Skip to main content

Advertisement

Log in

B7 homolog 3 induces lung metastasis of breast cancer through Raf/MEK/ERK axis

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The essential action of B7 homolog 3 (B7-H3) in different diseases and cancers has been documented. We here focused on its role in breast cancer through the Raf/MEK/ERK axis regarding lung metastasis.

Methods

Expression pattern of B7-H3 was determined in breast cancer tissues and cells with its correlation with prognosis analyzed. Then, through transfection of lentivirus vector expressing B7-H3-shRNA, overexpression vector of B7-H3 (B7-H3-LV), U0126 (small molecule inhibitor of MEK), or PD98059 (small molecule inhibitor of ERK), the in vitro and in vivo effects of B7-H3 in breast cancer cell biological processes, and lung metastasis were analyzed in relation to the Raf/MEK/ERK axis.

Results

We discovered elevated B7-H3 in breast cancer and its elevation associated with poor prognosis. B7-H3 promoted the malignant properties of breast cancer cells, accompanied with increased N-cadherin and vimentin and reduced E-cadherin. Additionally, overexpression of B7-H3 accelerated the lung metastasis in breast cancer in vivo. All the above promoting action of B7-H3 was achieved through activation of the Raf/MEK/ERK signaling pathway.

Conclusion

Taken together, B7-H3 can promote lung metastasis in breast cancer through activation of the Raf/MEK/ERK axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article/supplementary material and further inquiries can be directed to the corresponding authors.

References

  1. Latha NR, Rajan A, Nadhan R, Achyutuni S, Sengodan SK, Hemalatha SK, Varghese GR, Thankappan R, Krishnan N, Patra D, Warrier A, Srinivas P (2020) Gene expression signatures: a tool for analysis of breast cancer prognosis and therapy. Crit Rev Oncol Hematol 151:102964. https://doi.org/10.1016/j.critrevonc.2020.102964

    Article  PubMed  Google Scholar 

  2. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M (2010) Genetic susceptibility to breast cancer. Mol Oncol 4(3):174–191. https://doi.org/10.1016/j.molonc.2010.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Neal CH, Helvie MA (2021) Overdiagnosis and risks of breast cancer screening. Radiol Clin North Am 59(1):19–27. https://doi.org/10.1016/j.rcl.2020.09.005

    Article  PubMed  Google Scholar 

  4. Yang C, Cheng X, Shen P (2021) Silencing of BCSG1 with specific siRNA via nanocarriers for breast cancer treatment. Bull Cancer 108(3):323–332. https://doi.org/10.1016/j.bulcan.2020.10.022

    Article  PubMed  Google Scholar 

  5. Zhang X, Huang Y, Song H, Canup BSB, Gou S, She Z, Dai F, Ke B, Xiao B (2020) Inhibition of growth and lung metastasis of breast cancer by tumor-homing triple-bioresponsive nanotherapeutics. J Control Release 328:454–469. https://doi.org/10.1016/j.jconrel.2020.08.066

    Article  CAS  PubMed  Google Scholar 

  6. Scribner JA, Brown JG, Son T, Chiechi M, Li P, Sharma S, Li H, De Costa A, Li Y, Chen Y, Easton A, Yee-Toy NC, Chen FZ, Gorlatov S, Barat B, Huang L, Wolff CR, Hooley J, Hotaling TE, Gaynutdinov T, Ciccarone V, Tamura J, Koenig S, Moore PA, Bonvini E, Loo D (2020) Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7–H3 for solid cancer. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-20-0116

    Article  PubMed  Google Scholar 

  7. Bachawal SV, Jensen KC, Wilson KE, Tian L, Lutz AM, Willmann JK (2015) Breast cancer detection by B7–H3-targeted ultrasound molecular imaging. Cancer Res 75(12):2501–2509. https://doi.org/10.1158/0008-5472.CAN-14-3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dastmalchi N, Safaralizadeh R, Baghbanzadeh A, Hajiasgharzadeh K, Roshani Asl E, Amini M, Baradaran B (2020) Molecular mechanisms of breast cancer chemoresistance by immune checkpoints. Life Sci 263:118604. https://doi.org/10.1016/j.lfs.2020.118604

