gold standard in planning the optimal 
extent of breast resection has not yet been defined.

Ideas for introducing image fusion using the available 
breast imaging methods (mammography and ultrasound 
with MRI) to allow for more precise identification of tumor’s 
location and surgical margins have been appearing in the lit-
erature over the past several years. However, lesions detect-
able only on MRI and missed by other imaging techniques, 
multifocal breast cancer, and discrepancies in lesion size 
between particular imaging tests currently remain the great-
est challenges. An approach that would enable precise iden-
tification of tumor location during diagnostics and surgery 
has not yet been created, due to a number of difficulties:

–	 Deformation of breast tissue in the MRI breast coil and 
difficulties reproducing this deformation pattern in the 
surgical position

–	 Variability of breast tissue composition (ratio of fatty 
tissue to glandular/fibrous tissue)

–	 Variability of water retention in a given patient’s breast 
depending on the stage of her menstrual cycle

A model of breast image fusion would lead to countless 
benefits for all specialists involved in the diagnostics and 
treatment of breast cancer, as well as numerous advantages 
for the patients. A breast image fusion model would have 
numerous benefits for both clinicians and patients in the 
diagnosis and treatment of breast cancer. It would allow for 
effective staging, pre-operative planning, and the identifica-
tion of additional lesions. Surgeons could choose an optimal 
breast reconstruction technique and plan ahead for the proce-
dure, resulting in a better quality of life after treatment. This 
planning approach could also be used for targeted examina-
tions, a training model for further education, and improved 
communication with patients. Radiologists could use 3D 
printing to present realistic and accessible radiological 
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data in the form of a real, accurate 3D model of a particular 
pathology [2]. The economic aspects of improved communi-
cation, surgical planning, and choosing BCT whenever pos-
sible could lead to shorter preparation and procedure times, 
reduced drug use, a faster learning curve for new surgeons, 
and fewer postoperative complications and treatment costs. 
Overall, a breast image fusion model could greatly improve 
the diagnosis and treatment of breast cancer for all those 
involved.

State of the art

Many studies [9–11] only conduct analyses of breast move-
ments while performing activities in an upright position, 
i.e., walking on a treadmill, running, or ascending and 
descending on an elevation. The female breast is essentially 
composed of four structures: lobules or glands, milk ducts, 
fat and connective tissue and each has different mechanical 
properties [12]. For this reason, when creating FE (Finite 
Element) models, certain simplifications are adopted.

Chen et al. [9] created a breast model that consisted of 
a thorax, two breasts and three layers of skin with different 
mechanical properties (density, Young’s modulus, Poisson’s 
ratio, and shear modulus). An established nonlinear finite 
element method (FEM) has been utilized to simulate the 
motion of human breasts based on 3D photogrammetric sur-
face models and biomechanical properties that were tested 
through finite element method and motion analysis.

Naser et  al. [13] proposed a simple geometry of the 
woman’s breast. The idea of the study is to show the finite 
element (FE) capabilities in predicting the shape under spe-
cific loads. Characterizing the biomechanical performance 
of breast mass types using force-strain difference curves pre-
sented a high variance singularity between the breast mass 
types. Based on previous studies [14–17], authors assumed 
all tissues to be incompressible, homogenous, isotropic, and 
have nonlinear elastic properties. Vavourakis et al. [18] pre-
sents in his paper a three-dimensional surgical simulator for 
computer-aided surgical planning breast-conserving therapy 
(BCT) of early-stage breast cancer patients. Authors attempt 
to model—in an integrative manner—breast tissue biome-
chanics and physiological soft-tissue recovery with MRI and 
3dMD surface acquisition. Dufaye et al. [19] present a vir-
tual deformable breast model of a representative volunteer 
whose geometry is constructed from MR data. The study 
confirms that the mechanical properties of the breast skin 
play an important role in explaining the changes associated 
with radiotherapy, tissue expansion, and breast reconstruc-
tion surgery. The proposed by the authors numerical mod-
eling takes into account the main constituents such as skin, 
fat, glands or fibers and suspensory ligaments of Cooper, 

responsible for the deformability of breast tissues under the 
effect of gravity.

