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Abstract
Background and purpose Multiparametric radiological imaging is vital for detection, characterization, and diagnosis of 
many different diseases. Radiomics provide quantitative metrics from radiological imaging that may infer potential biologi-
cal meaning of the underlying tissue. However, current methods are limited to regions of interest extracted from a single 
imaging parameter or modality, which limits the amount of information available within the data. This limitation can directly 
affect the integration and applicable scope of radiomics into different clinical settings, since single image radiomics are not 
capable of capturing the true underlying tissue characteristics in the multiparametric radiological imaging space. To that 
end, we developed a multiparametric imaging radiomic (mpRad) framework for extraction of first and second order radiomic 
features from multiparametric radiological datasets.
Methods We developed five different radiomic techniques that extract different aspects of the inter-voxel and inter-parametric 
relationships within the high-dimensional multiparametric magnetic resonance imaging breast datasets. Our patient cohort 
consisted of 138 breast patients, where, 97 patients had malignant lesions and 41 patients had benign lesions. Sensitivity, 
specificity, receiver operating characteristic (ROC) and areas under the curve (AUC) analysis were performed to assess 
diagnostic performance of the mpRad parameters. Statistical significance was set at p < 0.05.
Results The mpRad features successfully classified malignant from benign breast lesions with excellent sensitivity and 
specificity of 82.5% and 80.5%, respectively, with Area Under the receiver operating characteristic Curve (AUC) of 0.87 
(0.81–0.93). mpRad provided a 9–28% increase in AUC metrics over single radiomic parameters.
Conclusions We have introduced the mpRad framework that extends radiomic analysis from single images to multiparametric 
datasets for better characterization of the underlying tissue biology.

Keywords Breast cancer · Radiomics · Texture · Informatics · Machine learning · Magnetic resonance imaging · 
Multiparametric imaging · Diffusion · ADC · Entropy · Gray-level co-occurrence matrix (GLCM)

Background

Radiomics use texture features to define potential quanti-
tative metrics from radiological images [1–11].The texture 
features extracted are based on several properties inherent to 
image data, such as, gray-level distribution [12], inter-voxel 
relationships [13–17], and shape [18]. The goal of radiom-
ics is to provide a quantitative framework for a radiological 
biopsy of tissue, which could be correlated to the under-
lying tissue biology. Reviews of several studies that have 
employed radiomic analysis have produced encouraging 
results for characterization of different imaging modalities 
and pathologies in brain, breast, lung, and prostate [9, 19, 
20].
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However, current radiomic methods are based on extrac-
tion of textural features from a single imaging parameter, 
such as, computed tomography (CT),  T1- or  T2-weighted 
magnetic resonance imaging (MRI), or positron emission 
tomography (PET) and do not extract the textural features 
from multimodal or multiparametric radiological datasets 
consisting of multiple imaging sequences, for example, mul-
tiparametric MRI (mpMRI) such as, proton density (PD), 
 T2-weighted(T2),  T1-weighted(T1), diffusion-weighted 
(DWI) with apparent diffusion coefficient (ADC) of water 
mapping, and dynamic contrast enhanced (DCE). These 
MRI sequences produce different soft tissue contrast of the 
tissue, where each imaging sequence provides a specific rep-
resentation of the tissue based on the physics and gray levels 
in the image.

Prior work in radiomics has primarily focused on extract-
ing radiomic values or features from individual parameters 
and combining them for “multiparametric” (mp) charac-
terization of selected tissue types into a final model using 
advanced machine learning or dimensionality reduction 
techniques [8, 21–26]. Tiwari et al. used machine learn-
ing methods with a Support Vector Machine (SVM) in a 
set of 58 patients (43 for training and 15 validation) with 
both primary and metastatic brain lesions imaged with brain 
mpMRI consisting of anatomical imaging parameters of 
T1, T2, and Fluid-attenuated inversion recovery (FLAIR). 
Regions of interest (ROI) were drawn on lesions from the 
single parameter images to derive the radiomic features. 
The Area Under the ROC Curve (AUC) were evaluated, but 
the AUCs were very low for each of the anatomic radiomic 
MRI parameters ranging from 0.54 to 0.79 (T1-Post-Contrast 
and FLAIR, respectfully) [21]. Li et al. had similar results 
in a larger patient cohort of 193 cases using radiomic fea-
tures derived from anatomic imaging parameters of T1, T2, 
FLAIR, and T1-Post-Contrast [25]. All radiomic features 
were non-diagnostic with AUCs ranging from 0.61 to 0.71. 
However, when applying machine learning methods coupled 
with a random forest classifier to the radiomic feature set, 
the AUC improved to 0.88 [25]. Similarly, Liu et al. using 
single radiomic features from T2, DCE, and DWI in a large 
dataset of 584 patients with locally advanced breast cancer 
(LABC) used radiomics to predict treatment response from a 
combination of single radiomic features and a SVM method 
[26]. The application of the SVM resulted in a higher AUC 
of 0.79 by combining each radiomic signature from the 
mpMRI. However, they used a radiomics of multi-paramet-
ric magnetic resonance imaging model that combined sin-
gle radiomic features and reported an increase in the AUC 
to 0.86 [26]. The main drawback of these techniques is that 
they merely combine the textural information from single 
radiomic features and do not capture the true texture of the 
underlying tissue characteristics simultaneously. Multipara-
metric imaging methods are used to interrogate different soft 