    Article  CAS  PubMed  Google Scholar 

  9. Ding M, Liao H, Zhou N, Yang Y, Guan S, Chen L (2020) B7–H3-induced signaling in lung adenocarcinoma cell lines with divergent epidermal growth factor receptor mutation patterns. Biomed Res Int 2020:8824805. https://doi.org/10.1155/2020/8824805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Z, Zhang W, Phillips JB, Arora R, McClellan S, Li J, Kim JH, Sobol RW, Tan M (2019) Immunoregulatory protein B7–H3 regulates cancer stem cell enrichment and drug resistance through MVP-mediated MEK activation. Oncogene 38(1):88–102. https://doi.org/10.1038/s41388-018-0407-9

    Article  CAS  PubMed  Google Scholar 

  11. Montagut C, Settleman J (2009) Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett 283(2):125–134. https://doi.org/10.1016/j.canlet.2009.01.022

    Article  CAS  PubMed  Google Scholar 

  12. Bianchi-Smiraglia A, Paesante S, Bakin AV (2013) Integrin beta5 contributes to the tumorigenic potential of breast cancer cells through the Src-FAK and MEK-ERK signaling pathways. Oncogene 32(25):3049–3058. https://doi.org/10.1038/onc.2012.320

    Article  CAS  PubMed  Google Scholar 

  13. Hussain J, Chhabria D, Kirubakaran S (2020) Design, synthesis and biological evaluation of new Myo-inositol derivatives as potential RAS inhibitors. Bioorg Med Chem Lett 30(16):127290. https://doi.org/10.1016/j.bmcl.2020.127290

    Article  CAS  PubMed  Google Scholar 

  14. Giuliano AE, Connolly JL, Edge SB, Mittendorf EA, Rugo HS, Solin LJ, Weaver DL, Winchester DJ, Hortobagyi GN (2017) Breast cancer-major changes in the American Joint Committee on Cancer eighth edition cancer staging manual. Cancer J Clin 67(4):290–303. https://doi.org/10.3322/caac.21393

    Article  Google Scholar 

  15. Cheng R, Chen Y, Zhou H, Wang B, Du Q, Chen Y (2018) B7–H3 expression and its correlation with clinicopathologic features, angiogenesis, and prognosis in intrahepatic cholangiocarcinoma. APMIS 126(5):396–402. https://doi.org/10.1111/apm.12837

    Article  CAS  PubMed  Google Scholar 

  16. Saadatmand S, de Kruijf EM, Sajet A, Dekker-Ensink NG, van Nes JG, Putter H, Smit VT, van de Velde CJ, Liefers GJ, Kuppen PJ (2013) Expression of cell adhesion molecules and prognosis in breast cancer. Br J Surg 100(2):252–260. https://doi.org/10.1002/bjs.8980

    Article  CAS  PubMed  Google Scholar 

  17. Picarda E, Ohaegbulam KC, Zang X (2016) Molecular pathways: targeting B7–H3 (CD276) for human cancer immunotherapy. Clin Cancer Res 22(14):3425–3431. https://doi.org/10.1158/1078-0432.CCR-15-2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cooke VG, LeBleu VS, Keskin D, Khan Z, O’Connell JT, Teng Y, Duncan MB, Xie L, Maeda G, Vong S, Sugimoto H, Rocha RM, Damascena A, Brentani RR, Kalluri R (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81. https://doi.org/10.1016/j.ccr.2011.11.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, Meyer-Schaller N, Schubeler D, van Nimwegen E, Christofori G (2013) Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell 23(6):768–783. https://doi.org/10.1016/j.ccr.2013.04.020