In summary, the discussed studies present an overview 
of the numerical modeling used in estimating breast strain 
in different loading conditions (prone, supine, and standing 
positions). We observed that the majority of articles imple-
ment the inverse approach. In our opinion, this is an excel-
lent way to obtain the initial breast geometry. The inverse 
approach is a method to obtain a stress-free (i.e., state with-
out gravity) tissue geometry. Thus, it is possible to apply 
new boundary conditions and verify the strains acting on 
the breast. In other words, it is impossible to simulate the 
geometry change from prone (i.e., MRI position) to supine 
(i.e., surgery position) without first simulating the stress-
free position.

In the studies, it is observed that there is a huge miss-
ing part, which is the cancer tissue position and geometry 
change. Mammography or MRI usually characterizes the 
cancer diagnosis. Both methods have a different position 
than the one during surgery. The woman’s breast is char-
acterized by various tissues, mainly fat, glandular tissue, 
ligaments, blood vessels and nerves. Finally, while adapting 
the optimum surgical plan, the surgeon has to decide where 
the tumor is oriented after the position change. This brings 
us to the different simulations scope. The idea would be 
not to focus only on the outer geometry but on the cancer-
ous tissue displacement. Thanks to that, the BCTs will be 
more efficient, and the reoperation percentage will decrease. 
Presumably, different numerical methods, such as smoothed 
particle hydrodynamics (SPH), will come in handy. The SPH 
is dedicated mainly to fluid and soil representation, but it 
might be an excellent fit for the fat tissue [20].

Artificial neural networks are considered a promising 
computational technology to resolve intricate issues that 
cannot be tackled with conventional approaches, due to 
their ability to learn from experience and generalize [21]. 
Nevertheless, when confronted with a complicated data-
set, various neural classifiers usually generate distinct gen-
eralizations by setting different boundaries. The diversity 
of outcomes is significantly influenced by several factors 
such as the neural network's architecture, learning mode 
(supervised or unsupervised), network structure (number of 
layers and hidden nodes, type of activation functions, and 
connectivity degree), training parameters (weights initiali-
zation, learning rates, training epochs), and other relevant 
aspects. In their study, Wu et al. [21] examined the chal-
lenge of classifying breast lesions as benign or malignant, 
considering the binary classification. The aim of the study 
was to enhance the ratio of successful biopsies by devel-
oping computer-aided diagnosis techniques and systems, 
which can provide valuable assistance to radiologists and 
physicians in the process of screening and diagnosis. In a 
different study [22], the use of artificial neural networks has 
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been implemented to categorize mammographic masses with 
the purpose of detecting and diagnosing breast cancer in 
its early stages. The authors of this paper employ various 
fusion methods, both fixed and trained, to detect potentially 
concerning lesions.

Methodology

A new approach was developed for the pre-operative assess-
ment and surgical planning of lobular breast cancer patients. 
The process involves pre-qualification assessment, 3D scan-
ning in three different positions, MRI and USG imaging, 
breast and cancer tissue segmentation, model analysis, 
image fusion, finite element analysis, artificial neural net-
work training, STL (stereolithography) model generation, 
and finally, 3D printing (detailed parameters–see Appendix). 
Based on the computer-aided analysis, a detailed surgical 
plan is created for performing lumpectomy surgery in the 
supine surgical position. The detailed methodology, depicted 
in Fig. 1, is as follows:

	 (1)	 Admission of a breast cancer patient to an oncology 
clinic.

	 (2)	 Conducting a pre-qualification assessment of patients 
for magnetic resonance imaging.

	 (3)	 Taking 3D scans of patients in three different posi-
tions: 3.1. supine position with both arms raised up 
(SU), 3.2. supine position with the arm raised from 
the breast side with the tumor (forming a 90-degree 

angle between the arm and the torso—supine surgical 
position (SS), 3.3. standing with arms resting freely 
along the body (S).

	 (4)	 Conducting MRI in the prone position and standard 
ultrasonography (USG) imaging.

	 (5)	 Segmenting breast tissue and cancer tissue from MRI 
imaging.

	 (6)	 Making model analysis from 3D scanning.
	 (7)	 Performing image fusion of segmented MRI and 3D 

models.
	 (8)	 Conducting finite element analysis using numerical 

methods to simulate the behavior of breast tissue and 
the tumor in different positions.

