Skip to main content

Advertisement

Log in

Neo-peripheral adaptive immune score predicts neoadjuvant chemotherapy for locally advanced breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Whether peripheral immune cell subsets can predict pathological complete response (pCR) in breast cancer patients remains to be elucidated. We aimed to dissect the relationship between peripheral immune cell subsets and pCR.

Methods

Two hundred and twenty-six eligible patients from two prospective clinical trials (SHPD001 and SHPD002) in China were randomly divided into a training cohort and a validation cohort. The breast cancer subtypes in this study included hormone receptor (HR)-positive/human epidermal growth factor receptor 2 (HER2)-negative (n = 95), HER2-positive (n = 100), and triple negative (n = 31) breast cancer. We defined the “Neo-Peripheral Adaptive Immune Score” for neoadjuvant chemotherapy (neoPAI Score) based on the percentages of CD4 + T cells, CD8 + T cells, B cells, and the CD4 + /CD8 + ratio in peripheral blood. We also evaluated the ability of the neoPAI Score derived from tumor-infiltrating immune cells (TIICs) to predict survival by employing The Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database.

Results

In the training cohort, multivariate analysis showed that HR status [odds ratio (OR) 0.325; 95% confidence interval (CI) 0.135–0.761; P = 0.010], HER2 status (OR 2.657; 95% CI 1.266–5.730; P = 0.011), Ki67 index (OR 3.191; 95% CI 1.509–6.956; P = 0.003), histological grade (OR 2.297; 95% CI 1.031–5.290; P = 0.045) and neoPAI Score (OR 4.451; 95% CI 1.608–13.068; P = 0.005) were independent predictors of pCR. In the validation cohort, histological grade (OR 3.779; 95% CI 3.793–1.136 × 103; P = 0.008) and neoPAI Score (OR 90.828; 95% CI 3.827–9.843 × 103; P = 0.019) were independent predictors of pCR. The Immune Model that integrated the neoPAI Score was more accurate in predicting pCR than the Clinical Model that exclusively contained clinicopathological parameters in both cohorts. In TCGA-BRCA database, the neoPAI Score constructed from TIICs can predict the progression-free interval (P = 0.048) of breast cancer.

Conclusion

The neoPAI Score defined by the percentages of peripheral immune cell subsets could be used as a potential biomarker for neoadjuvant chemotherapy efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are contained within the article, supplementary materials and from the corresponding author upon request.

References

  1. Hammerl D, Smid M, Timmermans AM et al (2018) Breast cancer genomics and immuno-oncological markers to guide immune therapies. Semin Cancer Biol 52(Pt 2):178–188. https://doi.org/10.1016/j.semcancer.2017.11.003

    Article  CAS  Google Scholar 

  2. Teshome M, Kuerer HM (2017) Breast conserving surgery and locoregional control after neoadjuvant chemotherapy. Eur J Surg Oncol 43(5):865–874. https://doi.org/10.1016/j.ejso.2017.02.002

    Article  CAS  Google Scholar 

  3. Finn OJ (2012) Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol. https://doi.org/10.1093/annonc/mds256

    Article  Google Scholar 

  4. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10. https://doi.org/10.1016/j.immuni.2013.07.012

    Article  CAS  Google Scholar 

  5. Palucka AK, Coussens LM (2016) The basis of oncoimmunology. Cell 164(6):1233–1247. https://doi.org/10.1016/j.cell.2016.01.049

    Article  CAS  Google Scholar 

  6. de Melo GD, Cortes J, Curigliano G et al (2017) Tumor-infiltrating lymphocytes in breast cancer and implications for clinical practice. Biochim Biophys Acta Rev Cancer 1868(2):527–537. https://doi.org/10.1016/j.bbcan.2017.10.003

    Article  CAS  Google Scholar 

  7. Denkert C, von Minckwitz G, Brase JC et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J Clin Oncol 33(9):983–991. https://doi.org/10.1200/JCO.2014.58.1967

    Article  CAS  Google Scholar 

  8. Salgado R, Denkert C, Demaria S et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs working group 2014. Ann Oncol 26(2):259–271. https://doi.org/10.1093/annonc/mdu450

    Article  CAS  Google Scholar 

  9. Savas P, Salgado R, Denkert C et al (2016) Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol 13(4):228–241. https://doi.org/10.1038/nrclinonc.2015.215

