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Abstract
Purpose Angiogenesis is crucial for tumor growth and is one of the hallmarks of cancer. In this study, we analyzed microves-
sel density, vessel median size, and perivascular a-SMA expression as prognostic biomarkers in breast cancer.
Methods Dual IHC staining was performed where alpha-SMA antibodies were used together with antibodies against the 
endothelial cell marker CD34. Digital images of stainings were analyzed to extract quantitative data on vessel density, vessel 
size, and perivascular alpha-SMA status.
Results The analyses in the discovery cohort (n = 108) revealed a statistically significant relationship between large ves-
sel size and shorter disease-specific survival (p = 0.007, log-rank test; p = 0.01, HR 3.1; 95% CI 1.3–7.4, Cox-regression 
analyses). Subset analyses indicated that the survival association of vessel size was strengthened in ER + breast cancer. To 
consolidate these findings, additional analyses were performed on a validation cohort (n = 267) where an association between 
large vessel size and reduced survival was also detected in ER + breast cancer (p = 0.016, log-rank test; p = 0.02; HR 2.3, 
95% CI 1.1–4.7, Cox-regression analyses).
Conclusion Alpha-SMA/CD34 dual-IHC staining revealed breast cancer heterogeneity regarding vessel size, vessel density, 
and perivascular a-SMA status. Large vessel size was linked to shorter survival in ER + breast cancer.

Keywords Angiogenesis · Alpha-SMA · CD34

Introduction

Angiogenesis is crucial for tumor growth when the tumor 
size is exceeding 1–2  mm3, and it is one of the hallmarks of 
cancer [1–4]. Upon neovascularization, tumor growth speeds 
up and becomes exponential [4, 5]. Newly grown vessels 

provide the necessary nutrients and oxygen to support the 
increased tumor growth, but they are usually immature and 
both morphologically and physiologically aberrant.

Tumor vessels are exerting several pathological features 
such as the formation of irregular vascular networks, loss of 
proper architecture, increased permeability, and low pericyte 
coverage [6–10]. The aberrant vessel structure is associated 
with dysfunctional blood flow, perpetuates extravasation of 
cancer cells, facilitates metastatic processes, and thus, con-
tributes to tumor progression and aggressiveness [11].

Quantitative evaluation of tumor neo-angiogenesis has 
been proposed as a valid method to assess the disease 
prognosis [12]. In the past few decades, several features 
and measurements of tumor angiogenesis have been pro-
posed as potential prognostic tissue-based markers [12, 13]. 
Microvessel density (MVD) and improved measurements 
that better reflect ongoing angiogenesis such as proliferating 
MVD (pMVD) together with Vascular Proliferation Index 
(VPI), have been suggested as estimates of angiogenesis and 
showed validity as prognostic biomarkers [14–20]. A series 
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of studies have also explored the prognostic significance of 
endothelial markers associated with specific vessel pheno-
types [21–24].

Pericytes represent a heterogeneous population of cells 
that take part in building the mural layer of small vessels 
[25]. Being embedded in the basal membrane and also in 
close contact with endothelial cells, they take part in par-
acrine communication with endothelial cells and play an 
important role in vessel maturation, endothelial cell sur-
vival, vessel wall stabilization, and blood flow normaliza-
tion [26–29]. Normally, in healthy tissues, pericytes express 
markers such as neural\glial antigen 2 (NG2), desmin, alpha-
smooth muscle actin (a-SMA), and PDGFRb [reviewed in 
25] [30]. Various prognosis associations have been detected 
based on perivascular marker status and have been associ-
ated with prognosis in studies done on, e.g., renal carcinoma, 
oral squamous cell carcinoma, NSCLC, endometrial cancer, 
and colorectal cancer [15, 31–35]. In a phase II study done 
on breast cancer patients in order to investigate potential 
mechanisms of bevacizumab neoadjuvant therapy benefits 
in certain subsets of breast cancer, a-SMA coverage was 
used as an indicator of vascular maturity and vascular nor-
malization after bevacizumab treatment and was considered 
an indicator of favorable therapy response in patients [36].

In this study, we evaluate the prognostic value of vessel 
median size, perivascular a-SMA expression and baseline 
MVD in breast cancer. Vessel median size was included as 
a marker since this feature remains not commonly analyzed 
and could act as a proxy for vessel maturation. By digital 
reading of vascular markers in a population-representative 
cohort and validation in an independent series, we assessed 
how these vascular markers perform as independent prog-
nosticators in breast cancer.