	 (9)	 Training an artificial neural network to predict tumor 
dislocation in different positions using artificial intel-
ligence.

	(10)	 Additive manufacturing: 3D printed breast model in 
supine surgical position (SS) with the highlighted 
tumor – STL file format generated based on iterations 
#8 and #9.

	(11)	 Detailed surgical plan based on computer-aided analy-
sis and 3D physical model.

	(12)	 Performing lumpectomy surgery in a supine surgical 
position (SS).

MRI of the breast was performed on the Magnetom 
Avanto Tim Dot 1.5 T (Siemens Healthcare, Erlangen, Ger-
many) with a compatible 18-channel diagnostic breast coil 
in the prone position and in a supine position using a flex-
ible body surface 16-channel coil. Imaging was performed 

Fig. 1   Methodological process for the breast cancer patients treatment



37Breast Cancer Research and Treatment (2023) 202:33–43	

1 3

within 14 days of the core needle biopsy. For all axial plane 
acquisitions in prone position, the phase encoding direction 
was performed from right to left to limit artifacts repeat-
ing cardiac and respiratory movement. Additionally, move-
ment artifacts were eliminated by the “Motion Correction” 
function. The tests were conducted according to protocol 
described in Appendix 1 with 30 min gap between two 
scannings.

Moreover, vitamin D tracers can be fixed onto the skin at 
the level of the suprasternal notch and approximately 10 cm 
below in order to establish additional reference points to be 
used in further imaging. Breast MRI exams were analyzed 
by independent radiology specialists (double reading) using 
the Siemens software tool (Brevis MRI—Siemens Helth-
ineers Erlangen Germany), and all lesions were evaluated by 
the American College of Radiology—BIRADS breast MRI 
lexicon (Fifth Edition).

Segmentation

The segmentation of images is a procedure to select cer-
tain areas of an image, usually corresponding to a certain 
anatomical structure or lesion. This process is commonly 
implemented by the medical community for a better view 
of a certain structure. For this work, the segmentation is 
performed on two separate sets of medical images obtained 
by MRI. The first set of medical images displays the con-
tour and overall volumetry of both breasts. The second set 
of medical images involves a contrast that reveals cancer 
tissue. The segmentation of both sets of images allows an 
overlapping 3D structure that reveals the exact location of 

the tumors in relation to the position in which the MRI was 
obtained. This is possible since both MRI sets were obtained 
without the patient moving, meaning that the reference sys-
tem from one set to the other was identical.

The open-source software 3D Slicer (Slicer, 2023) was 
used to perform all segmentations. After uploading the 
appropriate sets of medical images, the segmentation is 
rather straightforward. The MRI scan containing the breast 
volumetry displays a greyscale contour, in which the user 
obtains the final geometry by performing a threshold seg-
mentation (Fig. 2). This process selects pixel groups that 
meet a certain threshold of greyscale value and translating 
those pixels into 3D representative units named voxels. The 
representation of the voxels allows the user to observe the 
final segmented structure.

The set of images containing the contrast on cancer tis-
sue allows the user to select pixel groups close to the color 
white, since the contrast differentiates it from the rest of 
the breast tissue (Fig. 2). After processing the first two sets 
of medical images, the threshold values were recorded and 
used for the rest of the sets. Overall, the values did not differ 
significantly between set groups. Figure 3 illustrates the final 
3D structure obtained for patient 2, where it is visible the 
cancer tissue dispersion in the patient’s body.

Image fusion method

The structured-light 3D scanner was used in order to obtain 
surface models of the patients’ breasts [23]. A professional 
handheld scanner designed to digitize large objects in a 
relatively short time was used to provide the comfort for 

Fig. 2   Example of the seg-
mentation results for the breast 
tissue (top) and cancer tissue 
(bottom)
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the patients. Thanks to the external camera mounted on the 
scanner, we were able to scan the breast and chest geom-
etry along with textures in full color. The handheld mode 
used with the camera enabled obtaining 30 fps, ~ 1.5 million 
points per second with an accuracy of 0.1–0.4 mm (depend-
ing on the scanning distance), which was sufficient for this 
approach. The scanner projected the visible line pattern or 
QR code-like pattern depending of the method used. How-
ever, in every mode the scanner was projecting the high 
intensity lighting with some stroboscopic effect—thus the 
patients were instructed to close the eyes during the scanning 
process if they feel unconformable.

