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Abstract
Purpose Menopause is associated with an increased risk of estrogen receptor-positive (ER +) breast cancer. To characterize 
the metabolic shifts associated with reduced estrogen bioavailability on breast tissue, metabolomics was performed from 
ovary-intact and ovariectomized (OVX) female non-human primates (NHP). The effects of exogenous estrogen administra-
tion or estrogen receptor blockade (tamoxifen treatment) on menopause-induced metabolic changes were also investigated.
Methods Bilateral ovariectomies were performed on female cynomolgus macaques (Macaca fascicularis) to model meno-
pause. OVX NHP were then divided into untreated (n = 13), conjugated equine estrogen (CEE)-treated (n= 13), or tamox-
ifen-treated (n = 13) subgroups and followed for 3 years. Aged-matched ovary-intact female NHP (n = 12) were used as a 
premenopausal comparison group. Metabolomics was performed on snap-frozen breast tissue.
Results Changes in several different metabolic biochemicals were noted, particularly in glucose and fatty acid metabo-
lism. Specifically, glycolytic, Krebs cycle, acylcarnitines, and phospholipid metabolites were elevated in breast tissue from 
ovary-intact NHP and OVX + CEE in relation to the OVX and OVX + tamoxifen group. In contrast, treatment with CEE 
and tamoxifen decreased several cholesterol metabolites, compared to the ovary-intact and OVX NHP. These changes were 
accompanied by elevated bile acid metabolites in the ovary-intact group.
Conclusion Alterations in estrogen bioavailability are associated with changes in the mammary tissue metabolome, particu-
larly in glucose and fatty acid metabolism. Changes in these pathways may represent a bioenergetic shift in gland metabolism 
at menopause that may affect breast cancer risk.

Keywords Non-targeted metabolomics · Estrogen · Tamoxifen · Breast cancer · Post-menopausal · Hormone replacement 
therapies · Conjugated equine estrogen

Introduction

Breast cancer is the most common form of cancer in the 
USA. Among women, breast cancer accounts for 30% of 
all cancer diagnoses, with 281,550 new cases estimated in 
2021 [1]. Factors related to estrogen production are linked 
to an increased breast cancer risk, suggesting a mechanistic 
association between estrogen signaling and the development 
of breast carcinogenesis [2–5]. Early menarche, late meno-
pause, obesity, or the use of hormone replacement therapies, 
which all increase lifetime exposure to estrogen, are associ-
ated with increased breast cancer risk in both pre-and post-
menopausal women. [4, 6–8].

Circulating estrogen and postmenopausal breast cancer 
risk are linked in numerous studies [9–11]. The Endog-
enous Hormones and Breast Cancer Collaborative Group 
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(EHBCCG) reanalyzed data from nine prospective studies on 
endogenous hormone levels and breast cancer risk in post-
menopausal women. They found that levels of total estradiol, 
free estradiol, estrone, and estrone sulfate were associated 
with increased breast cancer risk. Specifically, postmeno-
pausal women in the highest quintile of plasma free estra-
diol (E2) had a 2.58-fold (95% CI 1.76–3.78) higher rate 
of breast cancer over 10 years compared to women in the 
lowest quintile [10, 12]. Thomas and colleagues found that 
postmenopausal women who later developed breast cancer 
had 15% higher serum estradiol than women who remained 
breast cancer free [13].

Endogenous estradiol (E2) plays a fundamental role in 
controlling several metabolic pathways, including energy 
homeostasis, glucose metabolism, and nucleotide sugar 
metabolism [14]. Elevated glucose has been associated with 
increased breast cancer incidence [15–17]. Reprogramming 
of cancer metabolism is a recognized hallmark of malig-
nancy. In general, cancer cells preferentially undergo gly-
colysis in an oxygen-rich environment, unlike normal cells 
that prefer oxidative phosphorylation [18]. Nucleotide sugar 
metabolism drives aberrant cell surface glycosylation, which 
supports cancer cell migration and signaling [19]. Addition-
ally, estrogens regulate several enzymes in the tricarboxylic 
acid cycle (TCA) cycle, including the condensation reaction 
between acetyl-CoA and oxaloacetate to form citrate, which 
is catalyzed by citrate synthase, whose activity is enhanced 
by E2 [20].

