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Abstract
Purpose Tamoxifen has a wide inter-variability. Recently, two SNPs in the 3′-untranslated region (UTR) of the SULT1A1 
gene, rs6839 and rs1042157, have been associated with decreased SULT1A1 activity. The aim of this study is to investigate 
the role of the rs6839 and rs1042157 on tamoxifen metabolism and relapse-free survival (RFS) in women diagnosed with 
early-breast cancer receiving tamoxifen.
Methods Samples from 667 patients collected in the CYPTAM study (NTR1509) were used for genotyping (CYP2D6, 
SULT1A1 rs6839 and rs1042157) and measurements of tamoxifen and metabolites. Patients were categorized in three groups 
depending on the decreased SULT1A1 activity due to rs6839 and rs1042157: low activity group (rs6839 (GG) and rs1042157 
(TT)); high activity group (rs6839 (AA) and rs1042157 (CC)); and medium activity group (all the other combinations of 
rs6839 and rs1042157). Associations between SULT1A1 phenotypes and clinical outcome (RFS) were explored.
Results In the low SULT1A1 activity group, higher endoxifen and 4-hydroxy-tamoxifen concentrations were found, compared 
to the medium and high activity group (endoxifen: 31.23 vs. 30.51 vs. 27.00, p value: 0.016; 4-hydroxy-tamoxifen: 5.55 
vs. 5.27 vs. 4.94, p value:0.05). In terms of relapse, the low activity group had a borderline better outcome compared to the 
medium and high SULT1A1 activity group (adjusted Hazard ratio: 0.297; 95% CI 0.088–1.000; p value: 0.05).
Conclusion Our results suggested that rs6839 and rs1042157 SNPs have a minor effect on the concentrations and metabolic 
ratios of tamoxifen and its metabolites, and RFS in women receiving adjuvant tamoxifen.
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Introduction

Tamoxifen is commonly used as adjuvant endocrine therapy 
to treat patients diagnosed with breast cancer [1, 2]. Being 
a prodrug, tamoxifen is bioactivated by several cytochrome 
P-450 enzymes to its primary metabolites, 4-hydroxy-
tamoxifen, and N-desmethyl-tamoxifen (NDM-tamoxifen). 
Thereafter, conversion into endoxifen takes place (Fig. 1), 
mainly controlled by CYP2D6, among other enzymes. 
Around 92% of tamoxifen metabolism accounts for the bio-
transformation of tamoxifen into NDM-tamoxifen, whereas 
the conversion of tamoxifen into 4-hydroxy-tamoxifen only 
represents 7% [3].

Both endoxifen and 4-hydroxy-tamoxifen have equal 
affinity for the estrogen receptor α [4], but endoxifen is con-
sidered the most clinically relevant tamoxifen metabolite, 
since it is found in 5–10 times higher concentrations than 
4-hydroxy-tamoxifen [5]. While CYP2D6 is the rate-limiting 
enzyme in tamoxifen metabolism, it cannot fully explain the 
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inter-patient variability of tamoxifen metabolism [6]. Other 
genetic polymorphisms in different enzymes than CYP2D6 
have been suggested to influence tamoxifen metabolism as 
well [7].

Sulfotransferases (SULTs) are classified as phase II 
enzymes involved in the biotransformation of a variety of 
drugs [7, 8]. By adding a sulfonyl group to xeno- and endo-
biotics, more hydrophilic molecules are obtained facilitating 
their renal excretion [8, 9]. SULT1A1 is the most expressed 
isoform of the SULT enzymes in the human liver [10, 11]. 
In tamoxifen metabolism, SULT1A1 mainly catalyzes 
the transformation of 4-hydroxy-tamoxifen into inactive 
4-hydroxy-tamoxifen sulfate and endoxifen into inactive 
endoxifen sulfate (Fig. 1). In addition, SULT1A1 is also 
involved in the inactivation of NDM-tamoxifen, after sev-
eral consecutive reactions, into Metabolite E sulfate [3, 9, 
12, 13].