Materials and methods

Patients and tissue material

This study included cancer tissue from 439 breast cancer 
patients (108 cases as whole section slides, and 331 cases 
as TMA slides) (Supplementary Table S1). The material 
was obtained from women diagnosed with breast can-
cer in the period between 1996 and 2003, as part of the 
population-based Norwegian Breast Cancer Screening 
Program. These patients received treatment according to 
standard national protocols for that time at Haukeland 
University Hospital. Clinicopathologic data were avail-
able at the institution from the clinical records and his-
topathology reports in addition to microscopic re-exam-
ination. The follow-up information was collected from 

the Norwegian Cause of Death Registry. The last date of 
follow-up was June 30, 2017 and is considered complete and 
accurate. Collected outcome data consisted of survival sta-
tus, survival time, and cause of death. The clinicopathologic 
data included age at diagnosis, the largest tumor diameter, 
histologic grade, molecular subtype, lymph node status, 
and immunohistochemical markers: hormonal receptors 
and HER2. Patient records and personal information were 
anonymized prior to analysis. A more detailed description 
of this cohort and clinical characteristics is available in the 
study by Knutsvik et al. [37]. Written informed consent 
has been obtained from all of the patients. The study was 
approved by the Western Regional Committee for Medical 
and Health Research Ethics, REC West (REK 2014/1984). 
All studies were performed in accordance with guidelines 
and regulations by the University of Bergen and REK, and 
in accordance with the Declaration of Helsinki Principles.

Obtained tissue samples were fixed using 4% buffered 
formaldehyde before further processing and embedding in 
the paraffin blocks. From the collected blocks, 5 μm sec-
tions were made using the same microtome and by the same 
operator and mounted on the poly-lysine-coated glass slides. 
Slides were kept at + 4 °C until antibody staining.

For the staining performed on the whole section slides, 
the hematoxylin–eosin-stained breast cancer tissues were 
first examined by an experienced pathologist, and repre-
sentative tissue blocks from each case, containing both 
peripheral and central parts of the tumor, and with the 
most cellular and high-grade areas, were selected for 
staining. Selected paraffin blocks were also used in the 
preparation of tissue microarrays (TMA). TMAs were 
made with the help of hematoxylin–eosin-stained slides 
of corresponding paraffin blocks in order to select areas 
of high tumor purity and to include the tumor periphery. 
Cores were made in triplicate from each of the blocks, 
by punching cores of 1 mm in diameter and mounting 
them into the recipient paraffin block using a semi-auto-
mated precision instrument (Minicore 3, Tissue Arrayer, 
Alphelys, France).

Immunohistochemistry staining

Immunohistochemistry was performed on 5-μm-thick breast 
cancer tissue sections made from formalin-fixed and paraf-
fin-embedded archival tumor tissue, prepared in a form of 
whole section slides and TMA slides. Prior to IHC staining, 
slides were baked in the oven at 60 °C for 48 h. Follow-
ing the baking step, slides were pretreated on the Ventana 
Discovery Ultra platform (Ventana Medical Systems Inc. 
Tucson, Arizona, USA; Roche diagnostics GmbH, Man-
heim, Germany). During the Ventana protocol, anti a-SMA 
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antibody (M0851, Dako, clone 1A4, 1:2000) and second-
ary, AP multimer anti-mouse antibody (UltraMap—anti-
Ms AP, 760-4312, Ventana Medical Systems Inc. Tucson, 
Arizona, USA; Roche diagnostics GmbH, Manheim, Ger-
many, provided prediluted) were automatically applied by 
Ventana and color was developed using ChromoMap Blue 
chromogen kit (760-161, Ventana Medical Systems Inc. Tuc-
son, Arizona, USA; Roche diagnostics GmbH, Manheim, 
Germany). After processing the slides in Ventana, slides 
were collected and cleaned with the detergent in order to 
remove the remaining liquid coverslip (LCS, 650-010, Ven-
tana Medical Systems Inc. Tucson, Arizona, USA; Roche 
diagnostics GmbH, Manheim, Germany). Following this, 
slides were blocked for 10 min at RT in a humidity cham-
ber using DAKO protein block (Protein Block Serum-Free 
Ready-To-Use Dako). Slides were then incubated with 
anti-CD34 antibody (M7165, Dako, clone QBend10, 1:80) 
overnight at 4 °C in a humidity chamber. The slides were 
washed three times for 5 min, using Dako washing buffer 
(S3006, Dako-Agilent, Copenhagen, Denmark), and incu-
bated with secondary AP polymer-conjugated anti-mouse 
antibody (MP-5402, polyclonal, Vector Laboratories, Burl-
ingame, USA, provided prediluted) for 1 h at RT in a humid-
ity chamber. After washing (3 × 5 min) using Dako washing 
buffer (S3006, Dako-Agilent, Copenhagen, Denmark), color 
was developed using liquid permanent red (LPR) as chro-
mogen (K0640, Dako-Agilent, Copenhagen, Denmark) for 
5 min at RT. Thereafter, slides were rinsed with distilled 
water and then dehydrated using the increasing concentra-
tion of ethanol and then baked in the oven at 60 °C for 1 h 
to stabilize the LPR staining. After the baking step, slides 
were incubated in xylene for 5 min, and then the cover glass 
was mounted using an automated mounting machine (Cov-
erSliper CR100, Dako-Agilent, Copenhagen, Denmark). An 
example of positive and negative control staining is shown 
in Supplementary Fig. S1.