Estrogens are essential modulators of lipid metabolism, 
particularly in the β-oxidation of fatty acids [21, 22]. How-
ever, cancer cells can alter aspects of lipid metabolism, 
including the availability of structural lipids for membrane 
synthesis and the synthesis of lipids for energy homeostasis. 
These changes in lipid metabolism can affect cell growth, 
proliferation, and differentiation. Carnitine system metabo-
lites, which facilitate transport of fatty acids into mitochon-
dria, are associated with breast cancer risk [23].

Furthermore, estrogens are implicated in controlling bile 
acid (BA) levels [24]. BA are synthesized in the liver from 
cholesterol [25]. Studies show BA have anti-carcinogenic 
effects in several cancer cell models, including breast can-
cer [26–28]. Specifically, lithocholic acid (LCA) exhibits 
anti-proliferative and pro-apoptotic effects in both MCF-7 
and MDA-MB-231 breast cancer cells. Using metabolomics, 
Tang et al. showed that BA accumulate in the tumors of 
specific subsets of breast cancer. Tumors with increased BA 
showed a decrease in proliferation, suggesting an association 
with better patient survival. [29]

Hormonal replacement therapies (HRT), the main treat-
ment for menopause-related symptoms, are implicated in 
breast cancer development [30, 31]. Estrogen-only HRT, 
such as conjugated equine estrogens (CEE), mimic endog-
enous estrogen’s effects. Numerous studies reported a 

link between HRT use and postmenopausal breast cancer 
risk [31, 32]. The Women’s Health Initiative (WHI) ran-
domized 16,608 postmenopausal women with an intact 
uterus and ovaries to either placebo or a combination of 
0.625 mg CEE and 2.5 mg MPA and 10,739 postmenopau-
sal women who had undergone hysterectomies to either 
0.625 mg CEE or placebo. After 5.6 years, the CEE + MPA 
group had a 24% increase in invasive breast cancer risk 
compared to the placebo group. In contrast, there was no 
increased risk of breast cancer in the CEE-only group [32, 
33].

Adjuvant treatment of postmenopausal estrogen 
receptor-α (ER)+ breast cancer involves reducing estrogen 
secretion through endocrine-targeting therapies such as 
selective estrogen receptor modulators (SERM). Tamox-
ifen (TAM), a SERM, inhibits the expression of estrogen-
regulated genes such as growth factors and angiogenic 
factors secreted by the tumor in breast tissue. Blockade of 
these genes results in a slowing of cell proliferation and 
tumor regression [34]. In other tissues, such as the uterus, 
TAM has an estrogenic effect, activating ER gene cofac-
tors [35]. The adjuvant administration of TAM reduced 
the recurrence of breast cancer and prolonged survival in 
women with operable breast cancer by 47% and the risk of 
death by 26% in patients with hormone-receptor-positive 
breast cancer [36]. Additionally, TAM reduces the risk of 
invasive and non-invasive breast cancer by 49% and 50% 
respectively [37].

As with E2, HRT and endocrine therapies are associ-
ated with alterations in metabolism. Both CEE and tamox-
ifen affect cellular lipid metabolism. TAM also has similar 
effects on the protection of cell membranes as endogenous 
estrogens [38]. In postmenopausal women with early-stage 
breast cancer, TAM administration was associated with a 
favorable effect on lipid profiles [39]. CEEs are associated 
with favorable lipid profiles, with CEE administration reduc-
ing low-density lipoprotein cholesterol and increasing high-
density lipoprotein cholesterol [40].