tissue contrasts of the tissue for improved characterization 
of each tissue type. These different tissue contrasts provide a 
specific representation of each tissue type-based physiologi-
cal properties and physics within the tissue and the image. 
The integration of all imaging information from these differ-
ent radiological parameters provides a more complete view 
of the underlying biological tissue characteristics. Corre-
spondingly, texture analysis on the complete multiparamet-
ric datasets would provide information about the “true tex-
ture” of the tissue rather than from a single specific point of 
view or combination of the different views. This limitation 
of single parameter radiomics of being unable to capture 
true textural information have been explored in a limited 
fashion. For example, recent reports have shown the exten-
sion of conventional single image radiomics and the Gray-
level Co-occurrence Matrix (GLCM) into a joint intensity 
matrix (JIM) by capturing the joint textural information in 
two imaging parameters that are plotted simultaneously in 
joint distribution graph [22]. Chaddad et al. demonstrated 
that the JIM method outperformed conventional radiomic 
GLCM in Gleason histological score prediction (G1–G3) 
of prostate cancer from mpMRI consisting of T2-weighted 
images and ADC mapping. The JIM plus GCLM resulted 
in higher AUCs of Gleason score ranging from 0.78 (G1), 
0.82 (G2), and 0.65 (G3). However, the JIM is an exten-
sion of radiomics to only two imaging parameters, and may 
not be generalizable to several multiparametric imaging 
parameters, thereby limiting the method to only two types of 
radiological input of images. Other imaging modalities have 
used probabilistic methods to combine different features for 
better characterization of tissue types, Mojabi et al. used 
ultrasound (US) and microwave (MW) to create probability 
maps based on Bayesian methods on the quantitative images 
from US and MW from known breast phantoms [27]. The 
phantoms provided information about the tissue properties 
and they defined these maps as the composite tissue-type-
image (cTTI) for both single modality and combined modali-
ties from US and MW methods. To construct the TTIs, they 
needed at least two properties from the object of interest (OI) 
and the probability distribution functions (PDF) for the OI. 
All the tissue properties from the cTTI allowed for better 
discrimination of each tissue type [27].

Therefore, texture analysis on the complete multipara-
metric datasets would provide information about the “true 
texture” of the tissue rather than from a single specific 
point of view. To that end, we developed a multiparamet-
ric radiomics imaging framework (mpRad) for integrating 
and analyzing the information present in multiparametric 
and multimodal radiological data [28]. In this paper, we 
introduce five new techniques for analyzing the texture of 
multiparametric imaging datasets and evaluate and vali-
date these techniques on clinical breast mpMRI datasets.
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Materials and methods

Theory

The radiomic tissue signature model

We define a tissue signature (TS) that represents the com-
posite feature representation of a tissue type based each 
of the different imaging sequences and demonstrated in 
Fig. 2. Mathematically, for N different imaging parameters 
with TS at a voxel position, p, Sp is defined as a vector of 
gray-level intensity values at that voxel position, p across 
all the (N) images in the data sequence for different tissue 
types and is given by the following equation,

where, Ip is the intensity at voxel position, p on each image, 
and T corresponds to the transpose operation.

The tissue signature probability matrix features

The tissue signature probability matrix (TSPM) character-
izes the spatial distribution of tissue signatures within a 
ROI. The mathematical formulation of TSPM is defined 
as: Suppose that the intensity values representing each 
voxel are quantized to some G level, then the total number 
of possible tissue signatures in a dataset consisting of N 
images will be equal to GN . We define a function f:T → M, 
where T is the set of all tissue signatures in the dataset 
and M is a N-dimensional matrix with edges of length G 
where each tissue signature is represented as a cell. The 
function f populates each cell of the matrix M with the 
frequency of occurrence of the corresponding tissue sig-
nature in the set T. The resulting matrix M is called the 
tissue signature probability matrix (TSPM). The informa-
tion content of the N-dimensional multiparametric imag-
ing dataset (X1,X2,…XN) can be analyzed by computing 
the joint entropy, uniformity, and mutual information of 
the resultant TSPM [29]. These features are defined below.

1. The TSPM entropy, H is given by the following equa-
tion:

2. The TSPM uniformity, U is given by the following equa-
tion:
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[
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p
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of different imaging parameters.

3. The TSPM mutual information, MI is given by

B y  ch o o s i n g  d i f fe r e n t  p o s s i b l e  s u b s e t s 
Y ⊆

{
X1,X2,… ,XN

}
 and different values of H(Y), U(Y), 

and MI(Y) can be obtained producing a large number of 
mpRad features.