Digital image analysis

The double-stained slides were scanned using NanoZoomer-
XR (Hamamatsu Photonics K.K., Shizuoka, Japan) with × 40 
objective. To visualize the scanned files, Aperio ImageScope 
12.4.3.5008 software was used. Individual images corre-
sponding to each TMA core were extracted using QuPath 
software and saved in.tiff format. Before the image analy-
sis was performed, every image was inspected by an expe-
rienced pathologist in order to assess the overall staining 
quality, tissue, and scanning quality. All the viable tumor 
tissue was used in the study. Some of the images needed 
to undergo manual curation in order to exclude artifacts, 
large areas of fat tissue, fibrosis, necrotic areas, and areas 

with benign tissue. Each case was represented by three cores 
from the tumor. If the TMA core failed the quality control, 
the sample was excluded from further analysis. The cores 
of the same origin were treated for image analysis as one 
entire tissue sample. Images that fulfilled the quality criteria 
were analyzed using Image J software. Regions of interest 
(ROI) on the whole section slides were manually annotated 
by a pathologist using QuPath software and processed using 
Image J software.

CD34 staining was used alongside an in-house developed 
image analysis algorithm, including size filtering and not 
counting single CD34 + cells, to identify vessels, as previ-
ously described [38, 39]. Specifically, the RGB image was 
subjected to a color deconvolution algorithm, and 256-grade 
layer was generated representing specific CD34 + staining. 
The intensity threshold was selected based on visual evalu-
ation and applied to binarize the image. Next, the median 
filter with effective radius = 2 pixels was applied to remove 
small objects which are likely to be noise or nonspecific 
staining. Several approaches were used to address the poten-
tial situations with incomplete vessel staining, staining with 
brakes, and stained objects with holes, i.e., object enlarge-
ment, followed by hole filling command, application of 
mean and median filters (effective radius = 2 pixels), and 
object shrinking to original size. These image-processing 
actions resulted in the removal of non-vessel staining (weak 
background staining, unspecific chromophore precipitation, 
potential non-vessel CD34 + staining). Vessel size was deter-
mined as minimal Feret diameter (minimal distance between 
two parallel tangents of the analyzed object). The decision 
to use minimal Feret diameter was made to avoid potential 
alterations of visible vessel size due to non-tangential cut, 
when performing sample sectioning. The minimal Feret 
diameter of the smallest identified vessels was 4 um, which 
is well-corresponding to the characteristic capillary size of 
5–8 um in vivo and considering its deformation during sam-
ple handling and fixation.

Vessel identification was used to determine met-
rics such as vessel density (calculated as a number of 
detected vessels per total sample area normalized to the 
area of 1  mm2), to assess the vessel diameter (measured 
as a minimal Feret diameter of each vessel and summa-
rized as a median value across all vessels of each case) 
and to identify perivascular spaces. Perivascular space 
was defined as the area surrounding each CD34 positive 
structure (vessel) at a 10-pixel distance. After determin-
ing the perivascular region, the a-SMA staining intensity 
levels were assessed using an in-house developed image 
analysis algorithm (Image J software), as described pre-
viously in detail [38]. In short, a-SMA expression was 
evaluated after color deconvolution by transforming the 
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pixel intensity of the staining into optical density (OD) 
using the equation OD = Log10(I0/I), where I represents the 
pixel intensity and  I0 is the maximal possible pixel intensity. 
As in the digital images pixel values are integers ranging from 
0 (complete black) to 255 (complete white), 255 represents the 
complete absence of staining and 0 represents the complete 
absence of transmitted light or the maximal staining intensity 
(Imax =  I0). In this way, calculated OD value is linearly associ-
ated with the staining intensity. The output data are generated 
as a median value for each individual core and for each case. In 
the case of whole section slides, the individual sample images 
were representing one tissue piece and were treated as a case. 
a-SMA staining outside perivascular regions, possibly derived 
from cancer-associated fibroblasts, was not included in digital 
scoring.

