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Abstract BRCA1-mutated breast cancer is associated

with basal-like disease; however, it is currently unclear if

the presence of a BRCA1 mutation depicts a different entity

within this subgroup. In this study, we compared the

molecular features among basal-like tumors with and

without BRCA1 mutations. Fourteen patients with BRCA1-

mutated (nine germline and five somatic) tumors and basal-

like disease, and 79 patients with BRCA1 non-mutated

tumors and basal-like disease, were identified from the

cancer genome atlas dataset. The following molecular data

types were evaluated: global gene expression, selected

protein and phospho-protein expression, global miRNA

expression, global DNA methylation, total number of

somatic mutations, TP53 and PIK3CA somatic mutations,

and global DNA copy-number aberrations. For intrinsic

subtype identification, we used the PAM50 subtype pre-

dictor. Within the basal-like disease, we observed minor

molecular differences in terms of gene, protein, and

miRNA expression, and DNA methylation variation,

according to BRCA1 status (either germinal or somatic).

However, there were significant differences according to

average number of mutations and DNA copy-number

aberrations, and four amplified regions (2q32.2, 3q29,

6p22.3, and 22q12.2), which are characteristic in high-

grade serous ovarian carcinomas, were observed in both

germline and somatic BRCA1-mutated breast tumors.

These results suggest that minor, but potentially relevant,

baseline molecular features exist among basal-like tumors

according to BRCA1 status. Additional studies are needed

to better clarify if BRCA1 genetic status is an independent

prognostic feature, and more importantly, if BRCA1

mutation status is a predictive biomarker of benefit from

DNA-damaging agents among basal-like disease.
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ID4 Inhibitor of DNA binding 4, dominant negative

helix-loop-helix protein

PIK3CA Phosphatidylinositol-4, 5-bisphosphate

3-kinase, catalytic subunit alpha

Introduction

Studies based on gene expression data have identified and

characterized four main intrinsic subtypes of breast cancer

(luminal A, luminal B, HER2-enriched, and basal-like) [1,

2]. Among them, the basal-like subtype is associated with

young age, BRCA1 germline and somatic mutations [1, 3,

4] and an overall poor prognosis despite that a subgroup of

patients with these tumors has an excellent outcome when

treated with chemotherapy [5]. In the clinical setting, basal-

like tumors are usually identified by the lack of expression

of hormone receptors by immunohistochemistry (IHC) and

lack of overexpression of HER2 by IHC and/or FISH (the

so called triple-negative [TN] status) [1, 2, 6]. Although the

TN definition enriches for basal-like disease, considerable

discordance exists [2, 6].

BRCA1 mutations and other associated molecular traits

might confer sensitivity to specific therapeutic agents [7–

10]. Nevertheless, it is unclear how different, from a bio-

logical perspective, BRCA1-mutated basal-like tumors are

from BRCA1 non-mutated basal-like tumors, and whether

BRCA1 mutation is an independent prognostic and/or pre-

dictive biomarker when the intrinsic subtype is taken into

account [11–15]. This line of thought directed us to for-

mulate the question of how much the biology of basal-like

tumors with BRCA1 mutations differs from the biology of

basal-like tumors without BRCA1 mutations. To address

this question, we interrogated The Cancer Genome Atlas

(TCGA) breast cancer project which provides various types

of molecular data coming from DNA, RNAs, and proteins

[1].

Methods

The Cancer Genome Atlas dataset

In this study, we evaluated TCGA breast cancer dataset and all

data were obtained from the TCGA breast cancer online portal

(https://tcga-data.nci.nih.gov/docs/publications/brca_2012/).

The following files were used. For microarray gene expres-

sion data: ‘‘BRCA.exp.547.med.txt.’’ For reverse-phase

protein array (RPPA) expression data: ‘‘rppaData-

403Samp-171Ab-Trimmed.txt.’’ For sequencing miRNA

expression: ‘‘BRCA.780.mimat.txt.’’ For microarray DNA

methylation variation: ‘‘BRCA.methylation.27 k.450 k.txt.’’

