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Abstract
Purpose Decades of research have identified multiple genetic variants associated with breast cancer etiology. However, there 
is no database that archives breast cancer genes and variants responsible for predisposition. We set out to build a dynamic 
repository of curated breast cancer genes.
Methods A comprehensive literature search was performed in PubMed and Google Scholar, followed by data extraction and 
harmonization for downstream analysis.
Results Using a subset of 345 studies, we cataloged 652 breast cancer-associated loci across the genome. A majority of 
these were present in the non-coding region (i.e., intergenic (101) and intronic (345)), whereas only 158 were located within 
an exon. Using the odds ratio, we identified 429 loci to increase the disease risk and 198 to confer protection against breast 
cancer, whereas 25 were identified to both increase disease risk and confer protection against breast cancer. Chromosomal 
ideogram analysis indicated that chromosomes 17 and 19 have the highest density of breast cancer loci. We manually anno-
tated and collated breast cancer genes in which a previous association between rare-monogenic variant and breast cancer 
has been documented. Finally, network and functional enrichment analysis revealed that steroid metabolism and DNA repair 
pathways were predominant among breast cancer genes and variants.
Conclusions We have built an online interactive catalog of curated breast cancer genes (https:// cbcg. dk). This will expedite 
clinical diagnostics and support the ongoing efforts in managing breast cancer etiology. Moreover, the database will serve 
as an essential repository when designing new breast cancer multigene panels.

Keywords Breast cancer · Genetic predisposition · Rare-monogenic variants · Common-polygenic variants · Database · 
DNA repair pathways

Background

Breast cancer is the most common cancer diagnosed in 
women and most importantly, it is the leading cause of can-
cer-related deaths among women worldwide [1, 2]. Breast 
cancer is a multifactorial disease resulting from genetic, 
hormonal, and environmental factors. In concordance with 
cancer disease in general, inherited mutations play a causal 
role in up to ten percent of all breast cancers [3, 4]. For 
decades, genetic screens have played a vital role in the iden-
tification of genes and variants responsible for breast cancer 
predisposition. Various sequencing methods such as Sanger 
sequencing, gene panel testing, whole-exome sequencing 
(WES), and ultimately whole-genome sequencing (WGS) 
have been employed to identify genetic variation responsible 
for breast cancer predisposition [5, 6].
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Genetic variation can predispose to breast cancer through 
both rare-monogenic variant causing a large increase in dis-
ease risk and common-polygenic variant (alias SNPs) that 
possess small individual effects on disease, however, cumu-
latively cause a large increase in disease risk [7]. Rare ger-
mline variants in the high-risk genes BRCA1 and BRCA2 
together with the moderate-risk genes such as PALB2, ATM, 
CHEK2, and BRIP1 account for about 30% of breast can-
cer predisposition [8, 9]. Similarly, cancer syndrome genes 
(CDH1, PTEN and STK11 etc.) together with SNPs explain 
around 20% of breast cancer predisposition [9]. Most SNPs 
are identified through genome-wide association studies 
(GWAS) and recent studies have suggested that polygenic 
risk score (PRS) accounts for around 18% of the familial 
breast cancer risk [10]. The remaining heritability (around 
50%) for breast cancer is most likely caused by yet unidenti-
fied moderate-risk genes or a specific cluster of common-
polygenic variants [11]. Identification of these unknown 
factors responsible for breast cancer etiology is of utmost 
importance and could expedite personalized breast cancer 
medicine, including therapeutic and preventive strategies 
[12].