    Article  CAS  Google Scholar 

  10. Mahmoud SM, Paish EC, Powe DG et al (2011) Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 29(15):1949–1955. https://doi.org/10.1200/JCO.2010.30.5037

    Article  Google Scholar 

  11. Nelson MA, Ngamcherdtrakul W, Luoh SW, Yantasee W (2021) Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev 40(2):519–536. https://doi.org/10.1007/s10555-021-09968-0

    Article  CAS  Google Scholar 

  12. Kagamu H, Kitano S, Yamaguchi O et al (2020) CD4+ T-cell immunity in the peripheral blood correlates with response to anti-PD-1 therapy. Cancer Immunol Res 8(3):334–344. https://doi.org/10.1158/2326-6066.CIR-19-0574

    Article  CAS  Google Scholar 

  13. Oh DY, Kwek SS, Raju SS et al (2020) Intratumoral CD4(+) T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 181(7):1612–25.e13. https://doi.org/10.1016/j.cell.2020.05.017

    Article  CAS  Google Scholar 

  14. Sledzinska A, Vila de Mucha M, Bergerhoff K et al (2020) Regulatory T cells restrain interleukin-2- and blimp-1-dependent acquisition of cytotoxic function by CD4(+) T cells. Immunity 52(1):151–66.e6. https://doi.org/10.1016/j.immuni.2019.12.007

    Article  CAS  Google Scholar 

  15. Garaud S, Buisseret L, Solinas C et al (2019) Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight. https://doi.org/10.1172/jci.insight.129641

    Article  Google Scholar 

  16. Tokunaga R, Naseem M, Lo JH et al (2019) B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev 73:10–19. https://doi.org/10.1016/j.ctrv.2018.12.001

    Article  CAS  Google Scholar 

  17. Varn FS, Mullins DW, Arias-Pulido H et al (2017) Adaptive immunity programmes in breast cancer. Immunology 150(1):25–34. https://doi.org/10.1111/imm.12664

    Article  CAS  Google Scholar 

  18. Dzhandzhugazyan KN, Guldberg P, Kirkin AF (2018) Adoptive T cell cancer therapy. Nat Mater 17(6):475–477. https://doi.org/10.1038/s41563-018-0094-5

    Article  CAS  Google Scholar 

  19. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. https://doi.org/10.1038/nri3191

    Article  CAS  Google Scholar 

  20. Zhou LH et al (2017) Weekly paclitaxel and cisplatin as neoadjuvant chemotherapy with locally advanced breast cancer: a prospective, single arm, phase II study. Oncotarget 8(45):79305–79314. https://doi.org/10.18632/oncotarget.17954

    Article  Google Scholar 

  21. Newman AM, Liu CL, Green MR et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  Google Scholar 

  22. Liu J, Lichtenberg T, Hoadley KA et al (2018) An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell 173(2):400-416.e11. https://doi.org/10.1016/j.cell.2018.02.052

    Article  CAS  Google Scholar 

  23. Sauerbrei W, Taube SE, McShane LM, Cavenagh MM, Altman DG (2018) Reporting recommendations for tumor marker prognostic studies (REMARK): an abridged explanation and elaboration. J Natl Cancer Inst 110(8):803–811. https://doi.org/10.1093/jnci/djy088

    Article  Google Scholar 

  24. Pages F, Mlecnik B, Marliot F et al (2018) International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet 391(10135):2128–2139. https://doi.org/10.1016/S0140-6736(18)30789-X

    Article  Google Scholar 

  25. Marliot F, Chen X, Kirilovsky A et al (2020) Analytical validation of the immunoscore and its associated prognostic value in patients with colon cancer. J Immunother Cancer. https://doi.org/10.1136/jitc-2019-000272

    Article  Google Scholar 

  26. Park YH, Lal S, Lee JE et al (2020) Chemotherapy induces dynamic immune responses in breast cancers that impact treatment outcome. Nat Commun 11(1):6175. https://doi.org/10.1038/s41467-020-19933-0

    Article  CAS  Google Scholar 

  27. Rutkowski J, Cyman M, Ślebioda T et al (2017) Evaluation of peripheral blood T lymphocyte surface activation markers and transcription factors in patients with early stage non-small cell lung cancer. Cell Immunol 322:26–33. https://doi.org/10.1016/j.cellimm.2017.09.007

    Article  CAS  Google Scholar 

  28. Guo Z, Liang H, Xu Y et al (2017) The role of circulating t follicular helper cells and regulatory cells in non-small cell lung cancer patients. Scand J Immunol 86(2):107–112. https://doi.org/10.1111/sji.12566