Each of the 10 patients was scanned in three different 
positions (Fig. 4)—standing with arms resting freely along 
the body (S), supine surgical position (SS) with the arm 
raised from the breast side with the tumor change, and 
supine position with both arms up (SU).

Two vitamin D tablets were attached to the patient's body 
at the suprasternal notch and approximately 10 cm below 
to establish additional reference points. The average scan-
ning time in one position was approximately 3 min with 
additional 4–7 min for data processing. Thus, the 3-position 
setup 3D scanning for each woman took around 25 min in 
total.

All 3 surface models were processed using CATIA v5. 
On each model the middle distance between the tablets were 
marked with a point, and then connected by a line. Operating 
position (SS) cloud of points was fixed and used as a refer-
ence going forward. A local coordinate system was placed 
in geometrical midpoint of the lower vitamin D tablet due 
to better visibility and scanning precision. z-axis was fixed 
in accordance with the direction of gravity and the x- and 
y-axes were oriented in frontal and sagittal planes, respec-
tively. The S and SU models were linked at the location of 
the bottom tablet (and thus the location of the local coor-
dinate system), and the lines going through the reference 
points overlapped. In the next step the models were adjusted 
by rotation around the z-axis of the local coordinate system 
(Fig. 5). The process of aligning breast models after segmen-
tation is depicted in Fig. 6.

Machine learning

AI-based techniques have the potential to revolutionize the 
prediction of large deformations, especially for human tis-
sue materials, where highly nonlinear material behavior is 
common (Fig. 7). Accurate prediction of tissue deformation 
behavior can significantly improve the accuracy of surgical 
planning, simulations, and personalized medicine. However, 
more research is needed to address the challenges associated 
with developing and validating AI-based models for predict-
ing the deformation of human tissue materials.

In this case, numerical models based on FEM might be 
ineffective in terms of the time-consuming process of obtain-
ing geometry of patient’s breast, preparing numerical model, 
performing simulation and retrieving results for medical 
staff. This time comfort cannot always be assured and over-
loading of cases in short time might lead to bottle-neck prob-
lem. One solution might be introducing an AI model based 
on a deep neural network for obtaining a deformation model 

Fig. 3   Example of a 3D segmentation result model, displaying the 
dispersion of cancer tissue

Fig. 4   Example of a 3D scans 
(upper row) of a patient in 
different positions (lower row): 
A standing with arms resting 
freely along the body (S), B 
supine surgical position (SS) 
with the arm raised from the 
breast side with the tumor 
change, C supine position
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of a patient’s breast. Considering the scenario, based on 
assumptions of personalized medicine, that every single case 
is treated individually, it required possessing medical data 

and retrieving it into numerical form. Lots of information 
from medical imaging techniques can overwhelm AI algo-
rithms—thus reducing the set of information is needed. On 

Fig. 5   Example of the process 
of aligning the 3D scans. 
Images (1A–1C) show the 
position of the local coordinate 
systems in the vicinity of the 
lower tablet and how the axes 
pass through the two reference 
points. (1A)—position SU; 
(1B)—position S; (1C)—posi-
tion SS. Images (2A, B) show 
all three positions in relation to 
each other; (2A)—frontal plane 
view; (2B)—transverse plane 
view

Fig. 6   Example of a process 
of aligning breast models after 
segmentation (black model—
whole breast, red—segmented 
cancer tissue) with 3D scans 
aligned in a local coordinate 
system. A—frontal plane view; 
B—transverse plane view

Fig. 7   Conceptual of defor-
mation calculation with deep 
neural network model
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the other hand, the description of the problem assumes that 
the patient’s MRI is performed in the abdominal position 
while surgery is performed in the supine position (Fig. 7.). 
Therefore, the location of the tumor inside the breast can 
be hard to find during surgery operation, moreover for the 
complex shape of cancer-affected tissue. Thus the shape 
of the breast is significantly deformed. AI models have an 
advantage over FE models. For a patient who is examined 
in MRI in a prone position with vit-D caps for reference 
points and then placed in a supine position like for surgery 
and scanned with 3D scanner first, points on the breast skin 
might be used as trackers between the positions (compare 
with Fig. 1). This allows training AI models with real input 
points and real output points. While FEA models can only 
use real input points and no tuning procedure between the 
result and real output points is made.