Tissue signature first order statistics features

The tissue signature first order statistics (TSFOS) features 
characterize the distribution of voxel intensities across all 
the imaging parameters. This is similar to a traditional 
first order histogram, except, the TSFOS histogram is 
computed from the voxel intensities across all the imag-
ing sequences, which can be very useful when analyzing 
multiparametric imaging sequences, such as DWI, DCE, 
and PWI in certain applications. Let the tissue signature 
histogram (TSH) represent a TSFOS histogram that is 
computed by dividing the voxel intensities in mpMRI into 
B equally spaced bins. The first order statistical features 
(e.g., entropy) can be computed from the TSH using the 
following equation:

where, (i) is for each image sequence.
The TSFOS histogram bins the intensities from all the 

imaging features together. As a result, the TSFOS histo-
gram is very effective for decoding tissue characteristics in 
imaging sequences that encode an intrinsic inter-paramet-
ric relationship, for example, DWI, DCE, and PWI. The 
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remaining TSFOS features, such as uniformity and energy, 
are derived in a similar method from the TSH.

Tissue signature co‑occurrence matrix features

The tissue signature co-occurrence matrix (TSCM) char-
acterizes the spatial relationship between tissue signatures 
within a ROI. The TSCM is defined similar to the gray-
level co-occurrence matrix (GLCM) by using two input 
parameters, distance (d), and angle ( � ) between two tis-
sue signature locations [14]. Mathematically, the GLCM 
between any two tissue signatures,  Si and  Sj is given by 
the following equation

where r ∈ N(number of imaging sequences)  and |…| denotes 
the cardinality of a set.

Given a distance, d and angle, ( � ), the TSCM co-occur-
rence matrix for all such possible pairs of tissue signatures 
is given as follows:

Here, TSCM�

d
 is the tissue signature co-occurrence matrix. 

The TSCM can then be analyzed to extract twenty-two dif-
ferent TSCM features using the equations developed by 
Haralick et al. [13, 19].

Tissue signature complex interaction network analysis 
features

The tissue signature complex interaction network (TSCIN) 
characterizes the complex interactions that define the 
inter-parametric relationships between different imaging 
parameters based on statistical analysis. The TSCIN fea-
tures are extracted by transforming a high-dimensional 
multiparametric radiological imaging data into a radiomic 
feature map using first or higher order statistical analysis 
of the tissue signature vectors, Sp at each voxel position. 
The TSCIN feature maps are then transformed into a single 
radiomic quantitative value corresponding to a ROI by 
using the summary statistical metrics of mean, median, or 
standard deviation.

First order TSCIN features The first order TSCIN features 
are straightforward and calculated directly from the tis-
sue signatures. For example, the TSCIN entropy at a voxel 
position, p is given by the following equation:

(6)

GLCM�
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The other first order TSCIN features are defined in a 
similar fashion from the first order histogram definitions.

Second order TSCIN features The second order TSCIN 
features characterize the inter-parameter relationship 
within the tissue signature by computing a TSCIN rela-
tionship matrix (TSRM). Mathematically, the TSRM for 
a N-dimensional tissue signature at voxel position, p with 
N imaging sequences that are quantized to G gray levels is 
given by the following equation:

Here, d represents the distance between the two imaging 
parameters,  I(k) and  I(k+d).

The TSRM is dependent on the relative location of dif-
ferent imaging parameters within the tissue signature. Con-
sequentially, TSRM requires the input imaging series to 
have an intrinsic relationship between the different imaging 
sequences, for example, pharmacokinetic dynamic contrast 
enhanced (PK-DCE) imaging and diffusion-weighted imag-
ing (DWI) sequences. The structure of the TSRM is similar 
to a G x G gray-level co-occurrence matrix, thereby, allow-
ing us to utilize all the twenty-two equations established 
to extract relevant features from such matrices [13]. Fig-
ure 1 demonstrates the mpRad framework on four differ-
ent mpMRI applications, breast, prostate, stroke, and brain 
cancer. Five classes of the mpRad features developed in this 
manuscript are illustrated in Fig. 2 from a representative 
breast mpMRI dataset. 

Clinical data

Clinical data

Informed consent

All procedures performed in studies involving human par-
ticipants were in accordance with the ethical standards of 
the institutional and/or national research committee and with 
the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards. The studies are in accordance 
to the institutional guidelines for clinical research under IRB 
approved protocol by our institution for this retrospective 
study and informed consent of the subjects was waived.