To characterize the metabolic shifts associated with 
estrogen bioavailability on breast metabolic pathways, 
metabolomics was performed on mammary gland tissue 
from ovariectomized female Macaca fascicularis monkeys. 
The effects of conjugated equine estrogen (CCE) or estrogen 
receptor-α antagonist (tamoxifen) treatment on modification 
of menopause-induced metabolic changes were studied. This 
primate species is a well-established model of women’s 
health, particularly for the study of breast cancer [41–43]. 
Specifically, ovariectomized NHP display low levels of 
circulating estrogens, which are physiologically relevant 
to postmenopausal women [44]. The present study demon-
strates several metabolites strongly differentiate between 
treatment groups, suggesting that these metabolites may be 
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associated with estrogen-dependent changes in the mam-
mary tissue metabolome.

Methods

Animals and study design. Methods were adapted from 
Cline et  al. [44]. In brief, adult female cynomolgus 
macaques (M. fascicularis) were imported from Indone-
sia (Institut Pertanian Bogor or Charles River Primates, 
Port Washington, NY). Bilateral ovariectomies were per-
formed on NHP 3 months before treatment. Ovariecto-
mized NHP were untreated (control group) or continuously 
treated with either conjugated equine estrogens (CEE) or 
tamoxifen for 3 years. Treatment was administered in the 
diet at doses equivalent on a caloric basis to 0.625 mg/
woman/ day for CEE and 20 mg/day for tamoxifen. To 
confirm the ovariectomy’s success, serum estradiol and 
progesterone were measured before treatment. Estradiol, 
estrone, and tamoxifen were measured throughout the 
study. The NHP’s age was determined at randomization 
by dentition, with the mean age of 7.5 years at the study’s 
end. NHP were housed in social groups of 4–6 monkeys 
in an AAALAC-accredited facility. NHP were fasted start-
ing at 3 pm the day prior to euthanasia with free access 
to water. All experimental protocols were approved by 
the Institutional Animal Care and Use Committee. Aged-
matched ovary-intact NHP were used as the endogenous 
estrogen group. At the end of the study, mammary tissue 
was removed and snap-frozen, and stored at − 80 °C.

Metabolomics analysis. Metabolomics was performed 
on mammary gland samples by Metabolon, Raleigh, NC 
as previously described [45–47]. Samples were prepared 
using the automated MicroLab Star system from the Ham-
ilton Company. The extract was divided into five frac-
tions: two for analysis by two separate reverse phase (RP)/
UPLC-MS/MS with positive ion mode electrospray ioni-
zation (ESI), one for analysis by RP/UPLC-MS/MS with 
negative ion mode ESI, and one for analysis by HILIC/
UPLC-MS/MS with negative mode ESI; one for backup.

Ultrahigh Performance Liquid Chromatography-
Tandem Mass Spectroscopy (UPLC-MS/MS). A Waters 
ACQUITY ultra-performance liquid chromatography 
(UPLC) system and a Thermo Scientific Q-Exactive mass 
spectrometer interfaced with a heated electrospray ioni-
zation (HESI-II) source and Orbitrap mass analyzer was 
used. Compounds were identified by comparison to library 
entries of purified standards or recurrent unknown entities. 
Peaks were quantified using area-under-the-curve.

Metabolomics, bioinformatics, and statistics. The 
informatics system consisted of the Laboratory Informa-
tion Management System (LIMS), the data extraction and 
peak-identification software, data processing tools for QC 

and compound identification, and a collection of infor-
mation interpretation and visualization tools [48]. The 
hardware and software foundations for these informat-
ics components were in a LAN backbone and a database 
server running Oracle 10.2.1.1 Enterprise Edition, respec-
tively. Log transformation and imputation of missing val-
ues were performed with the minimum observed value for 
each compound. A Welch’s two-sample t-test was used to 
identify biochemicals that differed significantly between 
experimental groups. A total of 801 known biochemical 
compounds were identified. A p-value of p ≤ 0.05 was con-
sidered statistically significant. The numbers of biochemi-
cals that reached statistical significance as well as those 
approaching significance (0.05 < p < 0.10) are outlined in 
Supplemental Table 1.