At this stage, the assumption is that only points on the 
skin could be precisely extracted from MRI examination 
and 3D scanning. Deep Neural Network (DNN) model has 
been used in preliminary studies with loss function defined 
as Root Mean Square Error. The model trained with such 
inputs obtained over 80% of accuracy for points on the skin. 
However, at this stage, it should be noted that the position 
of neoplastic change in the breast is hard to verify. Authors 
proposed additional MRI in the Supine Surgical position 
for several patients, un-fortunately neoplastic changes are 
almost impossible to recognize in this position. Therefore, 
only post-surgery validation of neoplastic change could be 
done. In the future, pre-operative ultrasonography might 
be used to validate the tumor position and an even higher 
accuracy of the DNN model will be obtained. At this stage, 
on particular aspect should be raised. These assumptions 
seem to be valid for all kinds of neoplastic changes, which 
have tissue mechanical properties similar to breast tissue. 
However, for much more stiff or attached-to-skin neoplas-
tic changes, this approach has to be tuned and carefully 
validated.

Moreover, AI and ML (Machine Learning) models can 
be used in the automatic recognition of neoplastic changes 
in breast tissue. Figure 8 shows the approach to direct clus-
tering of raw MRI files with SVM model for neuroplastic 
changes. Further works show that using the predefined mask 
of Region of Interest (ROI) significantly reduces False Posi-
tive regions such as the chest of the spine. In other words, the 
figure below depicts the area with a statistically higher level 
of tissue density than average breast tissue. The background 
blue color indicates zero level, while the red describes a 
50% or more statistical chance that this region has higher 
tissue density. Thus the spine, rib cage, and other structures 

are shown. It should be noted that this approach is obtained 
in an automated way. In the future, an automatically gener-
ated mask of ROI is assumed to incorporate this kind of 
extraction.

Conclusion

Breast cancer remains a significant global health challenge 
with many risk factors, and early detection is critical. The 
multistage and interdisciplinary process of breast cancer 
diagnosis and treatment requires accurate and precise iden-
tification of the tumor’s location and margins. The use of 
image fusion, which combines available imaging techniques, 
can provide a three-dimensional model that allows effective 
staging and pre-operative planning, resulting in better surgi-
cal outcomes, reduced complications, and improved qual-
ity of life for patients. The benefits of a 3D model extend 
beyond surgery, including improved communication with 
patients, training opportunities for oncoplastic procedures, 
and better preparation of histopathological specimens. With 
the continued development and implementation of image 
fusion technology, patients with breast cancer can receive 
optimal care and outcomes. However, there are still limita-
tions in current studies, such as neglecting the mechanical 
properties of the skin and muscle. Further research is needed 

Fig. 8   Machine Learning approach for neoplastic change extraction—
in red color: the area with a statistically higher level of tissue density 
than average breast tissue
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to fully utilize the potential of numerical methods in this 
field. Nonetheless, the studies discussed a valuable contribu-
tion toward improving surgical planning and predicting the 
outcome of breast-conserving therapy.

AI-based techniques can potentially revolutionize the 
prediction of large deformations in human tissue materials, 
which is particularly relevant for surgical planning, simu-
lations, and personalized medicine. However, challenges 
associated with the development and validation of AI-based 
models require further research. In particular, using numeri-
cal models based on FEA may not always be practical for 
medical personnel due to the time-consuming process of 
obtaining the geometry of the patient’s breast, preparing the 
numerical model, performing the simulation, and retrieving 
the results. An AI model based on deep neural networks 
may offer a solution to this problem. Additionally, reduc-
ing medical data and using real input and output points for 
training AI models can improve the accuracy of predictions. 
The surgeon can use the 3D-printed breast model to plan 
the surgery, including the location and size of the incision 
and the removal of the tumor. The model can also educate 
patients about their condition and the surgical procedure.