Analyses generated the following tissue metrics: stromal 
area per  mm2 (the area of marker defined stroma), stromal 
a-SMA intensity (the median value of the stromal a-SMA 
optical density across all images representing each case), 
perivascular a-SMA intensity (PVI—the median value of the 
a-SMA optical density measured in perivascular space across 
all images representing one case) and a fraction of a-SMA 
covered vessels (FCV—the median value of a-SMA covered 
vessels fraction calculated per case by classifying vessels as 
“covered” or “uncovered” based on the median perivascular 
intensity of marker expression as a cut-off) and aforemen-
tioned vessel density and vessel median diameter. The com-
putation of tissue metrics was performed assuming the image 
resolution is 4 pix/um. All measurements were performed in 
the intra-tumor regions.

Statistical analysis and REMARK criteria

The Spearman two-tailed test was used to determine the cor-
relation between continuous variables. The Spearman corre-
lation coefficient higher/lower than ± 0.5 and a p value < 0.01 
were considered as threshold reference values. For determin-
ing associations between different clinicopathologic subsets 
and tissue metrics presented as continuous data, Mann–Whit-
ney and Kruskal–Wallis tests were used. For survival analysis, 
continuous variables were first dichotomized based on their 
median values, and Kaplan–Meier curves with the log-rank 
test were then made, with the p value cutoff for statistical 
significance set at 0.05. In order to calculate hazard ratios of 
the clinicopathologic factors and tissue metrics for patient 
survival, Cox-regression analysis was performed on dichoto-
mized values with both univariable and multivariable settings, 
with the p value cutoff for statistical significance set at 0.05. 
Dichotomization on “low (0–50%)” group and “high (> 50%)” 
group was made at the median.

All tests were performed using SPSS version 26 (SPSS Inc., 
Chicago, IL). Forest Plot was designed in Microsoft Office 
Excel 365 (Microsoft Inc., Redmond, WA, USA).

As indicated in the Supplementary Table S13, study was 
performed according to the REMARK criteria.

Results

a‑SMA and CD34 double staining reveal breast 
cancer heterogeneity regarding vessel size, 
perivascular a‑SMA status, and vessel density

Dual IHC stainings were performed where a-SMA anti-
bodies were combined with antibodies detecting the 
endothelial cell marker CD34. Analyses were performed 
on whole section slides from 108 cases of a population-
based cohort of mammography-detected breast cancers. 
Case characteristics are summarized in Supplementary 
Table S1. Digital images of stainings were analyzed to 
extract quantitative data on vessel density, vessel size, and 
perivascular a-SMA status (see Material and Methods for 
details).

The initial analysis demonstrated large inter-case het-
erogeneity between the tumors regarding all three met-
rics. (Fig. 1A). Correlation analyses of the three metrics 
revealed positive correlations between vessel size and the 
fraction a-SMA-covered vessels. In contrast, negative cor-
relations were detected between vessel density and both 
vessel size and fraction a-SMA-covered vessels (Fig. 1B).

Vessel features are not associated 
with clinicopathologic characteristics, but large 
vessel size is linked to shorter survival

The quantitative data from the vascular profiling were used 
to investigate potential associations between these features 
and standard clinicopathologic characteristics.

As shown in Supplementary Tables S2–S4, none of the 
three vascular metrics displayed any associations with age, 
tumor size, histological grade, lymph node status, ER/PR/
HER2 status, or molecular subtype.