Breast cancer genes and SNPs responsible for disease 
etiology play a significant role during clinical management. 
The clinical utility of rare-monogenic variant containing 
genes and SNPs differs due to varied disease penetrance. 
Specifically, rare-monogenic variant containing breast can-
cer genes is used to design (or update) a focused panel of 
breast cancer genes for genetic screening. Similarly, a list of 
such genes could ensure that the clinical investigators has an 
updated breast cancer gene list, when screening patients for 
disease etiology using WES or WGS. For clinical purposes, 
the use of breast cancer genes and SNPs can be augmented 
significantly by rapidly integrating newly identified breast 
cancer genes and variants. However, with a constant flow of 
new studies, it is challenging to seamlessly translate these 
findings into the clinical setting. We believe the presence of 
a freely accessible database comprising breast cancer-asso-
ciated genes (and variants) will aid a rapid translation into 
clinical diagnostics. This led us to initiate a meta-analysis 
of breast cancer susceptibility genes, by applying compre-
hensive and stringent criteria, with the aim of generating 
an online interactive catalog of curated breast cancer genes 
(https:// cbcg. dk).

Materials and methods

Literature search and study selection

A comprehensive literature search for eligible studies was 
performed in PubMed and Google Scholar (Fig. 1). The 
following terms were used either alone or in combination: 

“Breast cancer”, “risk”, “loci”, “single nucleotide polymor-
phism”, “SNP”, “polymorphism”, “susceptibility gene”, 
“genetic variants”, “association”, “polymorphisms”, 
“genetic mutation”, “germline”, and “variant”. The inclusion 
criteria for the studies were as follows: (1) studies must be 
reported in English; (2) studies must be published in peer-
reviewed journals; (3) studies must be available as full-text 
articles; (4) studies must be either case–control, kin-cohort, 
or prospective in design; (5) case–control studies must report 
genotype frequencies (or OR with 95% confidence interval 
(CI) values); and (6) for non-case–control study in design, 
other relevant metrics such as standardized incidence ratios 
(SIR), relative risk and cumulative risk etc. were taken into 
account (Fig. 1). The exclusion criteria were as follows:  

Yes

Literature Mining

Identification and curation of 345 
studies

Annotation of allele frequency

Yes
Identification of 

missing rsID

No

Annotation of SNP location in the 
genome (exon, intron, intergenic

etc.)

Annotation of SNP Genomic
coordinates

SNP ID 
provided?

OR provided?
No

Calculate OR using 
provided genotype 

frequencies

Define variants as “Disease” (OR 
>1) or “Protective” (OR <1)

Fig. 1  Flow chart outlining multiple steps involved in the database 
design such as literature search, data extraction, data annotation, and 
data harmonization
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(1) publications that were reviews, meta-analysis, case 
reports, and meeting abstracts; (2) studies that did not provide 
genotype distributions among cohorts; and 3) studies per-
formed on tumor tissue for breast cancer association (Fig. 1).

Data extraction

Three independent investigators extracted all data and any 
discrepancies were resolved by discussion. The following 
information were collected from the enrolled studies: (1) 
SNP identifiers (rsID) (if reported) or the sequence vari-
ation of the reported mutation, (2) OR (if reported) or the 
genotypic frequency of both cases and controls, and (3) 
in relevant studies: SIR, relative risk, and cumulative risk 
were also collected (Fig. 1). Of note, information on popu-
lation background and breast cancer subtypes was initially 
extracted from the enrolled studies. However, due to ambig-
uous use of descent, ethnicity, and nationality, as well as 
lack of consistent subtype annotation, these records were 
not included in the database.

Data harmonization

Historically, different nomenclatures have been used to 
report the findings among the included studies (Fig. 1). Spe-
cifically, few studies have reported the breast cancer-asso-
ciated variant using its rsID, whereas other studies reported 
only the consequent “sequence variation”. Similarly, few 
studies reported the OR of the identified breast cancer-asso-
ciated variant (with 95% CI values), whereas other studies 
only reported the genotype frequencies between their study 
subjects. Thus, in order to standardize the data for this data-
base, we performed data harmonization as shown in Fig. 1. 
The breast cancer-associated mutation that was reported only 
by its “sequence variation” was manually converted into its 
corresponding “rsID” using GnomAD database. Similarly, 
in those studies, which only reported the genotype frequen-
cies between their study subjects, we manually calculated 
the corresponding OR (Fig. 1). The odds ratio, its standard 
error, and 95% confidence interval are calculated according 
to Altman, 1991 [13]. Specifically, OR is calculated using 
the formulae: OR = (a/b)/(c/d); where a = number of patients 
in disease cohort carrying the variant; b = number of patients 
in disease cohort not carrying the variant; c = number of 
patients in control cohort carrying the variant; and d = num-
ber of patients in control cohort not carrying the variant.