Appendix 1

The protocol for MRI examination:

(1)	 Prone position.

T1 HR —slice thickness, 0.7  mm [voxel size: 
0.7 × 0.7 × 0.7 mm; SNR (signal–noise ratio), 1.00]; slices 
per slab, 208; TR, 5.64 ms/TE, 5.64 ms; FoV read, 250 mm; 
FoV phase, 169.3 and a total acquisition time = 2 min 28 s.

T2—slicethickness, 2 mm (voxel size: 0.5 × 0.5 × 2.0 mm; 
SNR, 1.00); slices, 57; TR, 6,670 ms/TE, 100 ms; FoV read, 
250 mm; FoV phase, and a total acquisition time = 2 min 
53 s.

TIRM (Turbo Invertion Recovery Magnitude)—slice 
thickness, 2 mm (voxel size: 0.7 × 0.7 × 2.0 mm; SNR, 1.00); 
slices, 57; TR, 7,850 ms/TE, 63 ms; FoV read, 250 mm; FoV 
phase and a total acquisition time = 3 min 24 s.

T1 3D dynamic—matrix, 389 × 256; slice thickness, 
1 mm (voxel size: 1 × 1 × 1 mm; SNR, 1.00); slices per 
slab, 144; TR, 4.42 ms/TE, 1.7 ms; flip angle, 10°; acqui-
sition time of each phase, approximately 55 s (one phase 
before contrast, six phases after contrast injection). The 
dynamic test was performed with the administration of 
the contrast agent Dotarem (gadoterate meglumine) at the 

dose of 0.1 mmol/kg and the flow of 2 ml/s, followed by 
a rinse with 30 ml of NaCl.

DWI—b-value, 50/400/800 s/mm2; slice thickness, 3 mm 
(voxel size: 1.3 × 1.3 × 3.0 mm; SNR, 1.00); slice numbers, 
n = 45; TR, 6300 ms/TE, 70 ms; slice gap, 0.6 mm; and a 
total acquisition time = 3min22s.

(2)	 Supine position.

T1 HR—slice thickness, 0.7  mm [voxel size: 
0.7 × 0.7 × 0.7 mm; SNR (signal–noise ratio), 1.00]; slices 
per slab, 240; TR, 5.64 ms/TE, 2,74 ms; FoV read, 250 mm; 
FoV phase, 169.3 and a total acquisition time = 4 min 07 s.

T1 3D dynamic —slice thickness, 1 mm (voxel size: 
1,2 × 1,2 × 1 mm; SNR, 1.00); slices per slab, 160; TR, 
4.49 ms/TE, 2,16 ms; FoV read, 380 mm; FoV phase, 81,3 
acquisition time of each phase, approximately 55 s (one 
phase before contrast, two phases after contrast injection). 
The dynamic test was performed with the administration of 
the contrast agent Dotarem (gadoterate meglumine) at the 
dose of 0.1 mmol/kg and the flow of 2 ml/s, followed by a 
rinse with 30 ml of NaCl.

Appendix 2

A 3D-printed model of the lobular breast cancer with 
non-mass enhancement morphology and regional dis-
tribution was prepared based on contrast-enhanced MR 
imaging. Using 3D Slicer software cancer, pectora-
lis major fascia, and skin of the mammary gland were 
included in the model, excluding blood vessels and other 
contrast-enhancing tissues. The models were exported in 
*.stl format to the Shapr3D program (Shapr3D Zrt. Buda-
pest, Hungary) and 3D printing dedicated slicer software, 
where supports were added and 3D visualizations were 
made. Cancer lesions were printed with a red polylactide 
filament, and the circumference of the breast was printed 
with a transparent polycarbonate-based filament in fused 
filament fabrication technology using 3D printers (Ulti-
maker 2 + ; Ultimaker B.V. Zaltbommel, Netherlands; and 
Original Prusa i3 MK3S + , Prusa Research a.s., Prague, 
Czech Republic). Parts of the models were accurately 
positioned and poured with a transparent, flexible polyu-
rethane resin. The outputs are depicted in Fig. 9 below.



