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Abstract
Purpose The combination of targeting the CDK4/6 and estrogen receptor (ER) signaling pathways with palbociclib and 
fulvestrant is a proven therapeutic strategy for the treatment of ER-positive breast cancer. However, the poor physicochemical 
properties of fulvestrant require monthly intramuscular injections to patients, which limit the pharmacokinetic and phar-
macodynamic activity of the compound. Therefore, an orally available compound that more rapidly reaches steady state 
may lead to a better clinical response in patients. Here, we report the identification of G1T48, a novel orally bioavailable, 
non-steroidal small molecule antagonist of ER.
Methods The pharmacological effects and the antineoplastic mechanism of action of G1T48 on tumors was evaluated using 
human breast cancer cells (in vitro) and xenograft efficacy models (in vivo).
Results G1T48 is a potent and efficacious inhibitor of estrogen-mediated transcription and proliferation in ER-positive breast 
cancer cells, similar to the pure antiestrogen fulvestrant. In addition, G1T48 can effectively suppress ER activity in multiple 
models of endocrine therapy resistance including those harboring ER mutations and growth factor activation. In vivo, G1T48 
has robust antitumor activity in a model of estrogen-dependent breast cancer (MCF7) and significantly inhibited the growth 
of tamoxifen-resistant (TamR), long-term estrogen-deprived (LTED) and patient-derived xenograft tumors with an increased 
response being observed with the combination of G1T48 and the CDK4/6 inhibitor lerociclib.
Conclusions These data show that G1T48 has the potential to be an efficacious oral antineoplastic agent in ER-positive 
breast cancer.

Keywords G1T48 · Selective estrogen receptor degrader · Endocrine-resistant breast cancer · CDK4/6 inhibitor · 
Combination therapies

Introduction

The estrogen receptor (ER/ESR1) is expressed in a majority 
of breast cancers, and drugs that inhibit ER signaling are the 
cornerstone of breast cancer pharmacotherapy for ER-posi-
tive/HER2-negative disease [1]. These targeted approaches 
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include the Selective Estrogen Receptor Modulator (SERM) 
tamoxifen that acts as a competitive ER antagonist in the 
breast, and aromatase inhibitors (AIs) that inhibit aromatase, 
the enzyme responsible for estrogen production [2, 3]. How-
ever, the development of resistance limits the duration of 
meaningful therapeutic responses. Mechanisms of resistance 
to these endocrine therapies include cell cycle dysregula-
tion and activation of alternative growth factor signaling 
pathways [1]. For example, activation of MAPK, PI3K, and 
GSK-3 can result in increased phosphorylation of ER or its 
attendant coregulatory proteins leading to ligand-independ-
ent ER activity and resistance [4–7]. Recently, genomic 
alterations in the ER gene itself, including amplification, 
translocation, and ligand binding domain mutations (most 
frequently ER-D538G and ER-Y537S) have emerged with 
AI therapy [1, 8–10].

After progression during tamoxifen and AI therapy, other 
endocrine treatments including the steroidal selective estro-
gen receptor downregulator (SERD) fulvestrant  (Faslodex®) 
are generally used [11]. SERDs are a class of ER antagonists 
that in addition to competitively displacing estrogens, also 
trigger ER downregulation [12]. Although initially success-
ful, the onset of resistance limits durable responses when 
used as a monotherapy. Therefore, in an effort to improve 
the therapeutic lifespan of endocrine treatments for meta-
static breast cancer, combination regimens have been exten-
sively studied. Clinical trials using a combination of AI or 
fulvestrant with pan-PI3K or mTOR inhibitors have been 
promising but inconclusive, and toxicity often remains an 
impediment to dose escalation [13–16]. Therefore, CDK4/6 
inhibitors have emerged as a favored option when consid-
ering combination endocrine therapies [17–20]. However, 
the poor bioavailability of fulvestrant, coupled with its 
intramuscular route of administration and the long time to 
steady state blood levels, compromises its clinical use [21, 
22]. Indeed, even at the higher clinical dose (500 mg) of 
fulvestrant, pharmacodynamic imaging suggests incomplete 
receptor saturation [23].