(8)EntropyTSCIN = entropy
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)
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Clinical breast data set

One hundred and thirty-eight patients with breast lesions 
were scanned using mpMRI. Lesion characteristics, 
molecular phenotypes, and lesion size for the patients 
were obtained. MRI scans were performed on a 3 T mag-
net (Philips), using a dedicated phased array breast coil 
with the patient lying prone with the breast in a holder to 
reduce motion. Briefly, the mpMRI sequences were  T1WI, 
 T2WI, DWI, pharmacokinetics (PK) DCE (15 s temporal 
resolution), and post-contrast high-resolution images. MRI 
sequence parameters were: An ultrafast spoiled gradient 
echo  (T1-TFE)  T1-weighted images (TR/TE: 5.37/2.3 ms; 
Slice thickness (ST) = 3 mm; Field of view(FOV): 35 cm 

x 35  cm; Flip angle(FA) = 120), fat-suppressed(FS) 
 T2-weighted spin echo images (TR/TE: 6122/70  ms; 
ST = 4 mm; FOV:35 cm x 35 cm; FA = 900). The DCE-
MRI was obtained using FS and non-FS, 3D FSPGR 
T1-weighted (TR/TE = 4.2/2.1  ms; FOV:35cmx35cm; 
ST = 5 mm) sequences. One non-FS pre- and fourteen 
post-contrast images (15 secs per acquisition) for PK 
analysis were obtained after intravenous administration via 
a power injector at a rate of 2 mL/sec of a Gadopentetic 
acid (Gd-DTPA) contrast agent (0.2 mL/kg(0.1 mmol/kg)) 
[30, 31]. Two minutes of  T1 fat-suppressed high temporal 
resolution (15 s per acquisition) imaging was obtained to 
capture the wash-in phase of contrast enhancement, fol-
lowed by a high spatial resolution scan for two minutes. 

Fig. 1  Illustration of the mpRad framework applied to different organs for analysis of different pathologies
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Diffusion-weighted imaging was obtained using an FS 
spin-echo Echo Planar Imaging (EPI) sequence (TR/
TE = 5000/90 ms, SENSE = 2, ST = 3-4 mm, b = 0–600 s/
mm2) on three planes. Apparent Diffusion Coefficient 
(ADC) of water maps were constructed from the DWI. 
For registration, the DCE post-contrast images were used 
as the reference volume. The registration methods used on 
the breast MRI have been detailed in [32].

Pharmacokinetic (PK) contrast enhancement parameters

PK-DCE provides metrics of the vascularity of differ-
net breast tissue types. The PK-DCE quantitative metrics 
derived were the volume transfer constant  (Ktrans  (min−1)) 
and the fractional volume of the extracellular extravascular 
space (EVF  (Ve)) for this study.

Multiparametric radiomic analysis

Radiomic image maps and features were computed by filtering 
the mpMRI images with statistical kernels based on the first 
order TSFOS, TSPM, and TSCIN (e.g. entropy) features and 

Fig. 2  Illustration of the five different types of multiparametric radi-
omics (mpRad) framework features based on first and second order 
statistical analysis. Left: Construction of representative breast tis-
sue signatures on normal and lesion tissue. Right: mpRad features 
defined as the radiomic tissue signature first order statistics (TSFOS), 
tissue signature probability matrix (TSPM), and the tissue signa-

ture co-occurrence matrix (TSCM) features evaluate the complex 
interactions between different tissue signatures. The tissue signature 
complex interaction network (TSCIN) first order statistics and tissue 
signature relationship matrix (TSRM) features evaluate the inter-
parameter complex interactions. The straight yellow arrows indicate 
the lesion tissue and the curved yellow arrow show glandular tissue
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second order TSCM and TSRM features (Haralick’s gray-level 
co-occurrence matrix features) described above. The optimal 
neighborhood and gray-level quantization values for filter-
ing were determined by the image resolution, bit depth of the 
radiological images, empirical analysis of the uniformity, and 
the noise within the radiomic maps. The radiomic parameters 
of neighborhood and gray-level quantization were set to 5 × 5 
with 128 gray levels for the mpMRI breast datasets. The ROIs 
from the different tissue types were segmented and overlaid on 
the mpRad maps for quantification of the texture values. The 
same ROIs were overlaid onto the ADC maps and PK DCE 
parameters for quantitative metrics.

The mpRad processing code was written in MATLAB and 
optimized to maximize the computational running time of the 
code using parallelization methods. The efficacy of mpRad 
code was evaluated on different processing platforms in com-
puting mpRad feature maps. The cost of transferring the data 
to and from the GPU processors were included in the calcula-
tions. The mpRad feature mapping of the different parameters 
were further evaluated for computational complexity across 
multiple computational platforms with and without GPUs: 
Tesla K40c (12 GB RAM), Quadro P6000 (24 GB RAM), and 
the Nvidia DGX machine with four Voltas (132 GB RAM), 
and a CPU: Intel® Xeon® CPU E5-2643 (3.50Ghz) with a 
64 GB RAM.