For microarray DNA copy-number aberration data:

‘‘brca_scna_all_thresholded.by_genes.txt.’’ For intrinsic

subtype identification, we used the PAM50 subtype calls as

provided in the TCGA portal.

Independent dataset

We evaluated an independent and publicly available

microarray-based gene expression dataset (GSE40115) that

includes breast tumors from 32 patients with basal-like

disease (20 with BRCA1 germline mutations and 12 with

sporadic tumors [i.e. unknown BRCA1 status]). The file

‘‘GSE40115-GPL15931_series_matrix.txt’’ with the nor-

malized log2 ratios (Cy5 sample/Cy3 control) of probes

was used. Probes mapping to the same gene (Entrez ID as

defined by the manufacturer) were averaged to generate

independent expression estimates.

Seven-TN subtype classification

To identify the 7-TN subtypes described by Lehmann et al.

[16], (i.e., basal one, basal two, immunomodulatory,

luminal androgen receptor, mesenchymal, mesenchymal

stem cell, and unstable), we submitted the raw gene

expression data of each individual dataset of basal-like

disease to the TNBC type online predictor (http://cbc.mc.

vanderbilt.edu/tnbc/) [17].

Statistical analysis

All multiple-testing comparisons were done using an unpaired

two-class significance analysis of microarrays (SAM, http://

www-stat.stanford.edu/*tibs/SAM/). The mutation rates of

TP53 and PIK3CA genes between two groups, the 7-TN

subtype distribution between BRCA1-mutated and non-

mutated basal-like tumors, and the amplification rates of ID4

between two groups, were compared using the Chi square and

Fisher’s exact tests. The total number of somatic mutations

between two groups was compared using a Student’s t test. All

statistical computations were performed in R v.2.15.1 (http://

cran.r-project.org).

Results and discussion

From TCGA breast cancer dataset, we identified 12 tumor

samples with BRCA1 germline mutations (all classified as

deleterious), seven tumor samples with somatic BRCA1

mutations, and one tumor sample with both BRCA1

germline and somatic mutations (Supplemental Material).

As expected, 70 % of BRCA1 mutated tumors where of the

basal-like intrinsic subtype (nine germline and five
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somatic), but luminal A (two germline, one germline/

somatic, and one somatic), luminal B (one germline), and

HER2-enriched (one somatic) tumors were also identified

(Fig. 1). Similarly, 66.7 % of BRCA1 mutated tumors were

TN.

Within basal-like disease, we observed minor molecular

differences (0–1.1 %) in terms of gene expression, protein

expression, miRNA expression, and DNA methylation

variation according to BRCA1 status (Table 1 and Sup-

plemental Material). Indeed, no genes among 17,876 genes

were found differentially expressed between basal-like

BRCA1-mutated tumors versus basal-like BRCA1 non-

mutated tumors (Table 1), including the BRCA1 mRNA

transcript (Fig. 2). Similar results were observed when only

the tumors with BRCA1 germline mutations were taken

into consideration (Supplemental Material). Concordant

with this result, analysis of microarray gene expression

data of an independent dataset of 32 tumors with basal-like

disease (20 with a BRCA1 germline mutation and 12 with

sporadic tumors) revealed only 0.03 % differentially

expressed genes (6 of 21,848, false discovery rate

Fig. 1 Intrinsic profile of BRCA1-mutated breast tumors. Hierarchical clustering of 509 breast samples of the cancer genome atlas (TCGA)

project using the *1,900 intrinsic gene list [30]. PAM50 intrinsic subtype calls [30] and BRCA1 mutation status is shown below the array tree

Table 1 Significant molecular

differences between basal-like

BRCA1-mutated tumors

(n = 14) and basal-like BRCA1

non-mutated tumors (n = 79)