Collectively, these data highlight an unmet need for a 
safe, orally bioavailable SERD with appropriate pharma-
ceutical properties. Herein we describe the preclinical 
development of G1T48 (rintodestrant), an orally bioavail-
able, potent, and selective non-steroidal ER antagonist and 
downregulator [24]. G1T48 was found to robustly inhibit 
ER activity in multiple in vitro models of endocrine ther-
apy resistance, including those harboring ER mutations or 
growth factor activation. Importantly, G1T48 demonstrated 
robust antitumor activity in an animal model of early stage 
estrogen-dependent breast cancer and suppressed the growth 
of tamoxifen- and estrogen deprivation-resistant xenograft 
tumors with increased efficacy observed for the combina-
tion of G1T48 and lerociclib, a newly developed CDK4/6 
inhibitor [25, 26].

Methods

Reagents

Fulvestrant (CAS No: 129453–61-8, > 99% purity) 
was purchased from MedChem Express. Estradiol (E2) 
(E8875), lasofoxifene (SML1026), 4-hydroxytamoxifen 
(H7904), and tamoxifen (T5648) were purchased from 
Sigma. Raloxifene (2280) was purchased from Tocris. 
GDC-0810 (S7855), bazedoxifene (S2128), and AZD9496 
(S8372) were purchased from Selleckchem. GW5638 
(5638), GW7604 (7604), and RU 58,668 (RU) were pro-
vided by Donald McDonnell (Duke University). G1T48 
was provided by G1 Therapeutics, Inc., as analytical grade 
compound.

RNA analysis

MCF7 cells were authenticated by short tandem repeat pro-
filing, were tested for Mycoplasma and were not cultured 
for more than three months at a time [27]. MCF7 cells 
were plated in DMEM/F12 supplemented with 8% charcoal 
dextran treated FBS for 48 h. Cells were then treated for 
24 h with ligand and RNA was isolated using the Aurum™ 
total RNA isolation kit (Bio-Rad, Hercules, CA). After 
cDNA synthesis (iScript kit, Bio-Rad) real-time PCR was 
performed using the Bio-Rad CFX384 real-time system. 
GAPDH mRNA expression was used to normalize all real-
time data using the 2-ΔΔCT method [28]. For more detailed 
description of this method, please see Online Resource 1.

Proliferation

MCF7 cells were plated in DMEM/F12 supplemented with 
8% charcoal dextran treated FBS in 96-well plates (5 K cells/
well) for 48 h. Cells were treated with estradiol (0.1 nM) 
or insulin (20 μM) with or without test compound (dose 
response; 1.0–11 to 1.0–05 M) for 6 days. Plates were decanted 
and frozen at – 80°°C overnight prior to quantitation of DNA 
by fluorescence using Hoechst 33258.

Supplementary material

Detailed methods are available in Online Resource 1 for the 
following protocols: In-Cell Western, Radioactive Binding 
Assay, Chromatin Immunoprecipitation, Transcriptional 
Reporter Assays.
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Murine studies

All procedures were approved by the Institutional Animal 
Care and Use Committee (IACUC) of Duke University or 
South Texas Accelerated Research Therapeutics (START, 
San Antonio, Texas) prior to initiating the experiment. For 
complete details, see Online Resource 1.

Results

G1T48 is similar to fulvestrant in its ability 
to downregulate the estrogen receptor and inhibit 
estrogen signaling in breast cancer cells

Novel ER antagonists with SERD activity have recently 
been described, but clinical development of these com-
pounds has thus far been limited due to unanticipated side 
effects or for undisclosed reasons [29–36]. We sought to 
identify an orally bioavailable SERD using the chemical 
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Fig. 1  G1T48 is a potent selective estrogen receptor downregu-
lator (SERD). a Chemical structures of G1T48 and benchmark 
SERMs and SERDs. b G1T48 downregulates the estrogen recep-
tor in breast cancer cells. MCF7 cells were treated with ER ligands 

 (10–12–10–6 M) for 18 h prior to fixation and detection of ER levels 
by In-Cell Western. *For tamoxifen and GW5638, dose response was 
 10–11–10–5 M. Error bars indicate the SD of triplicate samples
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backbone of raloxifene as a starting point, since this SERM 
has demonstrated a favorable safety profile in the clinical 
setting of breast cancer prevention and osteoporosis treat-
ment [37, 38]. G1T48 incorporates an acrylic acid side 
chain (Fig. 1a) [29, 31, 32, 34, 39, 40], and was the prod-
uct of structure-guided investigations, driven by activity 
in breast cancer cell lines [24]. G1T48 was first assessed 