Classification

We used the IsoSVM [8] feature embedding and classifica-
tion framework for classifying benign from malignant lesions. 
The IsoSVM algorithm comprises of two component algo-
rithms, the Isomap, and SVM [33, 34]. Briefly, the Isomap 

algorithm is a non-linear dimension reduction algorithm based 
on the geodesic distance and multidimensional scaling. The 
SVM algorithm is a linear binary classification algorithm that 
attempts to create a hyperplane that best separates different 
groups. The application of Isomap algorithm prior to SVM 
transforms the high-dimensional mpRad feature space into a 
linearly separable space. Then, the SVM algorithm trains a 
classification model to classify between benign and malignant 
patients on the transformed feature space. The imbalance in 
the number of benign and malignant patients was resolved by 
setting a higher misclassification cost for benign than malig-
nant patients when training the SVM classifier. We determined 
the optimal value of the misclassification penalty using a grid 
search on misclassification penalty ratios from the set:

In a grid search, each of the different misclassification 
penalty ratios in the above set are tested in a leave-one-out 
cross validation setting and the misclassification penalty that 
achieves the maximum AUC was chosen as the optimal mis-
classification penalty [35].

Statistical analysis

Summary statistics (mean and standard error of the mean) 
were calculated for each quantitative MRI and mpRad fea-
ture. The sample size of the training data set was calculated 
based on the ROC curve [36, 37]. A sample size of 112 
subjects can give 85% power to detect a specificity of at least 
80% (under significance level alpha = 5%). The same sample 
size also gives us greater than 85% power to differentiate 

(10)
Benign ∶ Malignant = {1∶1, 1.5∶1, 2∶1, 2.5∶1, 3∶1, 3.5∶1, 4∶1}.

Table 1  Summary of demographic and clinical data

DCIS ductal carcinoma in situ, ILC invasive lobular carcinoma, LCIS lobular carcinoma in situ, IDC invasive ductal carcinoma, HER2 + human 
epidermal growth factor receptor 2
a Data are presented as mean ± (standard deviation)
b Data are presented as number of cases

Malignant characteristics IDC IDC + DCIS IDC + ILC ILC Others
N = 29 (30%) N = 34 (35%) N = 17 (18%) N = 12 (12%) N = 5 (5%)

Age,  yearsa 50 ± 12 55 ± 8 50 ± 11 55 ± 8 56 ± 9
Tumor size (cm) 3.2 ± 2.1 2.3 ± 1.7 2.8 ± 1.3 2.9 ± 2.0 2.9 ± 1.7
Phenotypes
Luminal  Ab 18 15 8 11 2
Luminal  Bb 1 9 7 1 2
HER2+ b 4 2 0 0 0
Triple  negativeb 6 8 2 0 1

Benign characteristics Benign breast tissue Stable imaging Fibroadenoma Sclerosing adenosis Papilloma Fibrocystic changes
N = 14 (35%) N = 10 (24%) N = 10 (24%) N = 3 (7%) N = 2 (5%) N = 2 (5%)

Age,  yearsa 50 ± 7 53 ± 13 46 ± 14 47 ± 13 46 ± 8 48 ± 2



414 Breast Cancer Research and Treatment (2020) 180:407–421

1 3

sensitivities between 80 and 95% at alpha = 5% significance 
level. An unpaired t-test (two-sided) was performed to com-
pare the mpRad features for different breast tissue types of 
normal glandular tissue, benign, and malignant lesions. Uni-
variate logistic regression analysis was used to find associa-
tions between the mpRad features and the final diagnosis. 
Sensitivity, specificity, and receiver operating characteristic 
(ROC) and Areas under the ROC curve (AUC) analysis were 
performed to assess diagnostic performance of the mpRad 
parameters. Statistical significance was set at p  < 0.05.

Results

The mean age of the patients was 52 ± 11 years ranging 
between 24 and 80 years. Of the 138 patients, there were 
97 patients with biopsy proven malignancy and 41 patients 
had benign lesions. Table 1 summarizes the lesion char-
acteristics and molecular phenotypes for the patients. The 
average tumor size ranged from 2.3 to 3.2 cm in size. The 
ADC map and PK-DCE metrics were significantly different 
between benign and malignant lesions. Figure 3 illustrates 
both single and mpRad feature maps from a representative 
patient with a malignant lesion in the upper outer quadrant 

Fig. 3  The radiomic feature maps (RFM) obtained from single and 
multiparametric radiomics (mpRad) analysis in a patient with a 
malignant lesion. The straight yellow arrow highlights the lesion 
location. The curved arrow demonstrates a benign cyst in the breast. 
a Multiparametric MRI parameters used for the mpRad framework. 
b Single radiomic gray-level co-occurrence matrix (GLCM) entropy 

features maps from each MRI parameter. c The mpRad RFMs tissue 
signature co-occurrence matrix (TSCM) and tissue signature complex 
interaction network (TSCIN) radiomic features. Note, the improved 
tissue delineation between the different tissue types using the mpRad 
framework
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of the right breast with a benign appearing cyst superior 
and more medial to the lesion (curved yellow arrow). The 
cyst is uniformly bright on T2 and the ADC map consist-
ent with known MRI tissue characteristics associated with 
cysts. Similarly, the cyst is dark on T1 with negative contrast 
enhancement on the DCE image indicating lack of vascular-
ity. Moreover, the lesion tissue appears to heterogenous on 
the MRI images with a decreased ADC value and increased 
PK-DCE characteristics. The single radiomic images exhibit 
some texture features, however, compared to mpRad radi-
omic images, there is a striking difference in the textural 
representation of both normal and lesion tissue. In particular, 
the cyst has decreased entropy in the mpRad compared to 
single radiomic images. The lower entropy in the cyst is 
consistent with the fact, that the homogenous object has less 
disorder and hence lower entropy. This is clearly evident 

when looking at the lesion which is heterogenous and higher 
entropy values. 