Vessel metrics were then analyzed with regard to their 
associations with cancer-specific survival, following 
median-based dichotomization of cases into high  and 
low groups. The analyses revealed a statistically signifi-
cant relationship between large vessel size and shorter 
disease-specific survival (Fig. 2) (p = 0.007 Log-Rank 
test; p = 0.01, HR 3.1 (95% CI 1.3–7.4) Cox-regression 
analyses). No survival associations were detected for ves-
sel density or fraction of a-SMA-covered vessels using 
median-based dichotomization, or analyses dividing the 
cohort into three or four subgroups by tertiles and quartiles 
(Supplementary Fig. S2).
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Fig. 1  A Intertumoral heterogeneity in vessel median size, vessel 
density, and fraction of a-SMA covered vessels in the “whole section” 
cohort. Double staining with CD34 and a-SMA showing examples of 
high and low cases regarding vessel size, vessel density, and fraction 
of a-SMA covered vessels between different cases in the “whole sec-
tion” cohort. Variables were dichotomized as “low (0–50%)” group 

and “high (> 50%)” group, based on the median value. Size bars cor-
respond to 100 μm. B Intertissue metric correlations. Spearman cor-
relation coefficients representing associations between vessel median 
size, vessel density, and fraction of a-SMA covered vessels in the 
“whole section” cohort. *p < 0.05, **p < 0.001

Fig. 2  Association of vessel median diameter and cumulative sur-
vival (breast cancer-related death as endpoint) in the “whole sec-
tion” cohort. Vessel median size variable was dichotomized as “low 
(0–50%)” and “high (> 50%)” group based on the median value. Fig-

ure shows Kaplan–Meier curve for cumulative survival (breast can-
cer-related death as endpoint) represented on the base of the median 
defined dichotomous values (Log-Rank test, p = 0.007; Cox-regres-
sion analyses, p = 0.01, HR 3.1 (95% CI 1.3–7.4))
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The univariable analyses were extended to multivari-
able analyses to explore the potential prognostic independ-
ence of vessel size. Multivariable analyses were, therefore, 
performed including vessel size, age, tumor size, histologi-
cal grade, lymph node status, ER/PR immunohistochemi-
cal status, and molecular subtypes. As shown in Table 1, 
this analysis identified vessels size as an independent prog-
nostic factor (p = 0.01; HR 3.8 (95% CI 1.4–10.5)).

Prognosis association of vessel size is detected 
in ER + but not ER − breast cancer

Univariable survival analyses were performed in subsets of 
breast cancer defined by clinicopathologic characteristics, to 
further characterize the prognosis associations of vessel size.

As shown in Fig. 3 and Supplementary Table S5, the 
prognosis associations of vessel size showed large varia-
tions between breast cancer clinicopathologic sub-groups. 
The strongest prognostic signals were noted in the groups 
with lymph node infiltration, large tumors, and in ER +, 
PR +, HER2-, and Luminal B tumors.

The indications of differential prognosis associations of 
vessel size in defined subgroups were followed up by addi-
tional analyses. Analyses of associations between vessel 
size and clinicopathologic characteristics in ER + and ER 
− subgroups did not identify any significant associations 
(Supplementary Tables S6–S11).

Multivariable survival analyses were performed in the 
ER + subgroup. As shown in Table  2, large vessel size 
remained a poor prognosis factor (p = 0.01; HR 5.6 (95% CI 
1.5–21.5)) in prognostic models that also included patients’ 
age, tumor diameter, histological grade, lymph node metas-
tasis, PR status, and HER2 status.

Tissue microarray analyses of additional ER + breast 
cancer cases confirm independent poor prognosis 
associations of large vessel size

To consolidate findings, additional analyses were performed 
on tissue microarray samples, containing 3 cores from each 
tumor, from 267 additional cases of ER + mammography-
detected breast cancers. Case characteristics are summarized 
in Supplementary Table S1. The feasibility of consistent 
scoring of case-based vessel size on tissue microarray sam-
ples was supported by interclass correlation coefficient anal-
yses (ICC) which demonstrated moderate concordance of the 
vessel median diameter measurements between the cores of 
each corresponding case (ICC = 0.67; 95% CI 0.58–0.75). 
Example of breast cancers with high and low vessel size, 
each represented by three cores belonging to the same case, 
is shown in Fig. 4A.

As in the initial analyses, no significant associations were 
detected in the ER + cases between vessel size and age, 
tumor diameter, histological grade, tumor diameter, PR sta-
tus, or HER2 status (Supplementary Table S12).