Several SULT1A1 Single-Nucleotide Polymorphisms 
(SNPs) have been described and found associated with 
clinical outcome in tamoxifen-treated patients. Nowell [14] 
and Wegman [15] reported that SULT1A1*2/*2 carriers 
had worse outcome in breast cancer patients treated with 
tamoxifen compared to both homozygous and heterozygous 
SULT1A1*1 carriers. However, studies performed later did 
not reproduce these results, since no significant associations 
were found [16–18]. Consequently, the effect of SULT1A1 
and clinical outcome among tamoxifen-treated patients is 
still unclear.

SULT1A1 genetic variation and its influence on tamox-
ifen and its metabolites concentrations and metabolic 
ratios (MR) have been described. While Jin [19] and 

Fernandez-Santander [20] showed no association between 
SULT1A1 genotypes and tamoxifen and its metabolites 
concentrations, Gjerde and colleagues found an association 
between SULT1A1 genotype and the metabolic ratios (MR) 
of NDM-tamoxifen/tamoxifen (Fig. 1) [21].

In the same manner, copy number variation in SULT1A1 
has been described as a prominent contributor to the inter-
variability of SULT1A1 enzymatic activity [22]. Hebbring 
and colleagues reported an in vitro association between 
CNV and SULT1A1 enzyme activity. The role of SULT1A1 
CNVs in tamoxifen efficacy has also been examined, but no 
significant relationship after 14 years of follow-up between 
disease-free survival and SULT1A1 CNVs was found [22]. 
However, this result might be explained by ethnic differ-
ences in the enrolled women, who were primarily Caucasian. 
Indeed, SULT1A1 CNV is most frequently seen in African-
American individuals, but infrequently occurs in other eth-
nicities [22].

Recently, two other SULT1A1 SNPs, rs6839 and 
rs1042157, have been identified and characterized in the 
3′-untranslated region (UTR) of the SULT1A1 gene [23]. 
According to the authors, both SNPs are in linkage disequi-
librium (D′ = 0.83) and associated with decreased activity of 
the SULT1A1 enzymatic activity. To date, only two studies 
have analyzed the effect of both SNPs and cancer risk [24, 
25].

To the best of our knowledge, the role of rs6839 and 
rs1042157 in tamoxifen metabolism and RFS has not yet 
been examined. Therefore, the aim of the current study is 
to explore the role of the rs6839 and rs1042157 SNPs on 
tamoxifen pharmacokinetics and RFS in the CYPTAM 

Fig. 1  Tamoxifen metabolism
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cohort of women with early breast cancer using adjuvant 
tamoxifen [26, 27].

Methods

Study design and objectives: effect of 3′-UTR of SULT1A1 
SNPs on tamoxifen metabolism and clinical outcome.

The CYPTAM study (NTR1509) is a completed prospec-
tive clinical study carried out in Belgium and The Nether-
lands [26]. The aim of this clinical study was to investigate 
CYP2D6 predicted phenotypes and endoxifen serum con-
centrations with clinical outcome (relapse-free and disease-
free survival, and overall survival). Briefly, women using 
tamoxifen at a daily dose of 20 mg as adjuvant endocrine 
therapy for early breast cancer were asked to participate in 
this multicenter study. The study protocol of the CYPTAM 
study was approved by The Medical Ethical Committee of 
the Leiden University Medical Center (The Netherlands). 
Written informed consent was obtained from all of the 
included patients. Pregnancy, breast feeding, and previ-
ous malignancy were considered exclusion criteria, with 
the exception of appropriately treated patients with in-situ 
cervix carcinoma and basal cell carcinoma. After receiving 
tamoxifen for a minimum of two months, whole blood and 
serum samples were collected for genotyping and determi-
nation of tamoxifen and its metabolites (NDM-tamoxifen, 
4-hydroxy-tamoxifen and endoxifen), respectively.