Results

Approximately 30% of measured metabolites were statisti-
cally different across groups (Fig. 1 A–D). Volcano plots 
of detected biochemicals comparing metabolite profiles of 
tissue from Ovary-intact and OVX NHP identified 251 sig-
nificantly upregulated and 15 downregulated metabolites 
(Fig. 1A). Volcano plots of detected biochemicals compar-
ing metabolite profiles of tissue from OVX and OVX + CEE 
NHP identified 214 significantly upregulated and 19 signifi-
cantly downregulated metabolites (Fig. 1B). Volcano plot 
of OVX and OVX + TAM tissue identified 70 significantly 
upregulated and 38 significantly downregulated metabolites 
(Fig. 1C).

Carbohydrate metabolism

Changes in carbohydrate metabolism, specifically in glu-
cose metabolism (Fig. 2), were regulated by menopause 
status and by HRT. Glucose metabolism (pathway shown 
in Fig. 2A) is critical to energy metabolism and mammary 
gland bioenergetics. Heat map in Fig. 2B shows all glucose 
metabolites measured in the NHP breast tissue. Samples 
from Ovary-intact NHP had elevated glucose levels com-
pared with OVX NHP (Fig. 2C). Pyruvate was significantly 
elevated in ovary-intact and OVX + CEE NHP compared to 
OVX NHP (Fig. 2D). 3-phosphoglycerate levels were ele-
vated in no-OVX, CEE- and TAM-treated NHP compared 
to OVX NHP (Fig. 2E).

Phosphoenolpyruvate levels were elevated in ovary-intact 
compared to OVX (Fig. 2F). CEE led to significant changes 
(p < 0.05) in phosphoenolpyruvate compared to OVX NHP 
(Fig. 2F). Ovary-intact and OVX + CEE NHP had elevated 
glycerate compared to OVX only (Fig. 2G). TAM treatment 
also had significant changes (p < 0.05) in glycerate com-
pared to ovary-intact NHP (Fig. 2G). Glucose-6-phosphate 
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was elevated in the ovary-intact NHP compared to the OVX 
NHP (Fig. 2H). TAM administration significantly increased 
glucose-6-phosphate levels compared to OVX tissue.

Nucleotide sugar metabolism

Shifts in nucleotide sugar metabolism (Fig. 3) were noted 
with estrogen status (pathway shown in Fig. 3A) [49]. Heat 
map in Fig. 3B shows metabolites significantly regulated by 
ovariectomy and HRT administration. Specifically, UDP-
glucose was elevated in ovary-intact compared to OVX NHP 
tissue (Fig. 3C). CEE and TAM treatment increased UDP-
glucose (Fig. 3D). Ovary-intact NHP had elevated UDP-
galactose compared to OVX tissue. CEE and TAM treat-
ment also elevated UDP-galactose in OVX NHP compared 
to untreated OVX NHP (Fig. 3D); furthermore, the ovary-
intact group had elevated UDP-glucuronate compared to the 
OVX group (Fig. 3E). CEE and TAM treatment increased 
UDP-glucuronate compared to OVX NHP (Fig. 3E). UDP-
N-acetylglucosamine was elevated in the ovary-intact and 
OVX + CEE-treated NHP (Fig. 3F).