As shown in the Kaplan–Meier plot of Fig. 4B, a signifi-
cant poor prognosis association of large vessel size was also 
detected in this collection of ER + breast cancer (p = 0.016). 
Results were confirmed by univariable Cox-Regression 

Table 1  Vessel median diameter as a prognostic factor in multivari-
able analysis of the “whole section” cohort

The total of 108 “whole section” cohort cases were included in the 
regression model. Vessel median size variable was dichotomized as 
“low (0–50%)” and “high (>50%)” group based on the median value
P value are calculated based on Wald test; HR is based on cause-spe-
cific Cox-regression model
HR hazard ratio, CI confidence interval, HER2 human epidermal 
growth factor 2, ER estrogen receptor, PR progesterone receptor, TN 
triple-negative breast cancer

Variables Multivariable analysis
HR (95% CI) p   value

Vessel median diameter
 Low 1 (reference)
 High 3.82 (1.39–10.51) 0.01

Age at diagnose
 ≤ 60 1 (reference)
 > 60 0.45 (0.16–1.21) 0.11

Tumor size
 ≤ 20 mm 1 (reference)
 > 20 mm 0.45 (0.14–1.41) 0.17

Histologic grade
 Grade 1 1 (reference)
 Grade 2 0.63 (0.19–2.15) 0.47
 Grade 3 0,77 (0.22–2.66) 0.68

Lymph node status
 N0 1 (reference)
 N1 8.60 (2.98–24.77) 0.001

Estrogen receptor status 
 + 1 (reference)
 − 14.66 (1.41–152.487) 0.025

Progesterone receptor status
 + 1 (reference)
 − 2.20 (0.61–7.91) 0.225

HER2 status
 − 1 (reference)
 + 0.22 (0.01–3.76) 0.294

Molecular subtypes
 Luminal A 1 (reference)
 Luminal B/HER2 + 2.42 (0.57–10.25) 0.23
 Luminal B/HER2 − 17.61 (0.66–471.6) 0.087
 TN 0.16 (0.01–2.17) 0.168
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analyses ((p = 0.02; HR 2.3 (95% CI 1.1–4.7)). Further-
more, vessel size remained an independent prognosis marker 
in multivariable analyses ((p = 0.009; HR 2.7 (95% CI 1. 
3–5.5)) also including age, tumor diameter, histological 
grade, lymph node metastasis, PR status, and HER2 status 
(Table 3).

Discussion

In this study, we identified vessel size as a marker of poor 
prognosis in the ER + subset of breast cancer. Key findings 
for this claim are the identification of significant associations 
between this marker and poor prognosis in multivariable 
analyses of two patient series, one consisting of 108 cases 
analyzed as whole sections and the other consisting of 267 
TMA-based cases of ER + breast cancer.

Some strengths of this study are that the prognostic met-
ric was scored using an automated method increasing objec-
tivity, and also that associations were detected following a 
simple median-based dichotomization. One limitation, to 
be addressed and considered in future validation studies, is 
that the design for the study prevents analyses from clarify-
ing if the survival associations are related to intrinsic tumor 
aggressiveness or response to subsequently administrated 
treatment.

Important tasks for future studies include validation in 
independent cohorts, as well as efforts to systematically 
identify optimal scoring procedures and cut-offs for this 
novel biomarker candidate. Regarding methodology for 
vessel characterization, it is noted that the present study 

relied on a relatively simple method, used in earlier stud-
ies, not specifically resolving the recognized intrinsic 
problem of scoring properties of three-dimensional ves-
sels on two-dimensional sections. Findings of the present 
study should motivate continued studies on vessel char-
acteristics in ER + breast cancer, including methods that 
also allow scoring of features such as fractal dimensions 
and lacunarity, associated with prognosis in other tumor 
types [40, 41].

Our study was designed to examine the prognostic value 
of vessel size, a-SMA perivascular coverage, and vessel 
density on breast cancer-specific survival. The initial data 
showed high inter-case heterogeneity of all these three met-
rics. Correlation analyses pointed out a positive correlation 
between vessel median size and fraction of a-SMA covered 
vessels and a negative correlation between vessel median 
size and vessel density. The latter findings are consistent 
with active angiogenesis leading to a high number of small 
vessels. None of our tissue metrics showed any associations 
with clinicopathologic characteristics in either of the two 
series. Although perivascular a-SMA coverage has been 
observed as a prognostic factor in different studies and was 
associated with poor prognosis in some of them [31–34], in 
our breast cancer study, this metric showed no association 
with survival.