    Article  CAS  PubMed  Google Scholar 

  20. Zheng H, Shen M, Zha YL, Li W, Wei Y, Blanco MA, Ren G, Zhou T, Storz P, Wang HY, Kang Y (2014) PKD1 phosphorylation-dependent degradation of SNAIL by SCF-FBXO11 regulates epithelial-mesenchymal transition and metastasis. Cancer Cell 26(3):358–373. https://doi.org/10.1016/j.ccr.2014.07.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tiwari N, Gheldof A, Tatari M, Christofori G (2012) EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol 22(3):194–207. https://doi.org/10.1016/j.semcancer.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  22. Lee J, Lim B, Pearson T, Choi K, Fuson JA, Bartholomeusz C, Paradiso LJ, Myers T, Tripathy D, Ueno NT (2019) Anti-tumor and anti-metastasis efficacy of E6201, a MEK1 inhibitor, in preclinical models of triple-negative breast cancer. Breast Cancer Res Treat 175(2):339–351. https://doi.org/10.1007/s10549-019-05166-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huth HW, Albarnaz JD, Torres AA, Bonjardim CA, Ropert C (2016) MEK2 controls the activation of MKK3/MKK6-p38 axis involved in the MDA-MB-231 breast cancer cell survival: correlation with cyclin D1 expression. Cell Signal 28(9):1283–1291. https://doi.org/10.1016/j.cellsig.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  24. Yu F, Quan F, Xu J, Zhang Y, Xie Y, Zhang J, Lan Y, Yuan H, Zhang H, Cheng S, Xiao Y, Li X (2019) Breast cancer prognosis signature: linking risk stratification to disease subtypes. Brief Bioinform 20(6):2130–2140. https://doi.org/10.1093/bib/bby073

    Article  CAS  PubMed  Google Scholar 

  25. Yang M, Tang X, Zhang Z, Gu L, Wei H, Zhao S, Zhong K, Mu M, Huang C, Jiang C, Xu J, Guo G, Zhou L, Tong A (2020) Tandem CAR-T cells targeting CD70 and B7–H3 exhibit potent preclinical activity against multiple solid tumors. Theranostics 10(17):7622–7634. https://doi.org/10.7150/thno.43991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim NI, Park MH, Kweon SS, Lee JS (2020) B7–H3 and B7–H4 expression in breast cancer and their association with clinicopathological variables and T cell infiltration. Pathobiology 87(3):179–192. https://doi.org/10.1159/000505756

    Article  CAS  PubMed  Google Scholar 

  27. Fang J, Chen F, Liu D, Gu F, Chen Z, Wang Y (2020) Prognostic value of immune checkpoint molecules in breast cancer. Biosci Rep. https://doi.org/10.1042/BSR20201054

  28. Maeda N, Yoshimura K, Yamamoto S, Kuramasu A, Inoue M, Suzuki N, Watanabe Y, Maeda Y, Kamei R, Tsunedomi R, Shindo Y, Inui M, Tamada K, Yoshino S, Hazama S, Oka M (2014) Expression of B7–H3, a potential factor of tumor immune evasion in combination with the number of regulatory T cells, affects against recurrence-free survival in breast cancer patients. Ann Surg Oncol 21(Suppl 4):S546-554. https://doi.org/10.1245/s10434-014-3564-2

    Article  PubMed  Google Scholar 

  29. Cheng N, Bei Y, Song Y, Zhang W, Xu L, Zhang W, Yang N, Bai X, Shu Y, Shen P (2021) B7–H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy. Biochem Pharmacol 183:114298. https://doi.org/10.1016/j.bcp.2020.114298

    Article  CAS  PubMed  Google Scholar 

  30. Pizon M, Schott DS, Pachmann U, Pachmann K (2018) B7–H3 on circulating epithelial tumor cells correlates with the proliferation marker, Ki-67, and may be associated with the aggressiveness of tumors in breast cancer patients. Int J Oncol 53(5):2289–2299. https://doi.org/10.3892/ijo.2018.4551

    Article  CAS  PubMed  Google Scholar 

  31. Arigami T, Narita N, Mizuno R, Nguyen L, Ye X, Chung A, Giuliano AE, Hoon DS (2010) B7–h3 ligand expression by primary breast cancer and associated with regional nodal metastasis. Ann Surg 252(6):1044–1051. https://doi.org/10.1097/SLA.0b013e3181f1939d