Central energy metabolism

Alterations in central energy metabolism, including the TCA 
pathway shown in (Fig. 4A) and oxidative phosphorylation 
were observed (Fig. 4B). Isocitrate was elevated in ovary-
intact NHP compared to OVX NHP (Fig. 4C). CEE and 
TAM treatment increased isocitrate compared to OVX-only 
NHP (Fig. 4C). Isocitrate was elevated in CEE-treated NHP 
compared to ovary-intact NHP (Fig. 4C). α-ketoglutarate 
was elevated in ovary-intact compared to OVX tissue. TAM 
treatment reduced α-ketoglutarate compared to ovary-intact 
NHP (Fig. 4D). Succinate was upregulated in ovary-intact 
and OVX + CEE-treated NHP compared to OVX NHP 
(Fig. 4E). TAM treatment displayed reduced succinate com-
pared to the ovary-intact group (Fig. 4E). Ovary-intact and 
OVX + CEE NHP showed an increase in malate compared 
to OVX NHP (Fig. 4F). TAM treatment decreased malate 
compared to ovary-intact NHP breast tissue (Fig. 4F). Fuma-
rate was elevated in the ovary-intact and OVX + CEE-treated 
tissue compared to the OVX NHP (Fig. 4G).
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Fig. 1  Volcano plots showing the distribution of metabolites by 
group. a Volcano map showing the distribution of metabolites in 
the ovary-intact (non-ovariectomized; no-OVX) vs ovariectomized 
(OVX) groups. b Volcano map showing the distribution of metabo-

lites in the OVX + CEE-treated group vs. the OVX group. c Volcano 
map showing the distribution of metabolites in the OVX + TAM-
treated group vs. OVX group
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Lipid metabolism

Perturbations in lipid metabolism, including fatty acid, phos-
pholipid, bile acid, sterol, and corticosteroid metabolism, 

were observed. Individual regulated fatty acid metabolites 
are shown in a heat map (Supplemental Fig. S1A). Ovary-
intact NHP tissue exhibited increases in acylcarnitines (Sup-
plemental Figure S1A) and ketone body 3-hydroxy butyrate 
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(BHBA; Supplemental Figure S1B) compared to the OVX 
group. CEE treatment increased arachidonoyl carnitine and 
linoleoyl carnitine (Supplemental Figure S1C & D). TAM 
treatment decreased fatty acid β-oxidation metabolites ara-
chidonoyl carnitine and linoleoyl carnitine (Supplemental 
Figure S1C& D).

Changes in phospholipid biosynthesis metabolites were 
observed in breast samples from ovary-intact and OVX NHP 
(Supplemental Figure S2A). Among these metabolites were 
several phospholipid precursors, including choline phos-
phate, cytidine-5’-diphosphocholine, and cytidine-5’-di-
phosphoethanolamine (Supplemental Figure S2A). Notably, 
this increase in precursor molecules was also associated with 
changes in phosphatidylcholine (PC; Supplemental Figure 
S2B), phosphatidylethanolamine (PE; Supplemental Figure 
S2C), and phosphatidylserine (PS) species (Supplemental 
Figure S2D). Ovary-intact NHP had an increase in glyco-
phosphoinositol compared to OVX NHP breast tissue (Sup-
plemental Figure S2E). CEE-treated OVX NHP also dis-
played elevated glycophosphoinositol, similar to ovary-intact 
NHP (Supplemental Figure S2E). Choline phosphate was 
elevated in ovary-intact NHP compared to the OVX group 
(Supplemental Figure S2F). Additionally, CEE and TAM 
administration had increased choline phosphate compared 
to OVX NHP (Supplemental Figure S2F).

Significant changes in the cholesterol metabolites 
7alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) and 3beta-
hydroxy-5-cholestenoate were also observed, as indicated by 
the heat map (Supplemental Figure S3A). CEE and TAM 
treatment reduced 7-HOCA compared to OVX only (Supple-
mental Figure S3B). 3β-hydroxy-5-cholestenoate levels were 
not significantly different between ovary-intact and OVX 
NHP breast tissue (Supplemental Figure S3C). Both CEE 
and TAM treatment reduced 3β-hydroxy-5-cholestenoate 
compared to the OVX-only NHP (Supplemental Figure 
S3C).