for its ability to downregulate ER when compared to sev-
eral benchmark SERMs and SERDs including fulvestrant 
[12, 41]. Using In-Cell Western assays, G1T48 was found 
to downregulate ER with an efficacy modestly more potent 
than steroidal and other SERDs (e.g., fulvestrant, AZD9496; 
approximately 10% ER remaining after treatment) (Fig. 1b, 
online resource 2). Bazedoxifene (BZA), raloxifene (RAL), 
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Fig. 2  G1T48 is a complete estrogen receptor antagonist. a G1T48 
inhibits ER target gene expression in breast cancer cells. MCF7 cells 
were treated with ER antagonists  (10–10–10–7 M) plus estradiol (E2; 
 10–9 M) for 18 h. TFF1 mRNA expression was analyzed by real-time 
PCR. GAPDH was used to normalize real-time PCR data. b G1T48 
competes for estrogen binding to ER. MCF7 cells were treated with 
 10–10  M 3H-17β-E2 and competitor ligand  (10–12–10–6  M) for 2  h. 
Cells were collected and radioactive counts were monitored on a 
Beckman LS 6000SC Scintillation counter. Error bars indicate the SD 
of duplicate samples. c G1T48 regulates ER target gene pharmacol-
ogy similar to other SERDs. MCF7 breast cancer cells were treated 
with ER ligands (E2, fulvestrant, RU, RAL @ 100 nM; G1T48, 810, 

9496, Laso, 4OHT, 7604, BZA @ 1.0 μM; 5638, Tam @ 10 μM) for 
24  h. mRNA expression was analyzed by real-time PCR. GAPDH 
was used to normalize real-time PCR data. Heatmaps were generated 
from real-time PCR data after analysis with JMP pro software (SAS) 
using the Ward hierarchical clustering algorithm. d G1T48 blocks 
estrogen-dependent recruitment of ER to the TFF1 promoter. MCF7 
cells were treated with ligand (E2: 5  ×  10−10  M; ER antagonists: 
 10–6 M) as indicated for 45 min. Cells were fixed with formaldehyde 
and chromatin was immunoprecipitated with anti-ER antibody. Real-
time PCR was used to assess the relative amount of ER bound to the 
TFF1 gene promoter. Error bars indicate the SD of triplicate samples
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tamoxifen, 4-hydroxytamoxifen (4OHT), and lasofoxifene 
(laso) were also found to partially downregulate ER. These 
data demonstrate that in vitro G1T48 is a pure antiestrogen 
and selective estrogen receptor degrader (PA-SERD).

We next evaluated the ability of G1T48 to inhibit endog-
enous ER target gene transcription in MCF7 cells. As shown 
in Fig. 2a, G1T48 suppressed estrogen-mediated activation 
of the Trefoil Factor-1 (TFF1) mRNA similarly to ful-
vestrant and additional antiestrogens (4OHT, GDC-0810, 
AZD9496, RAL). The biochemical basis of G1T48-medi-
ated ER antagonism was further evaluated using 3H-estradiol 
whole-cell competition assay. Results showed that G1T48 
displaced radiolabeled agonist binding with potency greater 
than fulvestrant and similar to BZA (Fig. 2b). Radioligand 
binding assay (RBA)  IC50 shows that G1T48 is a competitive 
ER antagonist (Online Resource 3).

The inability of some ER antagonists, notably SERMs, to 
completely oppose the actions of estradiol is seen as a liabil-
ity when being considered for the treatment of advanced 
therapy-resistant breast cancer. While data from Fig. 1b 
confirm G1T48 is a SERD, the potential remains for SERM 
activity, as G1T48 was developed based on compounds that 
exhibit both SERM and SERD activity. Therefore, we next 
considered the impact of G1T48 treatment on ER target 
genes that are differentially regulated by SERMs and SERDs 
[42]. As shown in Fig. 2c, compounds with SERM activ-
ity regulate these genes in a manner similar to the agonist 
estradiol, a reflection of their intrinsic agonist potential (red, 
green, and blue clusters). In contrast, G1T48 regulates these 
genes in a pattern that is consistent with compounds previ-
ously shown to downregulate ER (e.g., GW7604, fulvestrant, 
GW5638, RU 565899, GDC-0810, and AZD9496; orange, 
teal and purple clusters).