To the best of our knowledge, the only earlier study 
reporting vessel size as a potential prognostic marker per-
formed on breast cancer patients is by Mikalsen et al. [42]. 
Our observation is in concordance with their finding that 
large vessels are associated with shorter breast cancer-spe-
cific survival. In the study of Mikalsen et al., the authors also 

Fig. 3  Impact of high vessel diameter on poor survival in different clinicopathologic subsets. HR and confidence intervals presented as the forest 
plot. *p < 0.05. p values are calculated based on Wald test; HR is based on cause-specific Cox-regression model
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focused their attention on the vessel shape complexity as an 
important factor of survival [42], which was not examined 
in our present study. To note, our study demonstrated the 
independent prognostic value of median vessel size when 
adjusting for age, tumor size, histological grade, HER2 
status, progesterone receptor status, and lymph node status 
in multivariable Cox analysis, not previously shown in the 
ER + breast cancer subtype.

Vessel density failed to provide independent prognostic 
value in our study. This vascular feature has been analyzed 
in multiple earlier studies and has provided divergent results 
[12, 14–20, 43–46]. Tentative reasons for these discrepan-
cies include the scoring of different tumor sub-regions and 
variations in methods for vessel scoring [47]. Furthermore, 

some studies pointed out that vessels with certain qualities 
can have favorable effects on prognosis [48]. This could 
explain why our study, among the few others, failed to rep-
licate high microvessel density being a significant factor of 
poor prognosis, having vessel number taken without con-
sidering further their morphological features and also the 
molecular landscape of the involved endothelium, which has 
been previously known to have a clinical significance [6, 8, 
48–50]. Notably, more consistent signals have been obtained 
when the density of proliferating vessels has been analyzed 
[15–20]. Combination analyses also including scoring of 
proliferating vessels appear highly motivated.

In different clinicopathologic subsets, the impact of ves-
sel diameter on survival in the whole section cohort was 
significant only in ER/PR + subsets, breast cancers with 
lymph node metastases, and Lum B/HER2-molecular sub-
type. It has been known that endothelial cells contain estro-
gen receptors [51, 52] and that estrogen fulfills its effects as 
a vascular protector in premenopausal women, aside from 
other mechanisms, through the reduction of peripheral 
vascular resistance by increasing vessels’ lumen size [53]. 
Moreover, it has been reported that ER expression in breast 
cancer will correlate with higher levels of available estrogen 
hormone in the breast tissue, which can also be correlated 
with higher estrogen hormone delivery induced by higher 
tissue vascularization [54]. Along with this statement, in the 
study by Lloyd et al., the authors hypothesized that the blood 
flow arrangements can be the cause of breast cancer cell 
heterogeneity and that defining vessel characteristics could 
help predict ER positivity patterns. In this study, the authors 
reported a strong positive correlation between the vessel size 
and the positive ER status in breast cancer, observing the 
mean vessel diameter of ER positive tumors being around 
twice the mean vessel size in ER negative tumors [54]. Their 
finding is providing a possible explanation for why our large 
vessel prognostic signal was enriched particularly in the 
ER + tumors. Nevertheless, we failed to observe an associa-
tion between vessel size and ER status in our study. Lloyd 
et al. also recorded that vessel density was not correlated 
with the ER status or disease progression [54], which is in 
concordance with our present findings.

Additional questions that arise from the biological per-
spective are by which mechanisms large vessels could affect 
cancer biology, cancer progression, metastasis, and eventu-
ally survival. The aberrant vessel anatomy, along with the 
presence of big and distorted vessels, is known to influence 
dysfunctional blood flow, perpetuate extravasation of can-
cer cells, and facilitate metastatic processes, consequentially 
having a negative effect on overall survival [11]. Angiogen-
esis has been recognized as an essential piece of the puzzle 
in the process of tumor metastasis [55]. Although we did 

Table 2  Vessel median diameter as a prognostic factor in multivari-
able analysis of the “whole section” cohort in ER+ breast cancer sub-
set

The 86 ER + breast cancer cases of the “whole section” cohort were 
included in the regression model. Vessel median size variable was 
dichotomized as “low (0–50%)” and “high (>50%)” group based on 
the median value
p value are calculated based on Wald test; HR is based on cause-spe-
cific Cox-regression model
HR hazard ratio, CI confidence interval, HER2 human epidermal 
growth factor 2, ER estrogen receptor, PR progesterone receptor