To investigate the role of rs6839 and rs1042157 SNPs, 
serum and whole blood samples and clinical data and fol-
low-up from women enrolled in the CYPTAM were read-
ily available for analysis. Since both rs6839 and rs1042157 
SNPs are in linkage disequilibrium, groups were required 
in order to understand the combined effect of both SNPs 
on tamoxifen metabolism and efficacy. Therefore, three dif-
ferent groups were made according to the known effect of 
rs6839 and rs1042157 on SULT1A1 enzyme activity. These 
groups were defined as low, medium, and high SULT1A1 
activity groups, as follows: low activity group was defined 
as the combination of rs6839 (GG) and rs1042157 (TT); 
high activity group was compound by rs6839 (AA) and 
rs1042157 (CC); medium activity group was formed by 
the following combinations: rs6839 (AG) and rs1042157 
(CC); rs6839 (AA) and rs1042157 (CT); rs6839 (AG) and 
rs1042157 (CT); rs6839 (GG) and rs1042157 (CT); rs6839 
(AA) and rs1042157 (TT); and rs6839 (AG) and rs1042157 
(TT).

The first objective of this pharmacogenetic study was 
to compare the combined effect of both SNPs on tamox-
ifen metabolism by comparing differences in endoxifen 
concentrations and metabolic ratios of tamoxifen and its 
metabolites (NDM-tamoxifen, 4-hydroxy-tamoxifen, and 
endoxifen) across the different groups. The secondary 

objective of this research was to investigate the impact of 
the 3′- UTR SULT1A1 SNPs groups on tamoxifen efficacy. 
In the CYPTAM study, the primary endpoint was relapse-
free survival (RFS), defined as the time from study enrol-
ment until loco-regional recurrence, second breast cancer, 
or distant recurrence. If patients switched to an aromatase 
inhibitor, patients were censored at the time of tamoxifen 
discontinuation [26].

Tamoxifen and its metabolites measurements

In order to ensure tamoxifen and metabolite steady-state 
concentrations, a minimum of two-month treatment with 
tamoxifen was required before sampling. To adequately 
assess tamoxifen and its metabolites trough levels, samples 
were collected at least twelve hours after the last tamoxifen 
intake.

Concentrations were determined using high-performance 
liquid chromatography-tandem mass spectrometry (HPLC-
MS/MS). The bioanalytical assay was developed and vali-
dated by the laboratory of Clinical Pharmacy and Toxicol-
ogy Department at Leiden University Medical Center, and it 
is a method comparable to another method already reported 
[28].

Genotyping: CYP2D6, rs6839, and rs1042157

CYP2D6 genotyping was performed with Amplichip 
CYP450 test (Roche Diagnostic, Indianapolis, US) to evalu-
ate the major CYP2D6 alleles in DNA previously retrieved 
from the CYPTAM patients. More detailed information 
regarding the CYP2D6 genotypes is described elsewhere 
[29, 30]. Genotype analysis for rs6839 and rs1042157 was 
performed using Pyrosequencing (Qiagen, Venlo, The Neth-
erlands) following standard procedures and the instructions 
of the manufacturer.

Statistical analysis

To test linkage disequilibrium between both rs6839 and 
rs1042157, D′ was calculated with Chi-square statistics 
(χ2). Metabolic ratios were defined as concentration of sub-
strate divided by metabolite concentration. ANOVA test 
was used to compare mean concentration levels and meta-
bolic ratios of tamoxifen and its metabolites (NDM-tamox-
ifen, 4-hydroy-tamoxifen and endoxifen) between the low, 
medium, and high SULT1A1 activity groups. Multiple linear 
regression analysis was used to analyze the contributions of 
rs6839 and rs1042157. By using the base model in which 
the CYP2D6 status only partly contributes to explaining 
the total variability of concentrations and metabolic ratios 
of tamoxifen, endoxifen, 4-hydroxy-tamoxifen, and NDM-
tamoxifen, these 3′-UTR SULT1A1 rs6839 and rs1042157 
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SNPs were added to the model to investigate their effects on 
the total variance.