RPPA reverse-phase protein

arrays, FDR false discovery rate

BRCA1WT BRCA1 wild-type,

BRCA1MUT BRCA1 mutated

Total biomarkers evaluated Type of

evaluation

Comparison

(more expressed

or amplified)

Significant

biomarkers

identified

(FDR = 0 %)

Percentage

of altered

biomarkers (%)

17,786 (unique genes) Expression BRCA1MUT 0 0

BRCA1WT 0

171 (unique proteins or

phospho-proteins by

RPPA)

Expression BRCA1MUT 0 0.6

BRCA1WT 1

1,222 (mature/star miRNA

strands)

Expression BRCA1MUT 3 0.2

BRCA1WT 0

530 (unique genes) Methylation BRCA1MUT 0 1.1

BRCA1WT 6

19,613 (unique genes) DNA

amplification

BRCA1MUT 250 1.3

BRCA1WT 0

Fig. 2 Relative BRCA1 gene expression in basal-like disease based

on BRCA1 mutational status. Data have been obtained from the

TCGA breast cancer project. The BRCA1 gene expression has been

median centered across all breast cancer samples with DNA-seq data

(i.e., basal-like and not basal-like). The p-value was calculated by

comparing gene expression means across the three groups. In red

color, breast samples with C2-fold decrease in BRCA1 expression

compared to its median expression in breast cancer are shown
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[FDR] = 0 %) between the two groups [18] (Supplemental

Material). In addition, we did not identify significant dif-

ferences in the proportion of the recently reported 7-TN

subtype classification proposed by Lehmann and col-

leagues [16], between basal-like tumors with and without

BRCA1 mutations (Supplemental Material). Interestingly,

two clear groups within the basal-like BRCA1 wild-type

disease were identified based on BRCA1 mRNA expres-

sion-only (i.e., high and low) (Fig. 2).

In terms of DNA copy-number aberrations, we identified

250 genes (representing 14 different DNA regions and

1.3 % of all genes evaluated) showing higher amplification

rates in basal-like BRCA1-mutated tumors compared to

basal-like BRCA1 wild-type tumors (Table 2). Among

Table 2 DNA regions found significantly more amplified in basal-like BRCA1-mutated tumors (n = 14) compared to basal-like BRCA1 non-

mutated tumors (n = 74)