42	 Breast Cancer Research and Treatment (2023) 202:33–43

1 3

Funding  The authors have no relevant financial or non-financial inter-
ests to disclose. The authors declare that no funds, grants, or other 
support were received during the preparation of this manuscript.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Ethical approval  This study was performed in line with the princi-
ples of the Declaration of Helsinki. Approval was granted by the Eth-
ics Committee of Wroclaw Medical University 120/2021. Written 
informed consent was obtained from the parents.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Łukasiewicz S, Czeczelewski M, Forma A et al (2021) Breast can-
cer—epidemiology, risk factors, classification, prognostic mark-
ers, and current treatment strategies—an updated review. Cancers 
(Basel) 13:4287. https://​doi.​org/​10.​3390/​cance​rs131​74287

	 2.	 Kashyap D, Pal D, Sharma R et al (2022) Global increase in breast 
cancer incidence: risk factors and preventive measures. Biomed 
Res Int 2022:1–16. https://​doi.​org/​10.​1155/​2022/​96054​39

	 3.	 Sharma R (2021) Global, regional, national burden of breast 
cancer in 185 countries: evidence from GLOBOCAN 2018. 
Breast Cancer Res Treat 187:557–567. https://​doi.​org/​10.​1007/​
s10549-​020-​06083-6

	 4.	 Rahman G (2011) Breast conserving therapy: a surgical technique 
where little can mean more. J Surg Tech Case Rep 3:1. https://​doi.​
org/​10.​4103/​2006-​8808.​78459

	 5.	 Morrow M, White J, Moughan J et al (2001) Factors predicting 
the use of breast-conserving therapy in stage I and II breast carci-
noma. J Clin Oncol 19:2254–2262. https://​doi.​org/​10.​1200/​JCO.​
2001.​19.8.​2254

	 6.	 Morrow M, Harris JR, Schnitt SJ (2012) Surgical margins in 
lumpectomy for breast cancer—bigger is not better. N Engl J Med 
367:79–82. https://​doi.​org/​10.​1056/​NEJMs​b1202​521

	 7.	 Dillon MF, Mc Dermott EW, O’Doherty A et al (2007) Factors 
affecting successful breast conservation for ductal carcinoma 
in situ. Ann Surg Oncol 14:1618–1628. https://​doi.​org/​10.​1245/​
s10434-​006-​9246-y

	 8.	 Meijnen P, Oldenburg HSA, Peterse JL et al (2008) Clinical out-
come after selective treatment of patients diagnosed with ductal 
carcinoma in situ of the breast. Ann Surg Oncol 15:235–243. 
https://​doi.​org/​10.​1245/​s10434-​007-​9659-2

	 9.	 Chen LH, Ng SP, Yu W et al (2013) A study of breast motion 
using non-linear dynamic FE analysis. Ergonomics 56:868–878. 
https://​doi.​org/​10.​1080/​00140​139.​2013.​777798

	10.	 Zhou J, Winnie Y, Ng S-P (2012) Studies of three-dimensional 
trajectories of breast movement for better bra design. Text Res J 
82:242–254. https://​doi.​org/​10.​1177/​00405​17511​435004

	11.	 Leme JC, dos Santos Banks L, Dos Reis YB et al (2020) Sports 
bra but not sports footwear decreases breast movement during 
walking and running. J Biomech 111:110014. https://​doi.​org/​10.​
1016/j.​jbiom​ech.​2020.​110014

	12.	 Sun SX, Bostanci Z, Kass RB et al (2018) Breast Physiology : 
Normal and abnormal development and function, 5th edn. Else-
vier, Amsterdam

	13.	 Naser MA, Sayed AM, Wahba AA, Eldosoky MA (2018) Breast 
tumors diagnosis using finite element modelling. J Biomed Sci. 
https://​doi.​org/​10.​4172/​2254-​609X.​100084

	14.	 Sarvazyan AP, Skovoroda AR, Emelianov SY et al (1995) Bio-
physical bases of elasticity imaging. Springer, Boston, pp 223–240