    Article  CAS  Google Scholar 

  29. Tada K, Kitano S, Shoji H et al (2016) Pretreatment immune status correlates with progression-free survival in chemotherapy-treated metastatic colorectal cancer patients. Cancer Immunol Res 4(7):592–599. https://doi.org/10.1158/2326-6066.CIR-15-0298

    Article  CAS  Google Scholar 

  30. Yang J, Junnan Xu, Ying E, Sun T (2019) Predictive and prognostic value of circulating blood lymphocyte subsets in metastatic breast cancer. Cancer Med 8(2):492–500. https://doi.org/10.1002/cam4.1891

    Article  CAS  Google Scholar 

  31. Axelrod ML, Nixon MJ, Gonzalez-Ericsson PI et al (2020) Changes in peripheral and local tumor immunity after neoadjuvant chemotherapy reshape clinical outcomes in patients with breast cancer. Clin Cancer Res 26(21):5668–5681. https://doi.org/10.1158/1078-0432.CCR-19-3685

    Article  CAS  Google Scholar 

  32. Zhou H, Li G, Yin J et al (2021) Neoadjuvant chemotherapy alters peripheral and tumour-infiltrating immune cells in breast cancer revealed by single-cell RNA sequencing. Clin Transl Med 11(12):e621. https://doi.org/10.1002/ctm2.621

    Article  CAS  Google Scholar 

  33. Malekzadeh P, Yossef R, Cafri G et al (2020) Antigen experienced T cells from peripheral blood recognize p53 neoantigens. Clin Cancer Res 26(6):1267–1276. https://doi.org/10.1158/1078-0432.CCR-19-1874

    Article  CAS  Google Scholar 

  34. Li T, Zhao L, Yang Y et al (2021) T cells expanded from pd-1+ peripheral blood lymphocytes share more clones with paired tumor-infiltrating lymphocytes. Cancer Res 81(8):2184–2194. https://doi.org/10.1158/0008-5472.CAN-20-2300

    Article  CAS  Google Scholar 

  35. Wu TD, Madireddi S, de Almeida PE et al (2020) Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579(7798):274–278. https://doi.org/10.1038/s41586-020-2056-8

    Article  CAS  Google Scholar 

  36. Gros A, Parkhurst MR, Tran E, et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22(4):433-438. https://doi.org/10.1038/nm.4051Ò

    Article  CAS  Google Scholar 

  37. Gu-Trantien C, Loi S, Garaud S et al (2013) CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123(7):2873–2892. https://doi.org/10.1172/JCI67428

    Article  CAS  Google Scholar 

  38. Hashemi V, Maleki LA, Esmaily M et al (2020) Regulatory T cells in breast cancer as a potent anti-cancer therapeutic target. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2019.106087

    Article  Google Scholar 

Download references

Funding

This work was supported by the Shanghai Sailing Program (Grant No. 22YF1424500), National Natural Science Foundation of China (Grant No. 82103695), Clinical Research Plan of Shanghai Hospital Development Center (Grant No. SHDC2020CR3003A), Science and Technology Commission of Shanghai Municipality (Grant No. 20DZ2201600), Shanghai Municipal Key Clinical Specialty, Shanghai Rising-Star Program (Grant No. 22QC1400200), Multidisciplinary Cross Research Foundation of Shanghai Jiao Tong University (Grant No. YG2019QNA28), Nurturing Fund of Renji Hospital (Grant Nos. PYIII20-09 and RJPY-LX-002), Clinical Research Innovation Nurturing Fund of Renji Hospital and United Imaging (Grant No. 2021RJLY-002).

Author information

Authors and Affiliations

Authors

Contributions

HW, YW, WY and JL: conceptualization, HW, YW and XS: methodology, YX, TY, JZ and YL: investigation, HW: formal analysis, HW and XS: writing—original draft preparation, HW, YW, WY and JL: writing—review and editing, YY, SX, LZ, WY and JL: supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yaohui Wang, Wenjin Yin or Jinsong Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 219 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sheng, X., Yan, T. et al. Neo-peripheral adaptive immune score predicts neoadjuvant chemotherapy for locally advanced breast cancer. Breast Cancer Res Treat 197, 343–354 (2023). https://doi.org/10.1007/s10549-022-06791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06791-1

Keywords

Navigation