Cox regression analysis was performed to assess whether 
RFS varied according to the different baseline characteristics 
across all the groups. If in the univariable analysis, a covari-
able had a p value below 0.1, this covariable was fitted in 
the multivariable model. Due to their clinical importance 
for the survival outcome in breast cancer patients, tumor 
and nodal stage, Her2 receptor status, and histological grade 
and classification were also included in the multivariable 
analysis, regardless of the results in the univariable analysis. 
Kaplan–Meier method was used to estimate the distributions 
of RFS, whereas a log-rank test was performed to compare 
the clinical outcome with genetic 3′-UTR SULT1A1 rs6839 
and rs1042157 SNPs. Statistical analyses were assessed with 
IBM SPSS for Windows, Version 23.0. In all cases, p values 
below 0.05 were considered statistically significant.

Results

Study population

In the CYPTAM study, 667 women were included in 25 
Dutch and Belgian hospitals. More detailed clinical charac-
teristics of the included patients in the core CYPTAM study 
are reported elsewhere [30, 31].

For the purpose of this pharmacogenetic study, three 
groups with low, medium, and high SULT1A1 activity 
groups were made. At enrolment, all groups of patients were 
comparable regarding mean age, tumor and nodal stage, 
histologic grade and classification, HER2 and progesterone 
receptor status, type of main surgery (mastectomy or breast 
conserving surgery) and axillar surgery (sentinel node pro-
cedure only or axillary lymph node dissection), adjuvant 
radiotherapy and chemotherapy, and treatment with trastu-
zumab (p value > 0.05). An overview of the baseline char-
acteristics of the enrolled patients by the three groups is 
listed in Table 1.

Genotype distributions: rs6839 and rs1042157 SNPs

Genotype distribution for rs1042157 was consistent with 
Hardy–Weinberg equilibrium (χ2 = 2.98, p = 0.084), while 
for rs6839 it was found not to be in Hardy–Weinberg equilib-
rium (χ2 = 13.44, p = 0.00025). However, genotype frequen-
cies of rs6839 were similar to allelic frequencies reported 
previously for the Caucasian population and described on 
the National Center for Biotechnology Information website 
(NCBI, http://www.ncbi.nlm.nih.gov). Linkage Disequi-
librium was analyzed for both 3′-UTR SULT1A1 variants 
and a significantly strong association was found for rs6839 
and rs1042157 (D′ = 0.74, p < 0.0001). The variant allele 

frequencies of rs6839 and 1,042,157 are described in Sup-
plementary Table 1.

Association between tamoxifen and its metabolites 
and 3′‑UTR SULT1A1 groups

The mean concentration levels of tamoxifen and NDM-
tamoxifen across the 3′-UTR SULT1A1 groups did not 
significantly differ (p > 0.05). In contrast, endoxifen and 
4-hydroxy-tamoxifen mean concentrations in the low activ-
ity group were statistically significantly higher, compared 
to the other groups (endoxifen: p value = 0.016; 4-hydroxy-
tamoxifen: p value = 0.050). Figure 2 shows the associations 
comparing low, medium, and high activity groups regarding 
the mean concentrations and metabolic ratios of tamoxifen 
and its metabolites. Of note, endoxifen and 4-hydroxy-
tamoxifen concentrations were 15.7% and 12.3% higher in 
the low activity group compared to the high activity group 
(endoxifen: 31.23 vs. 27.00 nM; 4-hydroxy-tamoxifen: 5.55 
vs. 4.94 nM). In Table 2, an overview of the mean concen-
tration levels and metabolic ratios of tamoxifen, endoxifen, 
4-hydroyx-tamoxifen, and NDM-tamoxifen is presented.