	15.	 Fung YC (1981) Biomechanics mechanical properties of living 
tissues. Springer, New York

	16.	 Azar FS, Metaxas DN, Schnall MD A finite element model of 
the breast for predicting mechanical deformations during biopsy 
procedures. In: Proceedings IEEE workshop on mathemati-
cal methods in biomedical image analysis. MMBIA-2000 (Cat. 
No.PR00737). IEEE Comput Soc, pp 38–45

a) b) c)

Fig. 9   Additive manufacturing (3D-pritining) outputs: a cancer lesions b outer breast mould c resin model with positioned cancer lesion

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13174287
https://doi.org/10.1155/2022/9605439
https://doi.org/10.1007/s10549-020-06083-6
https://doi.org/10.1007/s10549-020-06083-6
https://doi.org/10.4103/2006-8808.78459
https://doi.org/10.4103/2006-8808.78459
https://doi.org/10.1200/JCO.2001.19.8.2254
https://doi.org/10.1200/JCO.2001.19.8.2254
https://doi.org/10.1056/NEJMsb1202521
https://doi.org/10.1245/s10434-006-9246-y
https://doi.org/10.1245/s10434-006-9246-y
https://doi.org/10.1245/s10434-007-9659-2
https://doi.org/10.1080/00140139.2013.777798
https://doi.org/10.1177/0040517511435004
https://doi.org/10.1016/j.jbiomech.2020.110014
https://doi.org/10.1016/j.jbiomech.2020.110014
https://doi.org/10.4172/2254-609X.100084


43Breast Cancer Research and Treatment (2023) 202:33–43	

1 3

	17.	 Hayes WC, Keer LM, Herrmann G, Mockros LF (1972) A math-
ematical analysis for indentation tests of articular cartilage. J Bio-
mech 5:541–551. https://​doi.​org/​10.​1016/​0021-​9290(72)​90010-3

	18.	 Vavourakis V, Eiben B, Hipwell JH et al (2016) Multiscale mech-
ano-biological finite element modelling of oncoplastic breast sur-
gery—numerical study towards surgical planning and cosmetic 
outcome prediction. PLoS ONE 11:e0159766. https://​doi.​org/​10.​
1371/​journ​al.​pone.​01597​66

	19.	 Dufaye G, Cherouat A, Bachmann J-M, Borouchaki H (2013) 
Advanced finite element modelling for the prediction of 3D breast 
deformation. Eur J Comput Mech 22:170–182. https://​doi.​org/​10.​
1080/​17797​179.​2013.​820902

	20.	 Toma M, Nguyen PDH (2018) Fluid–structure interaction analysis 
of cerebrospinal fluid with a comprehensive head model subject 
to a rapid acceleration and deceleration. Brain Inj 32:1576–1584. 
https://​doi.​org/​10.​1080/​02699​052.​2018.​15024​70

	21.	 Wu Y, Wang C, Ngad SC et al (2006) Breast cancer diagnosis 
using neural-based linear fusion strategies. Springer, Berlin, pp 
165–175. https://​doi.​org/​10.​1007/​11893​295_​19

	22.	 Wu Y, He J, Man Y, Arribas JI (2004) Neural network fusion 
strategies for identifying breast masses. IEEE Int Conf Neural 
Netw-Conf Proc 3:2437–2442. https://​doi.​org/​10.​1109/​IJCNN.​
2004.​13810​10

	23.	 Amornvit P, Sanohkan S (2019) The accuracy of digital face scans 
obtained from 3D scanners: an in vitro study. Int J Environ Res 
Public Health. https://​doi.​org/​10.​3390/​ijerp​h1624​5061

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/0021-9290(72)90010-3
https://doi.org/10.1371/journal.pone.0159766
https://doi.org/10.1371/journal.pone.0159766
https://doi.org/10.1080/17797179.2013.820902
https://doi.org/10.1080/17797179.2013.820902
https://doi.org/10.1080/02699052.2018.1502470
https://doi.org/10.1007/11893295_19
https://doi.org/10.1109/IJCNN.2004.1381010
https://doi.org/10.1109/IJCNN.2004.1381010
https://doi.org/10.3390/ijerph16245061

	Numerical and physical modeling of breast cancer based on image fusion and artificial intelligence
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	State of the art
	Methodology
	Segmentation
	Image fusion method
	Machine learning

	Conclusion
	Appendix 1
	Appendix 2
	References