Figure 4 illustrates both the single and mpRad feature 
maps from a representative benign patient. Again, there was 
a clear difference between the textural representation of the 
lesion and glandular tissue using mpRad. Furthermore, the 
tissue characterization of lesion and glandular tissue was 
consistent for both the benign and the malignant patients. 
Table 2 summarizes the quantitative values from each sin-
gle parameter, TSPM entropy, and AUCs for the individual 
and mpRad features on benign and malignant lesions dem-
onstrating improved tissue characterization using mpRad. 
The mpRad TSPM entropy was computed using all the 
MRI parameters and was significantly different between 
benign and malignant lesions (Benign:7.06 ± 0.27, Malig-
nant:8.93 ± 0.17, p < 0.00001). Furthermore, the AUC of 
TSPM entropy was 0.82, 9% higher than the maximum AUC 

Fig. 4  The radiomic feature maps (RFM) obtained from single and 
multiparametric radiomics (mpRad) analysis in a patient with a 
benign lesion. The straight yellow arrow highlights the lesion loca-
tion. a Multiparametric MRI parameters used for the mpRad frame-

work. b Single radiomic gray-level co-occurrence matrix (GLCM) 
entropy features maps from each MRI parameter. c The mpRad RFMs 
tissue signature co-occurrence matrix (TSCM) and tissue signature 
complex interaction network (TSCIN) radiomic features
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(0.75 for post-contrast DCE) obtained from univariate analy-
sis of first order entropy computed from different imaging 
parameters. More importantly, there were no significant dif-
ferences between the contralateral glandular tissue in benign 
and malignant cases for both the single and multiparametric 
radiomic features as shown in Table 3.

The top mpRad features for differentiating benign from 
malignant lesions are summarized in Table 4. Using the 
IsoSVM with leave-one-out cross validation with the top 
mpRad features produced a sensitivity and specificity 
of 82.5% and 80.5%, respectively, with an AUC of 0.87 
(0.81–0.93). The optimal IsoSVM parameters were k = 20, 
d = 1 with an imbalance ratio of 3:1 of benign to malig-
nant. The predictive power of the single radiomic, mpRad 
radiomic, and the IsoSVM models are shown in Fig. 5. The 
resulting ROC curves demonstrated superior discrimina-
tion between benign and malignant lesions from the mpRad 
radiomic methods compared to single radiomics as shown 
in Fig. 5.

In the supplementary data, we demonstrate the applica-
tion of mpRad to well characterized digital phantoms that 
are considered to be the gold standard for testing texture 
software [15, 38, 39]. These phantoms consisted of photo-
graphs of different objects with varying textural character-
istics, ranging from rough to smooth and combinations of 
both. We were able to successfully distinguish the differ-
ent texture features from the various objects in the Bordatz 

library with excellent accuracy between the two different 
phantoms.

For the computational complexity, as expected, the 
Nvidia DGX outperformed the other GPU and CPU pro-
cessors with a time efficiency of approximately 12 min per 
complete mpMRI dataset per patient. The two Tesla K40Cs 
linked in parallel had a time efficiency of approximately 
25 min per patient. Whereas, the Quadro P6000 (24 GB) 
had a time efficiency of approximately 35 min per patient. 
However, optimized software code for the high-end CPU 
took approximately 20 min per patient.

Discussion

We have developed and validated a new multiparametric 
imaging radiomics (mpRad) framework that integrates all 
the radiological data to define different tissue texture char-
acteristics. The mpRad features outperformed all the single 
radiomic features in the mpMRI breast dataset. The mpRad 
features captured the underlying tissue texture based on tis-
sue signatures of each image, rather than individual imaging 
parameter intensities. More importantly, the mpRad method 
produces full texture images for visualization of normal and 
lesion heterogeneity, thereby providing radiologists with a 
new tool for visualization and quantization of the true under-
lying tissue heterogeneity in conjunction with traditional 
breast images.