When bound by estrogen, ER is recruited to target gene 
promoters to activate or repress target gene transcription 
through recruitment of coregulator (coactivator or core-
pressor) proteins that modify chromatin structure [43]. We 
assessed the ability of G1T48 and benchmark SERMs or 
SERDs to inhibit estrogen-mediated recruitment of ER to 
the TFF1 promoter using chromatin immunoprecipitation 
(ChIP) assays. While estrogen and 4OHT treatment signifi-
cantly increased ER binding to the TFF1 promoter (Fig. 2d), 
G1T48 inhibited the binding of ER to this promoter, with or 
without estrogen, with efficacy similar to fulvestrant, sup-
porting the idea that G1T48 is an efficient ER antagonist 
in vitro.

We next evaluated the ER selectivity of G1T48 by assess-
ing its ability to inhibit the transcriptional activity of related 
steroid hormone receptors androgen receptor (AR), proges-
terone receptor (PR), glucocorticoid receptor (GR), and 
mineralocorticoid receptor (MR) using a cell-based reporter 
assay. When administered at doses up to 10 µM, G1T48 did 
not affect the transcriptional activities of AR, GR, MR, or 

PR (Online Resource 4), indicating that G1T48 is a highly 
selective antagonist of ER.

G1T48 inhibits the growth of ER‑positive breast 
cancer cells

To examine the therapeutic potential of G1T48, we per-
formed cell proliferation assays using multiple ER-positive 
breast cancer cell lines (Fig. 3). G1T48 significantly inhib-
ited estrogen-mediated growth of MCF7 cells demonstrat-
ing approximately threefold higher potency when compared 
to fulvestrant (Fig. 3a, Online Resource 5). Additionally, 
G1T48 and benchmark antiestrogens also inhibited the estro-
gen-mediated growth of ER-positive BT474 and ZR-75-1 
breast cancer cells, while no growth inhibition was observed 
in ER-negative MDA-MB-436 breast cancer cells (Fig. 3, 
Online Resource 5). Furthermore, G1T48 does not impact 
apoptosis in MCF7 breast cancer cells (Online Resource 6). 
Thus, G1T48 selectively inhibits the growth of ER-positive, 
but not ER-negative, breast cancer cells.

G1T48 inhibits estrogen signaling 
in endocrine‑resistant breast cancer models

In addition to the upregulation of growth factor signaling, a 
second key mechanism of resistance to aromatase inhibition 
is newly described mutations in the ligand binding domain 
of ER [8, 9], mutations that result in reduced potency for 
4OHT and fulvestrant as compared to wild-type (wt) recep-
tor [44–50]. To assess the activity of G1T48 on endocrine 
refractory ER mutants, we utilized a reporter gene assay 
in ER-negative SKBR3 breast cancer cells transfected with 
ER expression vectors (wtER or the two most common ER 
mutants, ER-Y537S or ER-D538G) (Fig. 4a). G1T48 was 
found to be a potent and effective inhibitor of both wtER and 
ER-D538G transcription. As has been previously reported 
[49], all antiestrogens tested, including G1T48, demon-
strated reduced potency against ER mutant transcriptional 
activity when compared to wtER (Online Resource 7). To 
further understand the significance of these results, MCF7 
cells expressing doxycycline inducible wtER, ER-D538G, or 
ER-Y537S were engineered and G1T48 was evaluated for its 
ability to inhibit the ER-dependent growth of these cells. As 
has been previously reported for 4OHT and fulvestrant (and 
also confirmed here), G1T48 exhibited an increased  GI50 in 
cells expressing the ER-Y537S and ER-D538G mutations 
when compared to wtER (Fig. 4b, Online Resource 7) [44, 
45, 47–51]. Collectively, these data highlights that G1T48, 
like other SERDs, may be useful at targeting some mutant 
receptors, a potential that can be further evaluated clinically.

Dysregulated growth factor signaling has emerged as a 
primary mechanism of resistance to tamoxifen and AI ther-
apy [10]. Activation of these signaling pathways can alter 
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the pharmacology of compounds like tamoxifen, converting 
them from antagonists to agonists through phosphorylation 
of ER or its attendant coregulator proteins [4–7]. G1T48 
and comparator SERMs and SERDs were evaluated for their 
ability to inhibit insulin-mediated MCF7 cell proliferation, 
a model for endocrine therapy resistance. Compounds with 
SERD activity, including G1T48, effectively blocked growth 
factor-mediated cell growth, while compounds with SERM 
activity (e.g., 4OHT) were less effective (Fig. 4c). These 
data together support the potential for G1T48 to have effi-
cacy in the treatment of AI or tamoxifen-resistant breast 
cancers having growth factor pathway activation.