Primary bile acids are synthesized from cholesterol in 
hepatocytes, while secondary bile acids are formed by 
deconjugation and dihydroxylation reactions (Fig. 5A). Bile 
acid metabolism was altered by ovariectomy status and CEE 
and TAM administration (Fig. 5B). Significant increases in 

the primary bile acid glycocholate were observed in ovary-
intact and OVX + CEE compared to OVX NHP (Fig. 5C). 
Glycocholate metabolism was decreased in OVX + TAM 
compared to ovary-intact NHP (Fig. 5C). Secondary bile 
acid glycodeoxycholate metabolism was also elevated in 
the ovary-intact and CEE-treated groups compared to OVX 
(Fig. 5D). The secondary bile acid glycochenodeoxycholate 
was also elevated in ovary-intact NHP (Fig. 5E). CEE and 
TAM reduced glycochenodeoxycholate compared to ovary-
intact (Fig. 5E).

Oxidative stress metabolism

Alterations in several oxidative stress metabolites were 
observed (heat map; Fig.  6A). Increases in nicotina-
mide adenine dinucleotide (NAD +) were observed in the 
OVX + CEE NHP (Fig. 6B). NADH was not significantly 
different between the ovary-intact and OVX tissue; however, 
CEE significantly elevated NADH compared to the OVX-
only NHP tissue (Fig. 6C). The ratio of NAD + to NADH 
was elevated in the ovary-intact NHP compared to the OVX 
NHP (Fig. 6D). FAD + was increased in the ovary-intact, 
OVX + CEE, and OVX + TAM breast tissue when compared 
to the OVX group (Fig. 6E). CEE also increased prostaglan-
din F2α (Fig. 6F). Reduced glutathione (GSH), an important 
antioxidant, was upregulated in CEE- and TAM-treated NHP 
compared to ovary-intact and OVX-only tissue (Fig. 6G). 
The ratio of reduced to oxidized glutathione, an important 
measure of oxidative stress, was significantly elevated in 
CEE- and TAM-treated NHP in relation to ovary-intact and 
OVX NHP (Fig. 6H).

Discussion

Estrogen and estrogen metabolites play an important role in 
breast tissue homeostasis. Increased circulating E2 levels 
are associated with increased glucose uptake, directly link-
ing estrogen to glucose metabolism [50]. Decreased glucose 
metabolism in the OVX group suggests that endogenous E2 
promotes glycolysis in the mammary tissue. CEE increased 
all glycolytic intermediates as well as pyruvate in relation to 
the OVX group, suggesting that exogenous E2 administra-
tion restored glycolytic signaling comparable to ovary-intact 
breast levels. CEE treatment trended toward increasing gly-
colysis metabolites compared with the ovary-intact group, 
suggesting treatment with exogenous E2 might lead to over-
stimulation of glycolytic pathways in the mammary tissue.

Furthermore, studies have shown that E2 affects several 
glycolytic enzymes [51, 52]. Kostanyan and Nazaryan, 
which examined the effects of estradiol on several female 
rat brain glycolytic enzymes, showed that hexokinase, phos-
phofructokinase, and pyruvate kinase were elevated 4 h after 

Fig. 5  Changes in bile acid metabolism associated with estrogen 
bioavailability. a Bile acid synthesis pathway. b Heat map showing 
effects of estrogens on bile acid metabolism in mammary glands. 
c Changes in primary bile acid glycocholate metabolism across 
groups. d Changes in secondary bile acid glycodeoxycholate metab-
olism across groups. e Changes in secondary bile acid glycocheno-
deoxycholate metabolism across groups. f Changes in taurocholate 
across groups. (p < 0.05). (GCA  glycocholic acid, TCA  taurocholic 
acid, GCDCA glycochenodeoxycholic acid, TCDCA taurochenode-
oxycholic acid, DCA deoxycholic acid, LCA lithocholic acid, GDCA 
glycodeoxycholic acid, TDCA taurodeoxycholic acid, GLCA glyco-
lithocholic acid, TLCA taurolithocholic acid, GUDCA glycoursode-
oxycholic acid, TUDCA tauroursodeoxycholic acid)