Database design

This database was designed and created using the rsID and 
OR that were extracted as mentioned above (Fig. 1). Using 
the rsID, we manually annotated its allele frequency (AF), 
SNP location, and genomic loci. AF (GnomAD [14]) was 

used to differentiate the rare-monogenic variants (AF < 0.01) 
between the common-polygenic variants (AF > 0.01). SNP 
location illustrates whether a variant is located within a 
gene (intron, exon or UTR region etc.) or in an intergenic 
region. Genomic loci categorize both chromosomal regions 
with high clustering of breast cancer-associated mutations, 
as well as chromosomal segments that are devoid of breast 
cancer-associated mutation. The OR (also SIR, relative risk 
and cumulative risk) was used to differentiate between a 
potentially disease-causing genetic variant (OR > 1; hereaf-
ter referred as disease variant) and a genetic variant that may 
confer protection against breast cancer (OR < 1; hereafter 
referred as a protective variant).

Chromosomal ideogram visualization

Chromosomal ideogram was constructed with PhenoGram 
software tool [15] (visualization.ritchielab.org) using prox-
imity algorithm for phenotype spacing, with each circle 
representing one gene or variant. For the clarity of visu-
alization, genomic coordinates were rounded to the nearest 
multiple of 1 Mb, and thus, genes or variants within this 
proximity were binned to a single line of adjacent circles. 
Final graphical adjustments were performed in Adobe Pho-
toshop 2019 and Adobe Illustrator 2019.

Network analysis

The protein–protein interaction network was constructed 
using STRING version 11.0 database [16] (https:// string- 
db. org/). "Experiments" dataset was used as an active inter-
action source with a minimum required interaction score 
of 0.4 (medium confidence). Subsequently, the network 
visualization was graphically adjusted in Cytoscape 3.8.2 
[17] (https:// cytos cape. org/) in order to highlight proteins 
encoded by DNA repair genes.

Functional enrichment analysis

g:Profiler [18], g:GOSt tool, was used to perform functional 
enrichment analysis in the breast cancer-associated genes 
resulting in a list (Supplementary Table 1) of 2068 signifi-
cantly enriched terms (Benjamini–Hochberg FDR < 0.05). 
The gene list was treated as an unordered query and only 
annotated genes were considered for statistical tests under 
the statistical domain scope function. For term sizes, 
between 4 and 500 genes were considered. Electronic GO 
annotations were removed, while GO molecular func-
tion (MF), GO cellular component (CC), GO biological 
process (BP), KEGG, Reactome, and WikiPathways data 
sources were analyzed. The Ensembl ID with the most GO 

https://string-db.org/
https://string-db.org/
https://cytoscape.org/
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annotations was chosen for all 5 ambiguous genes (AHRR, 
BABAM1, FOXP1, LRTOMT, and SULT1A1).

Results

Literature search, data extraction, and annotation

The presence of genetic risk factors and positive family his-
tory of breast cancer is the single most important risk fac-
tor for breast cancer development [19]. Currently, there is 
no available breast cancer gene repository assisting clinical 
translation; thus, we set out to build a manually curated data-
base of breast cancer-associated genes and variants, using 
the flow chart outlined in Fig. 1.