Clinical outcome and 3′‑UTR SULT1A1 groups

An overall log-rank test comparing the low, medium, and 
high SULT1A1 activity groups, did not show differences in 
RFS across the groups, since no statistically significance was 
obtained (p value = 0.127; see Fig. 3). Interestingly, when 
comparing the low and high activity groups, a statistical 
difference in RFS was found (Log-rank test: p value = 0.042; 
see Fig. 3).

In the same line, the uni- and multivariable Cox regres-
sion analyses also found a trend towards better RFS in 
the low activity group (Adjusted HR:0.297; 95% CI 
0.088–1.000; p value: 0.05; see Table 3), compared to the 
medium and high activity group. A comparison between the 
extreme groups, low and high SULT1A1 activity, revealed 
a significantly lower risk for recurrence in the low activity 
group in both uni- and multivariable Cox regression analyses 
(Adjusted HR: 0.286; 95% CI 0.084–0.976; p value: 0.046; 
see Table 3).

Association of tamoxifen metabolism with rs6839 
and rs1042157 SNPs

Genetic variances in CYP2D6 only partly contribute to 
explaining the inter-patient variability (R2) of tamoxifen 
and its metabolites concentrations and metabolic ratios [29, 
32]. When rs6839 and rs1042157 SNPs were fitted in the 
model, the inter-patient variability (R2) of (log-transformed) 
concentrations and metabolic ratios of tamoxifen and its 
metabolites increased for all the cases, by 0.4 to 1.3%. Also, 

http://www.ncbi.nlm.nih.gov


405Breast Cancer Research and Treatment (2018) 172:401–411 

1 3

Table 1  Baseline characteristics of the CYPTAM patients by 3’ UTR SULT1A1 high, medium, and low activity groups

3′UTR  3′ Untranslated region; SD standard deviation

3′ UTR SULT1A1 rs6839 and rs1042157 SNPs groups p value

High activity group 
(N = 231)

Medium activity 
group (N = 324)

Low activity group 
(N = 105)

N (%) N (%) N (%)

Age at enrolment Mean in years (SD) 56.2 11.2 56.9 11.4 54.6 9.8 0.155
Tumor stage T1 121 52.4 170 52.5 58 55.2 0.936

T2 96 41.6 137 42.3 41 39.0
T3/T4 12 5.2 12 3.7 4 3.8
Not specified 2 0.9 5 1.5 2 1.9

Nodal stage N0 110 47.6 158 48.8 45 42.9 0.719
N1 92 39.8 129 39.8 43 41.0
N2 19 8.2 27 8.3 10 9.5
N3 10 4.3 8 2.5 6 5.7
Not specified 0 0.0 2 0.6 1 1.0

Histological classification Ductal adenocarcinoma 178 77.1 248 76.5 78 74.3 0.738
Lobular adenocarcinoma 35 15.2 42 13.0 14 13.3
Other 18 7.8 32 9.9 12 11.4
Not specified 0 0.0 2 0.6 1 1.0

Histological grade G1 36 15.6 42 13.0 16 15.2 0.702
G2 124 53.7 189 58.3 61 58.1
G3 70 30.3 89 27.5 26 24.8
Not specified 1 0.4 4 1.2 2 1.9

Progesterone receptor status Positive 186 80.5 256 79.0 85 81.0 0.973
Negative 42 18.2 63 19.4 18 17.1
Not specified 3 1.3 5 1.5 2 1.9

HER2 receptor status 0 135 58.4 209 64.5 58 55.2 0.449
1+ 68 29.4 71 21.9 28 26.7
2+ 11 4.8 17 5.2 7 6.7
3+ 17 7.4 25 7.7 11 10.5
Not specified 0 0.0 2 0.6 1 1.0

FISH Positive (amplification) 17 7.4 29 9.0 11 10.5 0.584
Negative 214 92.6 293 90.4 93 88.6
Not specified 0 0.0 2 0.6 1 1.0