Variables Multivariable analysis
HR (95% CI) p  value

Vessel median diameter
 Low 1 (reference)
 High 5.63 (1.48–21.48) 0.01

Age at diagnose
 ≤ 60 1 (reference)
 > 60 0.36 (0.11–1.15) 0.08

Tumor size
 ≤ 20 mm 1 (reference)
 > 20 mm 0.64 (0.16–2.59) 0.53

Histologic grade
 Grade 1 1 (reference)
 Grade 2 0.47 (0.11–2.03) 0.31
 Grade 3 0,95 (0.24–3.78) 0.94

Lymph node status
 N0 1 (reference)
 N1 5.89 (1.8–19.28) 0.003

Progesterone receptor status
 + 1 (reference)
 − 2.76 (0.83–9.15) 0.097

HER2 status
 − 1 (reference)
 + 1.88 (0.48–7.35) 0.36
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not find a correlation between vessel median size and vessel 
density with the occurrence of lymph node metastasis, previ-
ous studies are suggesting an association between vessel size 
and higher metastatic potential [42, 56–59]. In addition, it 
has been noted that an increase in the mean vessel diameter 
is associated with tumor angiogenesis and with larger tumor 
size [60].

An additional, specific tumor vessel morphology has been 
described by Senchukova and Kiselevsky in 2014 [61] when 
they reported the existence of so-called “cavitary structures” 
(CS), which are stromal structures lined with endothelium 
and connected with the rest of the tumor vasculature. In 
our study, we indeed recorded similar structures in patients 
belonging to the “high vessel median size” group. Addi-
tional studies conducted on these structures, defined specific 
molecular signatures of tumor tissues containing CS, such 
as high levels of nitric oxide synthase (iNOS), increased 
synthesis of thrombospondin 4 and high levels of matrix 
metalloproteinases [55]. In the study from 2015, Senchu-
kova et al. reported two different types of “cavitary struc-
tures,” cavitary structure type 1 and type 2 (CS-1, CS-2) 
[56]. The authors provided evidence that the specific type of 
these “cavitary structures” (CS-1) is being associated with 
lymphovascular invasion, the presence of tumor emboli in 
vessels, and clinically evident metastasis in gastric cancer 
[56] and breast cancer [58]. Moreover, they reported that the 
formation of CS-1 was associated with high density of CD68 
positive cells in the surrounding stroma and that high density 
of CD20-positive cells was associated with the formation of 

CS-2 type [56]. This can suggest biological mechanisms and 
signaling pathways that might be examined in the future. 
Further studies investigating the involvement of stromal 
and immune cells in the formation of CS and big size ves-
sels might prove to be beneficial in detecting pathways and 
mechanisms involved in angiogenesis, metastasis, and tumor 
progression and which could be potentially exploited as 
druggable targets or biomarkers of survival and prognosis.

In summary, our study showed wide variations in the 
intensity of a-SMA staining across the samples and together 
with CD34 staining, and revealed high breast cancer hetero-
geneity regarding vessel size, perivascular a-SMA status, 
and vessel density. The measured vessel features were not 
associated with clinicopathological characteristics, but large 
vessel size was linked to shorter survival. Prognosis associa-
tion of vessel size was detected in ER +, but not in ER −, 
breast cancer.

The vessel median size metric has been mostly 
neglected in tumor vasculature studies and has not 
received much attention as a possible vascular marker 
of prognosis. Although it is established knowledge that 
MVD, pMVD, VPI, and vascular coverage are valid prog-
nostic factors in malignant diseases, our study suggests 
that the morphology and the size of the vessels, and not 
only the increase in vascularization, are indicative of 
prognosis. Our study, thus, suggests that the novel and 
simple metric of vessel size should be further validated 
as a biomarker in ER + positive breast cancer and also be 
explored in other tumor types.

A B

Fig. 4  A Examples of breast cancer TMA cores with low-vessel 
median size (upper row) and high-vessel median size (lower row). 
Each case is represented by three cores belonging to the same case. 
Blue = a-SMA, red = CD34. The size bar corresponds to 100  μm. 
Arrows pointing to “Cavitary structures” [61]. B Association of ves-
sel median diameter and cumulative survival (breast cancer related 
death as endpoint) in the ER + breast cancer “TMA” cohort. Vessel 

median size variable was dichotomized as “low (0–50%)” and “high 
(> 50%)” group based on the median value. Figures show Kaplan–
Meier curve for cumulative survival (breast cancer related death as 
endpoint) represented on the base of the median defined dichotomous 
values. (Log-Rank test, p = 0.016; Cox-regression analyses (Wald 
test), p = 0.02; HR 2.3 (95% CI 1.1–4.7))
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