The literature search yielded a multitude of publications 
and after manual evaluation the database was constructed 
based on a subset of 345 studies. Among these 345 studies, 
we manually extracted “rsID” and “OR” (also SIR, rela-
tive risk and cumulative risk; in relevant studies) for every 
reported breast cancer-associated genetic variant. Further, 
using the “rsID”, we manually mapped the (1) AF (Gno-
mAD), (2) SNP location (to identify whether the mutation 
is located within a gene or in an intergenic region), and (3) 
genomic loci of every reported breast cancer-associated 
variant. Meanwhile, using the OR, we manually annotated 
every breast cancer-associated variants as either (1) Disease 
(OR > 1; variant that increases disease risk), (2) Protective 
(OR < 1; variant that confers protection against breast can-
cer), or (3) Both (variants that were shown to have both 
OR > 1 and OR < 1 in different studies). Following data 
extraction and annotation, we constructed the Curated Breast 
Cancer Gene (https:// cbcg. dk) database, a freely available 
database for the future collation of new breast cancer-asso-
ciated variants and genes.

Demography of breast cancer‑associated variants

We indexed 925 records in total; the term records instead of 
SNP/gene is used because similar SNPs/genes were reported 
multiple times to be associated with breast cancer by dif-
ferent studies. Same SNPs (or genes) that were reported by 

multiple studies were indexed separately as a unique record. 
Similarly, different SNPs (or genes) that were reported by a 
specific study were indexed separately as a unique record.

As depicted in Fig. 2a, we cataloged in total 652 breast 
cancer-associated loci across the genome. Among these, 551 
breast cancer loci (85%) were located within a gene (intron, 
exon or UTR region, etc.). Interestingly, a large number of 
101 breast cancer loci (15%) were present in the intergenic 
region. Of the 551 breast cancer loci located within a gene, 
a majority of them (345, 63%) were present in the intron. 
Breast cancer-associated variants were also reported in the 
UTR and splice site regions etc. accounting for 9% (48) of 
the breast cancer loci located within a gene. However, only 
29% (158) of the reported breast cancer loci were located 
within an exonic region. Taken together, most of the reported 
breast cancer-associated variants (446) were present in the 
non-coding region such as intergenic (101) and intronic 
(345). SNPs located in the intergenic and intronic regions 
are suggested to play a role in the regulation of gene expres-
sion [20, 21].

Further, we cataloged the breast cancer-associated vari-
ants based on their OR to identify variants that either predis-
pose to breast cancer (Disease; OR > 1) or confer protection 
against breast cancer (Protective; OR < 1). In our analyses, 
429 breast cancer-associated variants were identified to pre-
dispose to breast cancer, whereas 198 breast cancer-asso-
ciated variants were identified to confer protection against 
breast cancer (Fig. 2b). We also identified 25 breast cancer-
associated variants that were reported to both predispose 
to breast cancer and confer protection against breast cancer 
in different studies (Fig. 2b). These conflicting results are 
mostly observed in studies performed in different popula-
tions, suggesting population-based effects.

Chromosomal ideogram analysis

In order to identify chromosomal regions that are enriched 
or devoid of breast cancer-associated variants, we performed 
ideogram analysis in the 652 breast cancer-associated loci 
(Fig. 3) [15]. The highest number of breast cancer-associated 
loci (60) was found on chromosome 2, whereas the low-
est number of breast cancer-associated loci (6) was found 

Fig. 2  a Pie chart outlining 
the distribution of 652 breast 
cancer-associated loci across the 
genome. b Pie chart outlining 
the distribution of variants that 
either predisposes to breast can-
cer (Disease; OR > 1) or confers 
protection against breast cancer 
(Protective; OR < 1)
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on chromosome 21 (excluding sex chromosomes). Since 
chromosomes are of differing length, we next analyzed the 
number of breast cancer-associated loci relative to its length 
for every chromosome (Fig. 4a). Despite its larger size, the 
density of breast cancer-associated loci was lower in chro-
mosome 4 (Fig. 4a). Similarly, chromosomes 17 and 19 had 

the highest density of breast cancer-associated loci when 
compared to its chromosomal size (Fig. 4a).