Surgery Mastectomy 116 50.2 142 43.8 47 44.8 0.347
Breast conserving 114 49.4 180 55.6 56 53.3
Not specified 1 0.4 2 0.6 2 1.9

Surgery axilla Sentinel node procedure only 110 47.6 164 50.6 55 52.4 0.517
Axillary lymph node dissection 120 51.9 158 48.8 48 45.7
Not specified 1 0.4 2 0.6 2 1.9

Adjuvant radiotherapy Yes 156 67.5 231 71.3 71 67.6 0.546
No 75 32.5 91 28.1 33 31.4
Not specified 0 0.0 2 0.6 1 1.0

Adjuvant chemotherapy Yes 137 59.3 198 61.1 66 62.9 0.664
No 94 40.7 124 38.3 38 36.2
Not specified 0 0.0 2 0.6 1 1.0

Trastuzumab therapy Yes 19 8.2 28 8.6 10 9.5 0.442
No 212 91.8 291 89.8 94 89.5
Not specified 0 0.0 5 1.5 1 1.0
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the explained variance (R2) of the (log-transformed) concen-
trations of endoxifen only marginally improved from 42.3 to 
43.6%. An overview of the rs6839 and rs1042157 covariate 
analysis is presented in Supplementary Table 2.

Discussion

This is the first study in which the role of 3′-UTR SULT1A1 
rs6839 and rs1042157 SNPs on tamoxifen metabolism and 
clinical outcome in early-breast cancer patients was exam-
ined. This study shows that patients with low SULT1A1 
activity [rs6839 (GG) and rs1042157 (TT)] reached higher 
endoxifen and 4-hydroxy-tamoxifen concentration levels, but 
this small effect did not translate in improved RFS.

SULT1A1 is an important enzyme in tamoxifen elimina-
tion and it is involved in two relevant parts of the tamox-
ifen metabolic pathway: the transformation of 4-hydroxy-
tamoxifen and endoxifen into 4-hydroxy-tamoxifen sulfate 
and endoxifen sulfate, respectively. As described by Yu and 
colleagues, 3′UTR SULT1A1 rs6839 and rs1042157 SNPs 
are associated with a decreased SULT1A1 enzymatic activ-
ity, and both SNPs contribute to explaining the variability 
of SULT1A1 enzyme activity [23]. Based on the results of 
Yu and colleagues, we hypothesized that lower SULT1A1 
enzymatic activity conferred by the presence of rs6839 and 
rs1042157 SNPs would translate in higher concentrations of 
endoxifen and 4-hydroxy-tamoxifen. Our results confirmed 
this hypothesis, since higher concentrations of both endox-
ifen and 4-hydroxy-tamoxifen were found.

The transformation from tamoxifen into NDM-tamoxifen 
represents 92% of tamoxifen metabolism, while the meta-
bolic conversion from tamoxifen into 4-hydroxy-tamoxifen 

accounts for only 7% of tamoxifen metabolism [3]. Accord-
ingly, differences in NDM-tamoxifen concentrations would 
not be as relevant as compared to the other metabolites, 
whereas small variations in endoxifen and 4-hydroxy-tamox-
ifen concentrations might be more significant. Our results 
suggest that the route 4-hydroxy-tamoxifen to endoxifen, 
might be more important in the presence of a decreased 
activity of SULT1A1 enzyme, as a consequence of the lower 
elimination of endoxifen and 4-hydroxy-tamoxifen.

In line with these results, a lower risk for relapse was 
found in the low activity group, compared to the high activ-
ity group. While the increased endoxifen concentration lev-
els and better clinical outcome are completely in line, we 
feel that this interpretation should be carefully considered, 
since the association between endoxifen concentration and 
clinical outcome remains uncertain.