Evaluation of the in vivo therapeutic efficacy 
of the SERD G1T48 and the CDK4/6 inhibitor 
lerociclib using estrogen‑dependent 
and tamoxifen‑resistant (TamR) breast cancer 
xenograft models

We next evaluated the therapeutic potential of G1T48 in 
ER-positive primary and endocrine refractory breast cancer 
models in vivo. G1T48 was first assessed, as a monotherapy 

or in combination with the CDK4/6 inhibitor lerociclib, for 
its impact on the growth of naïve MCF7 xenograft tumors 
(Fig. 5a). Ovariectomized estrogen-treated female nu/nu 
mice bearing MCF7 xenograft tumors were randomized 
to treatment with vehicle, lerociclib (50 mg/kg), and/or 
G1T48 (30 or 100 mg/kg). G1T48 treatment demonstrated 
dose-dependent repression of tumor growth. Combination 
of lerociclib and G1T48 was more effective than either 
monotherapy, demonstrating an added benefit to using these 
agents together. End of study tumor volumes are presented 
in Online Resource 8.

The TamR xenograft model exhibits tamoxifen-stim-
ulated growth that can be inhibited by compounds with 
SERD activity with added benefit observed upon combina-
tion with CDK4/6 inhibitors [52]. Therefore, ovariectomized 
tamoxifen-treated mice bearing TamR xenografts were ran-
domized to treatment with lerociclib (50 mg/kg or 100 mg/
kg), G1T48 (30 mg/kg or 100 mg/kg), fulvestrant (200 mg/
kg), or CDK4/6 inhibitor palbociclib (100 mg/kg) as mon-
otherapies or a combination of lerociclib (50 mg/kg) and 
G1T48 (30 or 100 mg/kg). In this model system, lerociclib 
demonstrated efficacy equivalent to that of the mechanistic 
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Fig. 3  G1T48 inhibits ER-positive breast cancer cell growth. a ER-
positive MCF7, b ER-positive BT474 , c ER-positive ZR-75–1 were 
treated for 7  days with  10–10  M E2 in addition to ER antagonists 
 (10–11–10–5 M). d ER-negative MDA-MB-231 cells were treated for 

7 days with ER antagonists  (10–11–10–5 M). Cellular proliferation was 
assessed by measuring DNA content (Hoechst stain) and is presented 
as fold induction over vehicle control. Error bars indicate the SD of 
triplicate samples



641Breast Cancer Research and Treatment (2020) 180:635–646 

1 3

clinical comparator palbociclib (Fig. 5b). G1T48 was found 
to demonstrate dose-dependent inhibition of TamR tumor 
growth (Fig. 5c) albeit with less efficacy than fulvestrant. 
Interestingly, G1T48 treatment resulted in greater downregu-
lation of intratumoral ER levels than fulvestrant despite less 
efficient inhibition of tumor growth (Online Resource 8). 
Finally, combination of G1T48 with lerociclib, using sub-
optimal doses of each inhibitor, resulted in tumor growth 
inhibition significantly greater than that observed for either 
compound as monotherapy (Fig. 5d). End of study tumor 
volumes are presented in Online Resource 10. Mouse body 
weight was largely unaffected by the treatment regimens in 
this study as presented in Online Resource 11.

Evaluation of the combined efficacy of lerociclib 
and G1T48 in a xenograft tumor model of resistance 
to estrogen deprivation in vivo

Although AIs have seen rapid adoption in the adjuvant 
setting, de novo and acquired resistance remains a persis-
tent impediment to sustained clinical responses. We have 
developed an ER-positive model of aromatase resistance, 
termed long-term estrogen-deprived (LTED), to model this 
clinical situation [53]. In order to evaluate the combined 
efficacy of lerociclib and G1T48 in this model system, 
LTED xenograft tumors were orthotopically established in 

ovariectomized female nu/nu mice. When tumors measured 
0.1–0.15  cm3 volume, G1T48 (5 mg/kg or 100 mg/kg) and 
lerociclib (50 mg/kg or 100 mg/kg) were administered alone 
and in combination, with fulvestrant (25 mg/kg) and pal-
bociclib (100 mg/kg) included for comparison. As previ-
ously observed with the MCF7 parental and TamR models, 
G1T48 demonstrated dose-dependent inhibition of tumor 
growth (Fig. 6a). Additionally, the tumor growth inhibition 
after treatment with G1T48 and lerociclib was comparable 
to their clinical comparators (fulvestrant and palbociclib, 
respectively) (Fig. 6b). Combination of G1T48 with lero-
ciclib suppressed tumor growth significantly compared to 
monotherapy (Fig. 6c) and resulted in tumor regression for 
a majority of tumors receiving the combined therapy regi-
men. End of study tumor volumes are presented in Online 
Resource 12.