Since, chromosome 17 and 19 have been shown to pos-
sess the highest gene density of all human chromosomes 
[22, 23], we next analyzed the number of breast cancer-asso-
ciated loci relative to the number of genes present in each 
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chromosome (Fig. 4b). The presence of increased breast 
cancer-associated loci in chromosome 17 and 19 correlates 
with the presence of larger number of genes in these chro-
mosomes (Fig. 4b).

Manual curation of rare‑monogenic variants

Breast cancer gene panels are commonly used by diagnostic 
laboratories to identify disease etiology among patients. The 
gene panels include genes with a well-documented asso-
ciation between a rare-monogenic variant and breast cancer 
(e.g., BRCA1, BRCA2 and PALB2). Inclusion of bonafide 
breast cancer-associated genes in future diagnostic gene 
panels would increase the odds of uncovering disease eti-
ology among patients. Hence, we manually annotated and 
collated the breast cancer genes in which a previous asso-
ciation between rare-monogenic variant and breast cancer 
were established.

In total, we identified 459 genes with breast cancer-
associated variants (Fig. 5). In order to annotate and col-
late the rare-monogenic variant containing breast cancer 
genes, we set out the following criteria: (1) genes should 
contain at least one rare variant (49 genes); (2) these rare 
variants should be rare across all population (45 genes); (3) 
these rare variants should be present in protein coding genes 
(43 genes); and (4) these rare variants should be present in 
the coding regions of a gene and not in intron (39 genes) 
(Fig. 5). The 39 genes that we identified to contain disease-
causing monogenic variants are ABRAXAS1, APC, ATM, 
BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, 
ERBB2, FANCC, FANCD2, FANCM, HOXB13, MCPH1, 
MEN1, MRE11, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, 
PMS2, POLG, PPM1D, PTEN, RAD50, RAD51C, RAD51D, 
RBBP8, RECQL, RINT1, SERPINA3, STK11, TEX15, TP53, 
and XRCC2 (Fig. 5).

A majority of these are well-known cancer syndrome 
genes or genes that maintain genomic stability, such breast 
cancer genes are marked with red dots and annotated, 
respectively, in Fig. 3. The majority of the 39 monogenic 
rare variant containing genes are either well-known tumor 
suppressors or suspected to have a tumor suppressor role, 
whereas only PPM1D and ERBB2 are classified as bonafide 
oncogenes by the Cancer Gene Census [24]. Of note, Chro-
mosome 17 contains many rare-monogenic variants contain-
ing breast cancer genes (Fig. 3). Using the new platform 
(https:// cbcg. dk), this monogenic breast cancer gene list will 
be continually updated for clinical and diagnostic purposes.

Gene‑set enrichment analyses

To identify enrichment of specific molecular pathways and 
biological processes in the cataloged 459 breast cancer-
associated genes, we performed both network analysis and 

functional enrichment analysis. The protein network analysis 
performed using cytoscape/String revealed a major cluster 
enriched among the DNA repair pathways, attributable to the 
rare-monogenic variant containing breast cancer genes (red 
dots) that were mainly present within this cluster (Fig. 6). On 
the contrary, a vast majority of the common-polygenic vari-
ant containing breast cancer genes (blue dots) were devoid 
of any protein–protein interaction and thus lacking pathway 
clustering (Fig. 6).

To further characterize, we next performed functional 
enrichment analysis using the g:Profiler [18] g:GOSt tool. In 
agreement with network analysis, the functional enrichment 
analysis (using KEGG) also indicated DNA repair pathways 

459 Genes were identified to 
contain BC associated variants

Include genes in which a rare 
variant is present

(49 genes)

Include genes in which a rare 
variant is present across all

populations
(45 genes)

410 genes were 
excluded

Include only protein coding genes
in which a rare variant is present

(43 genes)

4 genes were excluded

Include genes in which a rare 
variant is present in exon or splice 

site junction
(39 genes)

2 genes were excluded

4 genes were excluded

39 monogenic rare variant containing genes are: ABRAXAS1, APC, 
ATM, BARD1, BLM, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, 
ERBB2, FANCC, FANCD2, FANCM, HOXB13, MCPH1, MEN1, 