Table 2  Single and multiparametric entropy values corresponding to benign and malignant breast tumors

DWI diffusion-weighted imaging, ADC apparent diffusion coefficient, PK pharmacokinetic, DCE dynamic contrast enhancement, FOS first order 
statistics, TSPM tissue signature probability matrix

Benign tumor Malignant tumor p value AUC 

MRI metrics
ADC map values (× 10–3  mm2/s) 1.89 ± 0.10 1.15 ± 0.03 0.0001
Ktrans (1/sec) 0.27 ± 0.05 0.80 ± 0.32 0.005
Single parameter entropy
Entropy T1 4.14 ± 0.11 4.66 ± 0.06 0.00008 0.72 (0.64–0.79)
Entropy T2 4.98 ± 0.12 5.42 ± 0.06 0.002 0.68 (0.59–0.75)
Entropy b0 4.44 ± 0.17 5.06 ± 0.09 0.002 0.67 (0.59–0.75)
Entropy b600 3.00 ± 0.20 3.77 ± 0.09 0.0009 0.67 (0.59–0.75)
Entropy ADC 4.90 ± 0.12 5.40 ± 0.06 0.0004 0.70 (0.62–0.77)
Entropy post-contrast DCE (High spatial resolution) 5.00 ± 0.10 5.54 ± 0.05 0.00001 0.75 (0.67–0.82)
Entropy PK-DCE Pre 4.32 ± 0.12 4.65 ± 0.05 0.02 0.62 (0.54–0.70)
Entropy PK-DCE post (wash-in) 4.89 ± 0.08 5.30 ± 0.05 0.00006 0.72 (0.64–0.79)
Entropy PK-DCE post (wash-out) 4.90 ± 0.09 5.24 ± 0.04 0.00007 0.69 (0.60–0.76)
Multiparametric entropy
TSPM entropy (all Parameters) 7.06 ± 0.27 8.93 ± 0.17  < 0.00001 0.82 (0.74–0.88)
TSPM entropy (PK-DCE) 7.06 ± 0.27 8.92 ± 0.17  < 0.00001 0.82 (0.74–0.88)
TSPM entropy (high spatial resolution DCE) 6.74 ± 0.19 8.28 ± 0.12  < 0.00001 0.82 (0.75–0.88)
TSPM entropy (DWI) 6.66 ± 0.22 8.20 ± 0.15  < 0.00001 0.78 (0.70–0.85)
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In multiparametric imaging settings, single radiomic fea-
tures from each individual image can result in very large 
numbers of texture features creating a high-dimensional 
dataset across all images for analysis. These single radiomic 
features may not reflect the true underlying tissue composi-
tion, heterogeneity, or homogeneity and only provide limited 
information corresponding to the physical modeling of that 
single imaging parameter.

The mpRad framework extracts radiomic features that 
considers the complete multiparametric dataset, hence pro-
ducing more meaningful features and textural visualization 
of the underlying tissue overcoming the limitations of single 
parameter radiomics. MpRad provides a solution for poten-
tial sensitive and specific biomarkers of normal and tumor 
tissue for diagnostic and monitoring of patients.

Using the mpRad framework allows investigators to 
analyze the complex interactions between different imag-
ing parameters and opening up a completely new source of 
information that did not exist with conventional radiomic 
features.

In the breast lesions, consistent with other reports in 
breast and other cancers, malignant breast lesions had 
increased entropy or heterogeneity compared to benign 
lesions [8, 22, 40, 41]. Importantly, no differences in the 
normal glandular tissue were noted between patients with 
either benign and malignant lesions [8, 22, 40, 41]. The 
mpRad radiomic feature maps delineated different tissue 
types better quantitively and qualitatively than any single 
radiomic feature map, for example, in cysts, normal, and 
peri-tumoral regions. Finally, the mpRad demonstrated 

Table 3  Single and 
multiparametric entropy 
contralateral glandular tissue 
values from patients with 
benign and malignant breast 
tumors

DWI diffusion-weighted imaging, ADC apparent diffusion coefficient, PK pharmacokinetic, DCE dynamic 
contrast enhancement, FOS first order statistics, TSPM tissue signature probability matrix

Glandular tissue 
benign patients

Glandular tissue 
malignant patients

p value

Single parameter entropy
Entropy T1 5.29 ± 0.11 5.12 ± 0.06 0.20
Entropy T2 5.37 ± 0.10 5.32 ± 0.06 0.68
Entropy b0 5.19 ± 0.24 4.89 ± 0.10 0.27
Entropy b600 3.46 ± 0.24 3.13 ± 0.10 0.20
Entropy ADC 5.27 ± 0.28 5.39 ± 0.16 0.71
Entropy post-contrast DCE (high spatial resolution) 5.13 ± 0.10 5.00 ± 0.06 0.26
Entropy PK-DCE pre 5.24 ± 0.12 5.12 ± 0.05 0.38
Entropy PK-DCE post (wash-in) 5.28 ± 0.11 5.18 ± 0.05 0.40
Entropy PK-DCE post (wash-out) 5.30 ± 0.10 5.24 ± 0.05 0.60
Multiparametric entropy
TSPM entropy (all Parameters) 10.93 ± 0.34 10.64 ± 0.17 0.46
TSPM entropy (PK-DCE) 10.92 ± 0.34 10.64 ± 0.17 0.47
TSPM entropy (high spatial resolution DCE) 9.17 ± 0.17 9.04 ± 0.10 0.51
TSPM Entropy (DWI) 9.31 ± 0.35 9.06 ± 0.18 0.54