Evaluation of the combined efficacy of lerociclib 
and G1T48 in a patient‑derived xenograft model 
harboring the ER‑Y537S Mutation

As described above, mutations in the LBD of ESR1 are an 
emerging mechanism of resistance to AIs. The efficacy of 
G1T48, as a mono- and combination therapy with lero-
ciclib, was evaluated using a Patient-Derived Xenograft 
(PDX model) harboring the ER-Y537S mutation (Fig. 7a). 
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Fig. 4  G1T48 inhibits ER signaling in models of endocrine therapy 
resistance in vitro a SKBR3 breast cancer cells were transfected with 
an estrogen-responsive reporter gene together with ER (wtER, ER-
Y537S, or ER- D538G) expression plasmids prior to 18  h of treat-
ment with 17β-estradiol (1.0 nM) and ER antagonists  (10–11–10–5 M). 
Firefly and renilla luciferase activity were then assessed using dual 
luciferase reagent. Error bars indicate the SD of triplicate samples. 
b G1T48 inhibits cell growth mediated by endocrine refractory ER 
mutants. MCF7 cells expressing ER variants ER-D538G and ER-
Y537S were treated for 7 days with doxycycline plus increasing dose 

of antiestrogens  (10–12–10–5  M). Cellular proliferation was assessed 
by measuring DNA content (Hoechst stain) and is presented as rela-
tive fluorescence units. Error bars indicate the SD of triplicate sam-
ples. c G1T48 inhibits growth factor-mediated breast cancer cell 
growth. MCF7 cells were treated for 7 days with insulin (20 nM) plus 
increasing dose of anti-estrogens  (10–12–10–7  M). Cellular prolifera-
tion was assessed by measuring DNA content (Hoechst stain) and is 
presented as relative fluorescence units. Error bars indicate the SD of 
triplicate samples
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Fig. 5  Combination strategy of G1T48 and the CDK4/6 inhibi-
tor lerociclib inhibit estrogen-dependent  and tamoxifen-resistant 
(TamR) breast cancer xenograft models  in vivo  a Ovariectomized 
estrogen-treated female nu/nu mice bearing MCF7 xenograft tumors 
were randomized to treatment with vehicle, lerociclib (50 mg/kg) or 
G1T48 (30 or 100 mg/kg), alone or together, p.o. daily for 28 days. 
2-way ANOVA comparison of average tumor volumes throughout 
treatment, followed by Bonferroni multiple comparison test, indi-
cated significant tumor growth inhibition by all treatments, as well 
as increased response to the combination of G1T48 (30 mg/kg) and 
lerociclib  (50  mg/kg). Error bars represent SEM. b–d Ovariecto-

mized tamoxifen-treated female nu/nu mice bearing TamR xenograft 
were randomized to treatment with vehicle, palbociclib (100 mg/kg), 
lerociclib (50 or 100 mg/kg) (b), fulvestrant (200 mg/kg), or G1T48 
(30 or 100 mg/kg) (c), with lerociclib and G1T48 being tested alone 
and in combination (d), p.o. daily for 28 days. 2-way ANOVA com-
parison of average tumor volumes throughout treatment, followed 
by Bonferroni multiple comparison test, indicated significant tumor 
growth inhibition by all treatments, as well as increased response to 
the combination of G1T48 (30 mg/kg) and lerociclib. Error bars rep-
resent SEM
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Fig. 6  Combination strategy of G1T48 and the CDK4/6 inhibitor 
lerociclib in vivo in an estrogen-deprived xenograft model. Ovariec-
tomized vehicle-treated female nu/nu mice bearing LTED xenograft 
were randomized to treatment with vehicle, lerociclib (50 or 100 mg/
kg) or palbociclib (100 mg/kg) (a) or G1T48 (5 or 100 mg/kg) or ful-
vestrant (25 mg/kg) (b), alone or together (c), p.o. daily for 28 days. 