◂
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Fig. 6  Changes in oxidative 
stress metabolites associated 
with estrogen status. a Heat map 
showing effects of estrogens 
on oxidative stress metabolites. 
a Changes in NAD + across 
groups. c Changes in NADH 
metabolism across groups. 
d Ratio of NAD + to NADH 
across groups. e Changes 
in FAD + across groups. f 
Changes in prostaglandin F2α 
across groups. g Changes in 
glutathione across groups. h 
Ratio of reduced to oxidized 
glutathione across groups
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treatment [51]. Conversely, limited glucose changes were 
noted in the TAM-treated group compared with OVX tissue. 
Tamoxifen increased glucose-6-phosphate and 3-phospho-
glycerate compared to OVX tissue. Our study in noncancer-
ous OVX NHP indicates that low estrogen bioavailability 
(modeling menopause), decreased normal breast tissue gly-
colysis. Tamoxifen led to a modest increase of these regu-
lated metabolites, suggesting a partial restoration of glucose 
metabolism to ovary-intact levels. Overall, these results sug-
gest that endogenous (ovary-intact) and exogenous (CEE 
administration) estrogen might promote glycolysis in mam-
mary tissue to maintain normal tissue bioenergetic homeo-
stasis. Moreover, that tamoxifen-mediated regulation of 
bioenergetics pathways may represent, in part, the drug’s 
cancer prevention mechanism of action.

Nucleotide sugars act as glycosyl donors. Glycosylation 
of cell surface proteins mediates numerous aspects of cell 
behavior, including cell–cell communication, adhesion, and 
migration [53]. Glycosylation of intracellular proteins medi-
ates signal transduction and gene regulation [54, 55]. We 
showed CEE treatment increased UDP-glucuronate metab-
olism in OVX NHP, suggesting estrogen may be related 
to breast cancer by mediating aberrant nucleotide sugar 
metabolism. UDP-N-acetylglucosamine (UDP-GlcNAc), 
which was decreased in OVX NHP but elevated with CEE 
treatment, has been correlated with breast cancer. UDP-
GlcNAc, produced by fructose-6-phosphate, is a precursor 
in hyaluronan production. Hyaluronan is involved in inflam-
mation [56], invasion, metastasis [57], and epithelial to mes-
enchymal transition (EMT; [58]). Hyaluronan is elevated 
in numerous tumor types, including breast tumors, and is 
associated with poor patient survival [57, 59].

Endogenous estrogens control energy homeostasis by reg-
ulating appetite, adiposity, and increasing energy expendi-
ture [60–62]. Consistently, significant increases in TCA 
metabolites were noted in the ovary-intact compared to the 
OVX group, supporting increased energy expenditure due 
to endogenous estrogen. Exogenous estrogens may promote 
energy homeostasis by influencing energy expenditure. As 
with the ovary-intact group, CEE showed increased TCA 
metabolites, suggesting exogenous estrogens exert effects 
similar to endogenous estrogens on energy expenditure. 
Specifically, isocitrate was elevated above ovary-intact 
levels with CEE treatment, suggesting exogenous estro-
gens may enhance TCA metabolites past endogenous E2 
regulation. However, limited changes in energy metabolism 
were observed in the TAM-treated NHP compared to the 
untreated OVX NHP, suggesting estrogen receptor blockade 
does not mediate further changes in TCA metabolism in nor-
mal breast tissue with low estrogen bioavailability. Overall, 
the changes in the mammary tissue’s energy metabolism are 
due to estrogen-induced changes.