Table 4  Top multiparametric radiomic features for classification of malignant from benign breast tumors

S. No mpRad radiomic feature Benign tumor Malignant tumor p value AUC 

1 TSPM entropy (all parameters) 7.06 ± 0.27 8.93 ± 0.17  < 0.00001 0.82 (0.74–0.88)
2 TSPM entropy (DCE) 7.06 ± 0.27 8.92 ± 0.17  < 0.00001 0.82 (0.74–0.88)
3 TSPM entropy (HiRes) 6.74 ± 0.19 8.28 ± 0.12  < 0.00001 0.82 (0.75–0.88)
4 TSPM entropy (DWI) 6.66 ± 0.22 8.20 ± 0.15  < 0.00001 0.78 (0.70–0.85)
5 TSCIN DWI maximum 0.44 ± 0.02 0.34 ± 0.01  < 0.00001 0.77 (0.69–0.83)
6 TSCIN DWI standard deviation 0.18 ± 0.01 0.12 ± 0.00  < 0.00001 0.79 (0.71–0.85)
7 TSCIN DWI range 0.34 ± 0.02 0.24 ± 0.01  < 0.00001 0.79 (0.71–0.85)
8 TSCIN DWI median absolute deviation 0.13 ± 0.01 0.09 ± 0.00  < 0.00001 0.78 (0.70–0.84)
9 TSCIN DCE kurtosis 2.63 ± 0.14 3.37 ± 0.08 0.00004 0.76 (0.68–0.83)
10 TSCIN DCE skewness − 0.69 ± 0.07 − 1.06 ± 0.04 0.00001 0.75 (0.67–0.82)
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excellent sensitivity and specificity with increased AUC 
metrics compared to single radiomic features. The IsoSVM 
mpRad AUCs were comparable with those AUCs dis-
cussed in the literature for discriminating benign from 
malignant lesions from radiologist [42, 43].

In general, multiparametric imaging for applications such 
as brain, breast, and prostate MRI produce large number 
of images corresponding to each slice location resulting in 
high-dimensional image space. Extracting radiomic features 

from each image individually in these types of datasets are 
time consuming and may not provide complete information 
about the lesion tissue. The mpRad framework resolves this 
potential issue by extracting radiomic features that not only 
analyze the progression of tissue texture with time but also 
evaluate the overall tissue texture over large data sets.

There are, however, some technical limitations to the use 
the mpRad in practice. First, there is a need for high-end 
graphical processor units (GPU) or CPUs with large memory 

Fig. 5  The predictive accuracy between the single parameter based 
radiomics features and multiparametric radiomics (mpRad) features 
using receiver operating characteristic (ROC) curve analysis is dem-
onstrated. a The AUC for IsoSVM was 0.87 and shown on the left 
and displayed in black. The mpRad feature ROC curves (displayed 
in red) produced area under the ROC curve (AUC) values that were 

9–28% greater than the AUCs obtained for single parameter radiom-
ics (ROC curves displayed in blue). b The AUC curves for the each 
mpRAD feature are shown in the middle. The AUC values for these 
features ranged from 0.78 to 0.82. c The single radiomic AUC curves 
for each feature are shown on the right and ranged from 0.62 to 0.75
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and optimized software for processing which can be chal-
lenging to obtain or are very expensive to implement. The 
repeatability and reproducibility of radiomics have been 
demonstrated in both phantoms and clinical studies, the 
extension to mpRad would be straightforward and is cur-
rently under investigation [24, 44–47]. Our initial testing 
of the mpRad method using the Brodatz features are very 
encouraging and consistent with known radiomic features. 
More specific to the present study, any assessment of the 
clinical value of mpRad network will require prospective 
studies for validation of the mpRad methods. Although, a 
sample size was calculated for meaningful statistics, larger 
datasets, and prospective studies will be the real test for 
this method. These types of studies would have subsequent 
follow-up and pathological correlation for evaluation of the 
mpRad features in breast cancer patients. Ongoing studies 
using mpRad for radiomic characterization in both external 
and internal datasets are under investigation for determining 
treatment response from multisite locally advanced cancer 
clinical trials [48, 49]. This preliminary methods study was 
focused on development and characterization of the mpRad 
method on a large breast dataset with new radiomic fea-
tures and identifying improved radiomic biomarkers linked 
to known biological MRI parameters of PK-DCE and ADC 
mapping of breast lesions.

In conclusion, we have demonstrated that mpRad frame-
work shows excellent potential in analysis of textural infor-
mation using multiparametric breast imaging data. These 
methods can be extended and used in different clinical 
applications beyond those presented in this work [50]. With 
increasing use of multiparametric imaging in clinical setting, 
mpRad provides an ideal framework for future clinical deci-
sion support systems.
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