2-way ANOVA comparison of average tumor volumes throughout 
treatment, followed by Bonferroni multiple comparison test, indi-
cated significant tumor growth inhibition by all treatments, as well as 
increased response to the combination of G1T48 (30 mg/kg) and lero-
ciclib. Error bars represent SEM
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Female athymic nu/nu mice were implanted with the 
ST2177 LUMB PDX tumor [33] and following treatment 
with G1T48, a dose-dependent decrease in tumor growth 
was observed. Intriguingly, G1T48 alone (30 and 100 mg/

kg) or in combination with lerociclib was more effica-
cious than fulvestrant (Fig. 7a). Survival curve analysis 
demonstrated that the combination of 30 mg/kg G1T48 
with lerociclib was more effective than monotherapy 
using either drug alone (Fig. 7b, c). Taken together these 
data highlight that G1T48 is either comparable or supe-
rior to fulvestrant in several models of endocrine therapy 
resistance, demonstrating its potential as a therapeutic 
agent.

Discussion

Targeting ER activity using therapies that directly oppose 
the mitogenic action of estrogen or that block estrogen 
synthesis is a proven strategy for the treatment and pre-
vention of breast cancer. In locally advanced or metastatic 
disease, resistance to these therapies frequently emerges 
within two years, at which time treatment options are 
severely limited. Fulvestrant, a potent ER antagonist and 
downregulator, was initially approved for the treatment of 
endocrine therapy-resistant disease and more recently as 
first-line therapy for advanced ER-positive, HER2-nega-
tive breast cancer not previously treated with endocrine 
therapy. However, despite promising preclinical activ-
ity, the poorly controlled pharmacokinetics of fulvestrant 
remains a significant barrier to prolonged clinical efficacy. 
Clinical trials comparing high-dose (500 mg) to low-dose 
(250 mg) fulvestrant demonstrated superiority for the 
500 mg dose in both first- and second-line settings, sug-
gesting that increased target engagement can improve the 
outcome of ER degradation therapy [54, 55]. However, 
given its intramuscular route of administration, continued 
improvements in the clinical response to fulvestrant by 
further dose escalation appear unlikely. Therefore, devel-
opment campaigns in this area have focused on the iden-
tification of orally bioavailable SERDs. The most active 
SERDs share common chemical features: either (a) a ste-
roidal backbone (e.g., fulvestrant, RU58,668) or (b) an 
acrylic acid side chain (GW7604, GDC-0810, AZD9496) 
[29, 31, 32, 40, 56, 57]. Additional ER antagonists with 
novel chemical structures have also been reported to 
exhibit SERD properties [35, 36, 58], but none has yet 
gained FDA approval and some have been discontinued 
due to adverse effects or for undisclosed reasons [29–36, 
40, 56]. We have identified a novel, orally bioavailable 
SERD, G1T48, that contains both a steroidal backbone 
and an acrylate side chain. G1T48 binds ER with low 
nanomolar affinity, inhibits estrogen-mediated target gene 
expression and breast cancer cell growth, and importantly 
blocks the tumor promoting effects of ER in both naïve 
and endocrine therapy-resistant animal models of breast 
cancer. Similar to AZD9496 and GDC-0810, G1T48 has 
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Fig. 7  Evaluation of the combined efficacy of lerociclib and G1T48 
in a Patient-Derived Xenograft Model harboring the ER-Y537S 
Mutation. a Female nu/nu mice were engrafted with a START 
Patient-Derived Xenograft Model (START-PDX) model, designated 
ST2177, harboring an ER-Y537S mutation. Mice were randomized 
to vehicle, fulvestrant (5  mg/animal), G1T48 (30 or 100  mg/kg), 
lerociclib (50  mg/kg), or the combination of G1T48 and lerociclib 
and treated for 60  days. b, c Kaplan–Meier analysis is presented as 
time for tumors to reach endpoint (2.5 times original tumor volume). 
*Kaplan–Meier analysis followed by a Mantel–Cox test for signifi-
cance demonstrated significantly greater tumor growth delay for these 
comparisons using an adjusted Bonferroni threshold of p < 0.012. 
Error bars represent SEM
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good pharmacokinetic properties and maintains a more 
favorable side-effect profile compared to those reported 
for AZD9496 [56, 59, 60].