Increases in acylcarnitine species in the ovary-intact 
group suggest lipid oversupply and upregulated fatty acid 
oxidation [63], as estrogen increases fatty acid utilization 
and oxidation [64, 65]. Increases in the ketone 3-hydroxy-
butyrate (BHBA), the metabolic fuel in oxidative phospho-
rylation, suggests changes in fatty acid mobilization and 
β-oxidation in the ovary-intact group [66]. Furthermore, 
increases in phospholipids suggest membrane remodeling 
and/or repair of damaged tissue membranes, consistent with 
the protective effects of estrogen on cellular structures [38]. 
TAM treatment in the NHP decreased both fatty acid metab-
olites and cholesterol metabolites, consistent with its actions 
as an estrogenic agonist on lipid metabolism.

Estrogen affects bile acid (BA) synthesis by influenc-
ing both enzymatic activity and BA pool composition. For 
example, transfection of human embryonic kidney (HEK) 
293 cells with ERα and ERβ with estrogen treatment upregu-
lates expression of CYP7B1, an enzyme that hydroxylates 
cholesterol into the bile acid chenodeoxycholic acid [24]. 
Treatment of rats with ethynylestradiol, a common estro-
genic component of oral contraceptives, increased the rela-
tive amount of bile acids [67]. However, while CEE elevated 
bile acid levels above ovariectomized levels, these levels 
were significantly lower than ovary-intact levels. Suggest-
ing endogenous and exogenous estrogens differentially effect 
bile acid synthesis.

Chronic inflammation is associated with breast cancer 
[68]. Elevated reactive oxygen species (ROS) contribute 
to inflammation and promote tumor development and pro-
gression by causing DNA damage, increasing the muta-
tion rate within cells, promoting oncogenic activity [69]. 
In cancer cells, increased metabolic activity, mitochondrial 
dysfunction, and oncogene activity all result in high levels 
of ROS [69–72]. Prostaglandin F2 α (PGF2α), an important 
inflammatory molecule, is elevated in women with breast 
cancer compared to healthy controls. However, high PGF2α 
in tumors is associated with good prognosis compared to 
tumors with low levels of PGF2α [73]. Estrogen increases 
the production of PGF2α, consistent with increases observed 
in the CEE group, suggesting treatment with CEE may con-
fer a better tumor prognosis [74].

Reduced glutathione (GSH), which scavenges reactive 
oxygen species, was elevated in the CEE-treated group [75]. 
The ratio of reduced glutathione to oxidized glutathione 
(GSSG) was also increased in the CEE-treated group. This 
ratio serves as a measure of oxidative damage, with a high 
ratio of GSH to GSSG associated with reduced oxidative 
damage as GSSG is associated with injury and oxidative 
stress [46]. A reduction in ROS production and inhibition of 
inflammation may prevent breast carcinogenesis [45].

Estrogen promotes breast epithelium proliferation. Breast 
proliferation and gland epithelium percentage in the NHP 
was assessed by Cline, Soderqvist et  al. 1998. Results 
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indicated a small, but significant increase in epithelium con-
tent in OVX + CEE-treated NHP compared with OVX NHP. 
There was no significant difference in epithelium content in 
breast tissue samples between OVX + TAM and OVX NHP. 
Therefore, while the alterations in metabolites measured 
between comparisons are most likely not due to variations 
in epithelial cell content in breast tissue, it should be noted 
as a potential limitation to the study [44].

Overall, the results of this study suggest that estrogen bio-
availability is associated with estrogen-dependent changes 
in the mammary tissue metabolome, particularly in glucose 
and fatty acid metabolism. Changes in these pathways pro-
vide a link between estrogen action and energy homeostasis. 
Further study is needed to determine how metabolic changes 
associated with estrogen availability affect health and dis-
ease states, particularly breast cancer, in premenopausal and 
postmenopausal individuals. Further studies on the actions 
of different hormone replacement therapies, such as aro-
matase inhibitors, on metabolites is needed.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10549- 021- 06354-w.
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