Both endoxifen and 4-hydroxy-tamoxifen have com-
parable anti-estrogenic activity [4], yet only endoxifen is 
seen as the most active metabolite of tamoxifen metabolite, 
since it is found in higher concentrations than 4-hydroxy-
tamoxifen [5]. Therefore, the relationship between endox-
ifen concentration levels and RFS has been investigated, 
but different ranges for endoxifen concentration have been 
proposed. For instance, Madelensky et al. described a 26% 
lower chance of relapse for patients with an endoxifen con-
centration level above 16 nM (5.97 ng/ml) [33], whereas 

Table 2  Overview of mean concentration levels and metabolic ratios of tamoxifen, endoxifen, 4-hydroxy-tamoxifen and NDM-tamoxifen by 
high, medium and low activity groups

SD standard deviation; MR metabolic ratio

Tamoxifen 
(nM) (SD)

Endoxifen 
(nM) (SD)

4-hydroxy-
tamoxifen 
(nM) (SD)

NDM-Tamox-
ifen (nM) 
(SD)

MR tamox-
ifen/NDM-
tamoxifen 
(SD)

MR 
tamoxifen/4-
hydroxy-
tamoxifen 
(SD)

MR 
4-hydroxy-
tamoxifen/
endoxifen 
(SD)

MR NDM-
tamoxifen / 
endoxifen (SD)

High activity 
group (N = 
231)

308.20 
(113.17)

27.00 (14.69) 4.94 (2.02) 619.54 
(231.10)

0.51 (0.13) 66.82 (23.62) 0.21 (0.09) 32.74 (27.18)

Medium activ-
ity group (N 
= 324)

312.12 
(128.38)

30.51 (15.66) 5.27 (2.24) 584.42 
(224.65)

0.54 (0.14) 63.94 (26.85) 0.19 (0.08) 26.04 (22.25)

Low activity 
group (N = 
105)

319.84 
(122.13)

31.23 (18.29) 5.55 (2.78) 621.20 
(210.66)

0.52 (0.13) 64.52 (31.77) 0.21 (0.10) 30.88 (33.42)

p value 0.650 0.016 0.050 0.148 0.027 0.544 0.025 0.010

Fig. 2  Association with tamoxifen and its metabolites. a Association 
of tamoxifen, endoxifen, 4-hydroxy-tamoxifen, and NDM-tamoxifen 
concentration levels by high, medium, and low SULT1A1 enzyme 
activity groups. b Association of tamoxifen, endoxifen, 4-hydroxy-
tamoxifen, and NDM-tamoxifen metabolic ratios by high, medium, 
and low SULT1A1 enzyme activity groups

▸
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Helland and colleagues reported an even lower limit of 
9 nM (3.36 ng/ml) for better clinical outcomes [34]. In 
contrast, Neven and colleagues failed to find an association 
between endoxifen concentration levels and progression-
free survival in the metastatic and neoadjuvant setting 
[35]. In line with these authors, no association between 
endoxifen concentration and RFS was found in the core 
CYPTAM study [26, 27]. In the present study, a 15.7% 
increase of the mean endoxifen serum concentration was 
found in patients with low SULT1A1 activity, while the 
explained variance of the concentrations of endoxifen only 
slightly improved (from 42.3 to 43.6%). Accordingly, the 
combination of the lack of association between endox-
ifen concentration and RFS in combination with a barely 
improved explained variance of endoxifen concentrations, 
it seems unlikely that there is a true association between 
SULT1A1 and RFS caused by the tenue differences in 
endoxifen concentration levels. Alternative explanations 
may involve the role of genetic variations in SULT1A1 in 
breast cancer risk [36] or in endogenous estrogen metabo-
lism [37].