MRE11, MSH2, MSH6, MUTYH, NBN, NF1, PALB2, PMS2, POLG, 
PPM1D, PTEN, RAD50, RAD51C, RAD51D, RBBP8, RECQL, 

RINT1, SERPINA3, STK11, TEX15, TP53 and XRCC2 

Fig. 5  Flow chart outlining the different criteria used to annotate and 
collate the rare-monogenic variant containing breast cancer genes. 
Out of the 459 breast cancer genes, our manual curation effort has 
identified 39 genes to contain disease-causing monogenic variants

https://cbcg.dk


437Breast Cancer Research and Treatment (2022) 191:431–441 

1 3

such as homologous recombination and Fanconi anemia to 
be significantly enriched among the cataloged breast cancer-
associated genes (Supplementary Table 1). These DNA repair 
pathways together with platinum drug resistance pathway 
comprise the majority of annotated rare-monogenic variant 
containing breast cancer genes (Supplementary Table 1). 
However, pathways such as steroid hormone biosynthesis, 
chemical carcinogenesis, and metabolism of xenobiotics by 
cytochrome P450 were found to be significantly enriched 
among the common-polygenic variant containing breast cancer 
genes (Supplementary Table 1). Thus, the results from both 

network and functional enrichment analysis indicate that the 
rare-monogenic and common-polygenic variant containing 
breast cancer genes were implicated mainly in DNA repair 
and steroid metabolism, respectively.

Discussion

The potential use of breast cancer genes and variants dur-
ing clinical management is prodigious, thus, identification 
of new factors responsible for breast cancer etiology is of 
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Fig. 6  Protein network analysis performed in the 459 breast can-
cer genes revealed a major cluster enriched among the DNA repair 
pathways. Rare-monogenic variant containing breast cancer genes 

(red dots) was mainly present within this cluster. The protein–protein 
interaction network was constructed using STRING database [16] and 
graphically adjusted in Cytoscape [17]
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paramount importance. An expedited translation of these 
newly identified breast cancer genes and variants could 
greatly augment personalized breast cancer treatment. How-
ever, with a constant influx of new studies, it is challenging 
to rapidly integrate these new findings into clinical use. The 
presence of a database comprising breast cancer-associated 
factors would enable rapid translation into clinical diagnos-
tics. However, to the best of our knowledge, currently there 
is no database that archives known breast cancer genes and 
variants. Thus, there is a pressing need for an interactive and 
accessible database of curated breast cancer susceptibility 
genes.

We built a database of curated breast cancer genes 
(https:// cbcg. dk) that can be readily used by both breast 
cancer researchers and clinicians. The main novelty of the 
study and linked database are that every breast cancer genes/
variant, its rsID, SNP location, genomic location, AF and 
whether it is a potentially disease-causing genetic variant 
have been carefully and stringently curated. Another nov-
elty of this study is the compilation of 39 genes that were 
identified to contain disease-causing monogenic variants. 
We believe that this database will not only readily provide 
information for both breast cancer researchers and clinicians 
but also help in saving their time. It is our view to provide 
continual updates of the data repository by curating new 
breast cancer genes/variants, most importantly, monogenic 
breast cancer gene list will be continually updated for clini-
cal and diagnostic purposes.

Identification of breast cancer-associated rare-mono-
genic variants are typically performed using targeted gene 
sequencing that utilizes a focused panel of selected genes. 
The genes included in these breast cancer multigene panels 
are different among vendors (for a list of commonly used 
breast cancer multigene panel, please read Easton, DF et al. 
[25]). The only similarity between these multigene panels 
is that they mainly focus on DNA repair genes, other than 
that, there exists no clear consensus on the design of these 
multigene breast cancer panels [26]. One important aspect 
while designing a future (or custom) breast cancer multigene 
panel is to consider maximizing the likelihood of uncovering 
breast cancer-associated rare variants among the patients. 
We believe that including genes in which a previous associa-
tion between rare-monogenic variant and breast cancer has 
been documented would maximize the odds of uncovering 
breast cancer-associated alterations.