Basal-like BRCA1

mutated

HGSOC Genes

6p22.3 6p22.3 FAM65B, TDP2, ACOT13, ALDH5A1, GPLD1, KIAA0319, MRS2, C6orf62, GMNN, DCDC2, CMAHP,

KAAG1, KIF13A, DEK, NRSN1, E2F3, MBOAT1, RNF144B, CDKAL1, KDM1B, NHLRC1, TPMT, ID4,

HDGFL1, PRL, LINC00340, SOX4, CAP2, FAM8A1, NUP153, RBM24, MYLIP, GMPR, ATXN1,

DTNBP1, JARID2

3q29 3q29 FYTTD1, KIAA0226, DLG1, BDH1, LOC220729, CEP19, LOC152217, MFI2, NCBP2, PAK2, PIGX, PIGZ,

SENP5, ACAP2, ANKRD18DP, FAM157A, LMLN, IQCG, LRCH3, C3orf43, FBXO45, LRRC33,

RNF168, UBXN7, WDR53, APOD, MUC20, MUC4, OSTalpha, PCYT1A, PPP1R2, SDHAP1, SDHAP2,

TCTEX1D2, TFRC, TM4SF19, TNK2, ZDHHC19, XXYLT1, FAM43A, LSG1, TMEM44, RPL35A,

ATP13A3, ATP13A4, ATP13A5, CPN2, GP5, HES1, HRASLS, LOC100128023, LOC100131551,

LRRC15, MB21D2, MGC2889, OPA1

2q32.2 2q32.2 COL3A1, COL5A2, DIRC1, NAB1, TMEM194B, C2orf88, GLS, HIBCH, INPP1, MFSD6, MSTN, STAT4,

SLC40A1, WDR75, ORMDL1, OSGEPL1, PMS1, ANKAR, ASNSD1, STAT1

22q12.2 22q12.2 AP1B1, ASCC2, CABP7, CCDC157, DEPDC5, DRG1, DUSP18, EIF4ENIF1, EMID1, EWSR1, GAL3ST1,

GAS2L1, GATSL3, HORMAD2, INPP5 J, LIF, LIMK2, MORC2, MORC2-AS1, MTFP1, MTMR3, NEFH,

NF2, NIPSNAP1, OSBP2, OSM, PATZ1, PES1, PIK3IP1, PISD, PLA2G3, PRR14L, RASL10A, RFPL1,

RFPL1-AS1, RHBDD3, RNF185, RNF215, SDC4P, SEC14L2, SEC14L3, SEC14L4, SELM, SF3A1, SFI1,

SLC35E4, SMTN, SNORD125, TBC1D10A, TCN2, THOC5, TUG1, UQCR10, ZMAT5

10q25.3 – TRUB1, CASP7, ATRNL1,FAM160B1, PDZD8, SLC18A2, C10orf96, C10orf81, DCLRE1A, HABP2,

NHLRC2, NRAP, KCNK18, KIAA1598, VAX1, GFRA1, PNLIP, PNLIPRP1, PNLIPRP2, PNLIPRP3,

C10orf82, HSPA12A, ADRB1, AFAP1L2, C10orf118, TDRD1, VWA2, ABLIM1

10q26.11 – PRLHR, FAM204A, BAG3, INPP5F, TIAL1, C10orf46, MCMBP, SEC23IP, CASC2, EMX2, EMX2OS,

RAB11FIP2, EIF3A, FAM45A, GRK5, NANOS1, PRDX3, RGS10, SFXN4, SNORA19

22q11.22 – GGTLC2, GNAZ, LOC648691, LOC96610, POM121L1P, PPM1F, PRAME, RAB36, RTDR1, TOP3B,

VPREB1, ZNF280A, ZNF280B

22q11.23 – ADORA2A, BCR, BCRP3, C22orf13, C22orf15, C22orf43, C22orf45, CABIN1, CHCHD10, CRYBB2,

CRYBB3, DDT, DDTL, DERL3, FAM211B, GGT1, GGT5, GSTT1, GSTT2, GSTTP1, GSTTP2,

GUSBP11, IGLL1, IGLL3P, KIAA1671, LOC391322, LRP5L, MIF, MMP11, PIWIL3, POM121L10P,

POM121L9P, RGL4, SGSM1, SLC2A11, SMARCB1, SNRPD3, SPECC1L, SUSD2, TMEM211, TOP1P2,

UPB1, VPREB3, ZDHHC8P1, ZNF70

22q12.1 – ADRBK2, ASPHD2, C22orf31, CCDC117, CHEK2, CRYBA4, CRYBB1, HPS4, HSCB, KREMEN1, MIAT,

MN1, MYO18B, PITPNB, SEZ6L, SRRD, TFIP11, TPST2, TTC28, TTC28-AS1, XBP1, ZNRF3

22q12.3 – C22orf24, C22orf42, SLC5A1, YWHAH, BPIFC, C22orf28, FBXO7, RFPL2, RFPL3, RFPL3-AS1, SLC5A4,