A potential limitation in our analysis might be the fact 
that rs6839 was not found in HWE. For the pyrosequenc-
ing analysis, quality controls were used, and the call-rate 
in the samples was above 90%, avoiding therefore any 
technical problem to be reason for this HWE deviation. 
Also, we performed the pyrosequencing analysis in iso-
lated DNA from whole blood samples. By this way, we 
prevented any HWE discrepancy due to potential loss of 
heterozygosity and HWE using tumor material. The rs6839 
genotype frequencies were comparable to those reported 
in the NCBI database [38]. Another possible weakness in 
our study might be due to the lack of direct measurement 
of endoxifen sulfate and 4-hydroxy-tamoxifen sulfate lev-
els; instead, we indirectly assessed effects of the SULT1A1 
SNPs by measuring endoxifen and 4-hydroxy-tamoxifen.

In summary, our results suggest that rs6839 and 
rs1042157 SNPs have a minor effect on the concentra-
tions and metabolic ratios of tamoxifen and its metabo-
lites, and RFS in women receiving adjuvant tamoxifen, 
but this impact is not likely to be clinically meaningful.

Fig. 3  Kaplan–Meier curve 
comparing. 3′UTR SULT1A1 
rs6839 and rs1042157 SNPs 
groups. 3′-UTR: 3′untranslated 
region; SULT1A1: Sulfotrans-
ferase 1A1
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Table 3  Cox regression analysis

a Adjusted for Her2Neu status, histologic grade and classification, tumor size and nodal stage. 3′UTR  3′ 
untranslated region

Univariable analysis Multivariable  analysisa

HR 95 % CI p value HR 95 % CI p value

Age at enrolment (years) 1.017 0.994–1.040 0.146
Tumor size
 T1 1.000 Reference (0.316) 1.00 Reference (0.291)
 T2 1.534 0.880–2.657 0.132 1.266 0.722–2.219 0.410
 T3/T4 1.419 0.424–4.745 0.570 0.478 0.127–1.804 0.276

Nodal status
 N0 1.000 Reference (0.053) 1.00 Reference (0.075)
 N1 1.610 0.867–2.968 0.131 1.691 0.897–3.188 0.104
 N2 2.388 1.029–5.542 0.043 2.562 1.088–6.030 0.031
 N3 3.342 1.230–9.081 0.018 2.898 1.012–8.302 0.048

Grade
 G1 1.000 Reference (0.420) 1.00 Reference (0.153)
 G2 0.899 0.409–1.977 0.792 0.592 0.261–1.345 0.211
 G3 1.330 0.580–3.051 0.500 1.052 0.446–2.483 0.908

HER status
Negative 1.000 Reference 1.00 Reference
Positive 1.402 0.634–3.101 0.404 1.771 0.773–4.059 0.177
Histologic classification
 Ductal classification 1.000 Reference (< 0.001) 1.000 Reference (< 0.001)
 Lobular classification 3.435 1.927–6.121 < 0.001 4.497 2.340–8.643 < 0.001
 Others 1.139 0.403–3.222 0.806 1.467 0.509–4.222 0.478

Progesterone status
 Negative 1.000 Reference
 Positive 0.630 0.337–1.175 0.146

Surgery
Mastectomy 1.00 Reference
Breast conserving 0.838 0.491–1.431 0.518
Surgery axilla
 Sentinel node procedure 1.00 Reference
 Axillary lymph node dissection 1.523 0.879–2.640 0.134

Chemotherapy
 No 1.000 Reference
 Yes 0.923 0.522–1.630 0.781

Radiotherapy
 No 1.000 Reference
 Yes 0.793 0.455–1.383 0.414

Trastuzumab treatment
 No 1.000 Reference
 Yes 1.430 0.646–3.164 0.378

3′UTR SULT1A1 groups
 High activity group 1.000 Reference (0.156) 1.000 Reference (0.131)
 Medium activity group 0.939 0.5434–1.622 0.820 0.991 0.564–1.739 0.974
 Low activity group 0.310 0.093–1.031 0.056 0.297 0.088-1.000 0.050

3′UTR SULT1A1 groups
 High activity group 1.000 Reference 1.000 Reference
 Low activity group 0.308 0.093–1.022 0.054 0.286 0.084–0.976 0.046
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