A list of these breast cancer genes could be also used by 
the clinicians to narrow their search of breast cancer-asso-
ciated alteration in the WES or WGS of patient data. Cur-
rently, to the best of our knowledge there exists no curated 
breast cancer gene list that could facilitate the screening of 
rare-monogenic variants. Therefore, we manually annotated 
and collated 39 breast cancer genes in which a previous asso-
ciation between rare-monogenic variant and breast cancer 

has been documented. Interestingly, 28 out of these 39 breast 
cancer genes were included in the screening panel (com-
prising 34 genes) of a recent study that aimed to identify 
overall breast cancer risk in more than 113,000 women [27]. 
This further exemplifies the appropriateness of our database 
in clinical high-throughput sequencing approaches such as 
multigene panel testing or in-silico panel testing from WES 
or WGS platforms. As the most cost-effective sequence 
method is soon to be the WGS, it enables the option of 
increasing the in-silico gene panel in clinical screening of 
breast cancer patient. However, as recently shown from a 
consortium of international breast cancer genetic screening 
laboratories, the gene panels (in-silico or capture based) are 
far from compatible, nor is it possible to update with the 
constant flow of new knowledge [26].

Dissecting of breast cancer genes includes not only the 
rare-monogenic variants but also the growing number of 
common-polygenic variants. While the individual common-
polygenic variants have small effects on disease risk, cumu-
latively, they can cause an increased disease risk, similar 
to that of rare-monogenic variant [7]. Utilizing the GWAS 
identified common-polygenic variants, PRS are estimated 
and the prospect of utilizing PRS as a clinical tool is gaining 
traction [28]. Already, some clinics have chosen to offer a 
polygenic risk calculation through commercial test labora-
tories [29]. Translating breast cancer-associated SNPs into 
clinical practice is troublesome and there is currently a con-
siderable debate over the clinical utility of PRS to assess 
breast cancer risk [11]. Although evidence for support of 
implementation of PRS into clinical practice is sparse, there 
is no doubt that PRS will play an enormous role in the future 
population screening programs, providing healthy persons 
a personalized risk assessment and managing tools [30]. 
For researchers and stakeholders, it is possible to assess the 
breast cancer-associated SNPs through the GWAS Catalog 
(https:// www. ebi. ac. uk/ gwas/). We believe that the https:// 
cbcg. dk database could also aid in the implementation of 
PRS into clinical practice.

There are few shortcomings in this current database 
mainly concerning the inability of us to provide unam-
biguous information about the population and breast can-
cer subtype for every curated breast cancer gene/variant. 
Moreover, during the construction of this database, we have 
also observed a great disparity between study populations 
among the enrolled studies, with most involving European/
Caucasian patients. The genetic discovery efforts to date 
heavily underrepresent non-European populations globally 
and this has serious impact during PRS estimation in non-
European patients. It has been shown several times that PRS 
predicts individual risk far more accurately in Europeans 
when compared to non-Europeans due to the overwhelming 
abundance of GWAS studies conducted in participants of 
European descent [31].

https://cbcg.dk
https://www.ebi.ac.uk/gwas/
https://cbcg.dk
https://cbcg.dk
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It is by now well established that the majority of known 
rare causal germline breast cancer genes are involved in 
genome maintenances pathways (Fig. 6). However, when 
searching for new causal breast cancer genes it is relevant to 
unravel if entirely new or interacting pathways are potential 
areas to seek for causal monogenic variants. We believe that 
our database could serve as an inspiration to find these new 
pathways where new breast cancer causal genes could func-
tion. Keeping this in mind, we have built an interactive and 
accessible database of curated breast cancer genes (https:// 
cbcg. dk), to support the ongoing efforts in managing breast 
cancer etiology.
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