SYN3, APOL5, APOL6, HMOX1, MB, MCM5, RASD2,TOM1, TIMP3, CACNG2, IFT27, PVALB, NCF4,

C1QTNF6, C22orf33, CSF2RB, IL2RB, KCTD17, MPST, TMPRSS6, TST, ISX, HMGXB4, LARGE,

APOL3, RBFOX2, EIF3D, FOXRED2, TXN2, APOL1, MYH9, APOL2, APOL4

2q32.1 – ZSWIM2, ZNF804A, FAM171B, ITGAV, GULP1, CALCRL, TFPI, ZC3H15, DNAJC10, DUSP19, NUP35,

FRZB, NCKAP1, PDE1A

2q33.2 – CTLA4, ICOS, CD28, RAPH1, FAM117B, ICA1L, ABI2, ALS2CR8, WDR12, CYP20A1, NBEAL1

3q28 – CCDC50, FGF12, OSTN, PYDC2, UTS2D, CLDN1, CLDN16, GMNC, IL1RAP, LEPREL1, SNAR-I,

TMEM207, TP63, TPRG1

6p21.31 – NUDT3, C6orf1, HMGA1, BAK1, GGNBP1, LINC00336, ANKS1A, C6orf126, C6orf127, C6orf81, CLPS,

FKBP5, GRM4, LHFPL5, LOC285847, SCUBE3, SNRPC, SRPK1, TAF11, TCP11, UHRF1BP1,

SLC26A8, C6orf125, IP6K3, ITPR3, LEMD2, MLN, RPL10A, TEAD3, TULP1, ZNF76, C6orf106,

PACSIN1, RPS10, SPDEF, BRPF3, C6orf222, MAPK13, MAPK14, PNPLA1, DEF6, FANCE, PPARD,

ETV7, PXT1, KCTD20, SRSF3, STK38

HGSOC high-grade serous ovarian carcinoma

188 Breast Cancer Res Treat (2014) 147:185–191
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them, we identified four regions (2q32.2, 3q29, 6p22.3, and

22q11.2) that have been previously shown to be amplified

and characteristic of high-grade serous ovarian carcinomas

[19]. Interestingly, region 6p22.3 contains ID4, a gene long

known to be a marker of basal-like breast cancers [20], and

known to code for a DNA-binding protein that negatively

regulates BRCA1 expression in breast and ovarian cancers

[21]. This gene was found amplified (i.e. low or high gains)

in 78.6 % (11/14) of basal-like BRCA1 mutated tumors

versus 35.1 % (26/74) of basal-like BRCA1 wild-type

tumors (p = 0.008, Fisher’s exact test). Similar results

were observed when the BRCA1 somatic mutations were

excluded (Supplemental Material). The biological role of

ID4 amplification in BRCA1 mutated breast cancer is cur-

rently unknown, and we could hypothesize that ID4 might

inhibit residual function of mutant BRCA1.

In terms of somatic gene mutations, basal-like BRCA1

mutated tumors showed higher average number of muta-

tions than basal-like BRCA1 wild-type tumors (122.6 vs.

80.3, p = 0.004, Student’s t test). Regarding the distri-

bution of TP53 and PIK3CA somatic mutations according

to BRCA1 status, TP53 mutations were found in 100 %

(14/14) of basal-like BRCA1 mutated versus 75.9 % (60/

79) of basal-like BRCA1 wild-type tumors (p = 0.065,

Fisher’s exact test). Finally, PIK3CA mutations were

found in 0 % (0/14) of basal-like BRCA1 mutated tumors

versus 10.1 % (8/79) of basal-like BRCA1 wild-type

tumors (p = 0.602).

In our analysis, most of the unique molecular features of

basal-like BRCA1 mutated tumors were found at the DNA

level (i.e. amplifications and mutation rates). Indeed, basal-

like BRCA1 mutated tumors showed higher amplification

rates at 14 different chromosomal regions and higher

number of somatic mutations, including TP53, compared to

basal-like BRCA1 wild-type tumors. However, no signifi-

cant differences in protein expression were found when

comparing basal-like BRCA1 mutated and BRCA1 wild-

type tumors. These results suggest that the genomic

instability induced by BRCA1 loss [22] does not translate

into a recognizable phenotype at the RNA and protein

level. The potential explanation of these findings is cur-

rently unknown. Nonetheless, the fact that 4 out of 14

(28.5 %) amplified DNA regions were found to be char-

acteristic regions of high-grade serous ovarian carcinomas

suggests that, among basal-like breast tumors, those with a

BRCA1 mutation are more similar to ovarian carcinoma at

the genetic level.