A hallmark feature of fulvestrant differentiating it 
from compounds like tamoxifen is that fulvestrant is a 
true antagonist with no agonist activity regardless of tis-
sue context. By contrast, tamoxifen is a Selective Estro-
gen Receptor Modulator (SERM), demonstrating robust 
antagonist activity in the breast, but mimicking the ago-
nist effect of estrogen in bone, the endometrium, and 
serum lipid profiles [61, 62]. This mechanistic difference 
between tamoxifen and fulvestrant can also be observed 
in breast cancer cells, where transcriptional profiling 
studies revealed that tamoxifen can regulate a subset of 
genes in a similar manner to estradiol. Our ER target gene 
regulation studies confirm the agonist activity of tamox-
ifen, with stimulation of SDK2, AGR2, and RAPGEL1 
expression similar to the effect of estrogen treatment [42]. 
Compounds with SERD activity such as fulvestrant and 
AZD9496 did not increase these transcripts, consistent 
with a lack of agonist potential (i.e., pure antagonism). 
The transcriptional profile in breast cancer cells of G1T48 
is most similar to fulvestrant and other SERDs. Interest-
ingly, our studies revealed that there were modest differ-
ences in the transcriptional profiles even among the pure 
antagonist class of compounds, suggesting that they might 
engender different receptor conformations. The impact of 
these differences in ER target gene activation remain to be 
explored but could suggest that cross-resistance between 
different classes of SERDs can be avoided. Recent studies 
have indicated that in addition to receptor degradation, 
ER mobility is differentially impacted by sub-classes of 
SERMs and SERDs, and that compounds impeding mobil-
ity are more efficacious antagonists [35]. The impact of 
G1T48 on ER mobility is not currently known; however, 
our studies establish that G1T48 has very low intrinsic ER 
agonist activity.

Acquired resistance to endocrine therapy is complex and 
multifactorial; however, mutations in the ESR1 gene that 
result in ligand-independent receptor activity have emerged 
as a potential mechanism to account for approximately 
30–40% of resistant disease following AI treatment [8, 
44–46, 48–51]. It is significant, therefore, that G1T48 was 
found to suppress both the ligand-independent cell growth 
and transcriptional activity attributed to the two most preva-
lent endocrine refractory ER mutants, ER-Y537S and ER-
D538G. Intriguingly, in contrast to the reconstituted trans-
activation assay in SKBR3, G1T48 was found to efficiently 
inhibit the growth of MCF7 cells engineered to overexpress 
the ER-Y537S variant. Cell context may contribute to this 
discrepancy; differential cofactor expression patterns in the 
two cell lines and/or the presence of endogenous wtER in 
MCF7 cells may influence G1T48 efficacy.

Long-term estrogen deprivation leading to a state of 
estrogen hypersensitivity is another means to model aro-
matase inhibitor therapy resistance. We have developed a 
new model of resistance to estrogen deprivation without ER 
mutation [53]. Using this model system, treatment with low-
dose G1T48 (5 mg) resulted in incomplete tumor growth 
inhibition, while high-dose G1T48 (100 mg) as monother-
apy resulted in tumor regression in the majority of animals, 
similar to fulvestrant, demonstrating the effectiveness of 
SERD therapy in this setting of resistant disease.

The combination of SERDs with CDK4/6 inhibitors has 
been evaluated clinically, most recently in the PALOMA-3 
trial comparing the co-administration of the CDK4/6 inhibi-
tor palbociclib  (Ibrance®) with fulvestrant to fulvestrant 
alone. The results of this study demonstrated an overall 
survival benefit (median survival 34.9 months compared 
to 28 months) and a significant progression free survival 
rate (9.5 months vs 4.6 months) for the combination arm 
[17, 20]. These noteworthy improvements led to the 2016 
FDA approval of palbociclib and fulvestrant combination 
therapy for ER-positive, HER-2- negative breast cancers 
progressing on other endocrine therapies. Further trials 
(MONALESSA-3 (NCT02422615) and MONARCH-2 
(NCT02107703) have also demonstrated the utility of 
administering other CDK4/6 inhibitors with fulvestrant to 
improve patient outcomes [17–20]. The increased efficacy 
observed for the combination of G1T48 and lerociclib, as 
compared to monotherapy administration, in multiple in vivo 
breast cancer models sensitive or refractory to endocrine 
therapy treatment supports the potential utility of this regi-
men as an intervention in multiple stages of breast cancer 
treatment. Furthermore, lerociclib has been shown to pro-
mote less myelosuppression than palbociclib [25, 26]. Col-
lectively, these data indicate that G1T48 has the potential 
to be an efficacious oral antineoplastic agent in ER+ breast 
cancer.
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