    Article  PubMed  Google Scholar 

  32. Ma Y, Zhan S, Lu H, Wang R, Xu Y, Zhang G, Cao L, Shi T, Zhang X, Chen W (2020) B7–H3 regulates KIF15-activated ERK1/2 pathway and contributes to radioresistance in colorectal cancer. Cell Death Dis 11(10):824. https://doi.org/10.1038/s41419-020-03041-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nagaria TS, Williams JL, Leduc C, Squire JA, Greer PA, Sangrar W (2013) Flavopiridol synergizes with sorafenib to induce cytotoxicity and potentiate antitumorigenic activity in EGFR/HER-2 and mutant RAS/RAF breast cancer model systems. Neoplasia 15(8):939–951. https://doi.org/10.1593/neo.13804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sahu R, Pattanayak SP (2020) Strategic developments & future perspective on gene therapy for breast cancer: role of mTOR and Brk/ PTK6 as molecular targets. Curr Gene Ther 20(4):237–258. https://doi.org/10.2174/1566523220999200731002408

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Zhang Z, Zhou X, Li L, Liu Q, Wang Z, Bai X, Zhao Y, Shi H, Zhang X, Ye L (2014) The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Lett 355(2):288–296. https://doi.org/10.1016/j.canlet.2014.09.047

    Article  CAS  PubMed  Google Scholar 

  36. Fujii S, Tokita K, Wada N, Ito K, Yamauchi C, Ito Y, Ochiai A (2011) MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes. Oncogene 30(39):4118–4128. https://doi.org/10.1038/onc.2011.118

    Article  CAS  PubMed  Google Scholar 

  37. Yu Y, Luk F, Yang JL, Walsh WR (2011) Ras/Raf/MEK/ERK pathway is associated with lung metastasis of osteosarcoma in an orthotopic mouse model. Anticancer Res 31(4):1147–1152

    PubMed  Google Scholar 

  38. Dushyanthen S, Teo ZL, Caramia F, Savas P, Mintoff CP, Virassamy B, Henderson MA, Luen SJ, Mansour M, Kershaw MH, Trapani JA, Neeson PJ, Salgado R, McArthur GA, Balko JM, Beavis PA, Darcy PK, Loi S (2017) Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer. Nat Commun 8(1):606. https://doi.org/10.1038/s41467-017-00728-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhao Y, Ge CC, Wang J, Wu XX, Li XM, Li W, Wang SS, Liu T, Hou JZ, Sun H, Fang D, Xie SQ (2017) MEK inhibitor, PD98059, promotes breast cancer cell migration by inducing beta-catenin nuclear accumulation. Oncol Rep 38(5):3055–3063. https://doi.org/10.3892/or.2017.5955

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by General Project of Shandong Provincial Natural Science Foundation (ZR2020MH242; ZR2020MH293); Department of Health of Shandong Province (2018WS068).

Funding

This study was supported by General Project of Shandong Provincial Natural Science Foundation (ZR2020MH242; ZR2020MH293); Department of Health of Shandong Province (2018WS068).

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the study. SD, GW, and RS collated the data, designed and developed the database, carried out data analyses, and produced the initial draft of the manuscript. SW, XZ, and HN contributed to drafting the manuscript. All authors have read and approved the final submitted manuscript.

Corresponding authors

Correspondence to Guangzhi Wang or Ruimei Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study was performed with the approval of the ethics committee of Affiliated Hospital of Weifang Medical University, with signed informed consent obtained from all participating individuals. The animal experiment was conducted following the guidelines for the care and use of laboratory animals issued by the National Institutes of Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, X., Ning, H. et al. B7 homolog 3 induces lung metastasis of breast cancer through Raf/MEK/ERK axis. Breast Cancer Res Treat 193, 405–416 (2022). https://doi.org/10.1007/s10549-022-06520-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06520-8

Keywords

Navigation