In our analysis, the absence of recognizable prominent

differences in molecular alterations based on BRCA1

mutation status would be in line with previous clinical data

suggesting that BRCA1 status per se might not play a major

role in conferring a distinct prognosis within basal-like

disease. Results from three retrospective studies that have

evaluated the prognostic role of BRCA1/2 mutations

(mostly BRCA1) in TN breast cancer support this hypoth-

esis [13–15]. In Bayraktar et al. [13], BRCA1/2 status was

not found to be prognostic in 227 women with early TN

breast cancer referred to genetic counseling. Similar results

were observed in a cohort of 195 patients with metastatic

breast cancer, where the independent prognostic value of

BRCA1 in univariate analyses was lost when TN status and

other clinical-pathological variables were taken into

account [14]. More recently, Huzarski et al. [15] evaluated

the association of germline BRCA1 mutation status with

10 year overall survival in 3,350 polish women with a

diagnosis of breast cancer. The authors observed that

BRCA1 mutation status was significantly associated with

worse outcome when standard clinical-pathological vari-

ables were taken into account [15]. However, among

patients with TN breast cancer, BRCA1 status was not

associated with worse outcome [15].

The role of the BRCA1 mutation status as a predictive

factor of treatment response among TN breast cancer is

also under study. On the one hand, two retrospective

studies have evaluated the ability of BRCA1 mutation

status to predict response to multi-agent chemotherapy [11,

12]. In the first study, Arun and colleagues showed no

significant differences in terms of pathological complete

response rates after neoadjuvant chemotherapy (mostly

anthracycline/taxane-based) among 75 patients with TN

breast cancer in relation to their BRCA1 status [11]. In the

second study, Gonzalez-Angulo et al. [12] observed a

better outcome in BRCA1/2 mutated TN breast cancer

compared to BRCA1/2 non-mutated TN breast cancers after

treatment with adjuvant anthracycline/taxane-based che-

motherapy. On the other hand, two recent prospective

clinical trials (GeparSixto [23] and CALGB40603 [24])

have demonstrated the value of adding carboplatin, a DNA-

damaging agent, to standard neoadjuvant anthracycline/

taxane-based chemotherapy in 769 patients with newly

diagnosed TN breast cancer, regardless of their BRCA1

mutational status.

Previous retrospective studies have suggested that

BRCA1 mutated tumors might substantially benefit from

platinum [9, 25]. In fact, in the GeparSixto TN trial [23,

26], recent data reported higher pCR rates in BRCA1/2-

mutated patients compared to BRCA1/2 non-mutated

patients. Nevertheless, data on the intrinsic subtype of the

TN wild-type tumors in this clinical trial have not been

reported yet and it might be interesting to analyze whether

the basal-like benefits the most. Supporting the hypothesis

that basal-like BRCA1 non-mutated breast cancers might

also benefit to some extent from DNA-damaging agents,

several studies have identified BRCA1 mutation-unrelated

mechanisms of platinum sensitivity in TN BRCA1 wild-

type breast cancer such as the p63/p73 network, telomeric
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allelic imbalance, and homologous recombination defi-

ciency [27–29].

Conclusions

In this study, we compared DNA, RNA, and protein data

among basal-like tumors with and without BRCA1 muta-

tions and observed that minor molecular features exist. The

clinical relevance of these differences is unknown and

further validation in larger and prospective cohorts is

warranted. Biomarker analyses are needed to clarify if

BRCA1 status is an independent prognostic feature and/or a

predictive biomarker of benefit from DNA-damaging

agents beyond the basal-like phenotype.
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