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Abstract Breast cancer is a collection of diseases with

distinct molecular traits, prognosis, and therapeutic options.

Luminal A breast cancer is the most heterogeneous, both

molecularly and clinically. Using genomic data from over

1,000 Luminal A tumors from multiple studies, we analyzed

the copy number and mutational landscape of this tumor

subtype. This integrated analysis revealed four major sub-

types defined by distinct copy-number and mutation profiles.

We identified an atypical Luminal A subtype characterized

by high genomic instability, TP53 mutations, and increased

Aurora kinase signaling; these genomic alterations lead to a

worse clinical prognosis. Aberrations of chromosomes 1, 8,

and 16, together with PIK3CA, GATA3, AKT1, and MAP3K1

mutations drive the other subtypes. Finally, an unbiased

pathway analysis revealed multiple rare, but mutually

exclusive, alterations linked to loss of activity of co-repres-

sor complexes N-Cor and SMRT. These rare alterations were

the most prevalent in Luminal A tumors and may predict

resistance to endocrine therapy. Our work provides for a

further molecular stratification of Luminal A breast tumors,

with potential direct clinical implications.
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Introduction

Evidence from multiple studies converges in defining

breast cancer as a collection of distinct diseases with dif-

ferent molecular traits, prognosis, and therapeutic options.

These diseases are mostly characterized by the status of

hormone and growth factor receptors. Estrogen receptor

(ER), progesterone receptor (PR), and the Her2 tyrosine

kinase play a major role in determining the molecular

phenotype of the tumor and dictate treatment [1–5]. In the

clinic, the most frequently occurring type of breast cancer

is Her2-, ER?, and/or PR?, which represents *150,000

cases each year in the US.

RNA expression-based signatures [6, 7] provided further

insights into the diversity of breast tumors. By expression

profiling, the large majority of ER? and/or PR? tumors are

of the ‘‘luminal subtypes’’ [7, 8]. These tumors can be sub-

divided into Luminal A and Luminal B, with the former being

typically low grade and associated with a better prognosis

[9]. Luminal A is overall the most frequently occurring

breast cancer expression subtype in the population. mRNA-

derived subtypes also include Basal-like breast tumors,

which are predominantly negative for ER, PR, and Her2, and

Her2-enriched tumors, which are positive for Her2 (Fig. 1a).

Recently, major genomic studies further investigated the

heterogeneity of breast tumors using multiple genomic tech-

nology platforms and approaches [10–16]. The most compre-

hensive of these studies, from The Cancer Genome Atlas

(TCGA), assayed over 800 breast tumors with six different

platforms including SNP arrays for DNA copy number
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alterations (CNA), whole exome sequencing, mRNA expres-

sion microarrays, DNA methylation, and protein expression

and phosphorylation using reverse phase protein arrays (RPPA)

[10]. Collectively, these studies revealed further complexity

and diversity between and within the known subtypes.

In particular, a rather heterogeneous spectrum of CNAs

and somatic mutations has been observed across luminal

tumors [10–12]. Luminal A and Luminal B tumors have

been associated with multiple and distinct copy number-

driven clusters in both the dataset from TCGA [10] and the

one from METABRIC [12], indicating that different copy

number changes characterize subsets of these tumors

(Fig. 1b). Similarly, despite an overall low mutation rate

per tumor, Luminal B and especially Luminal A tumors

have the highest number of genes mutated more frequently

than expected by chance as a class [10]. We confirmed this

trend by integrating three different datasets (TCGA [10],

Broad [16], and WashU [11]) and estimated the statistical

significance of recurrence in the unified dataset (Fig. 1c;

Table 1). Importantly, Luminal heterogeneity extends to

tumor prognosis. Luminal A tumors, while associated with
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Fig. 1 a Schematic stratification of breast cancer subtypes based on

receptor status, ER and Her2, and PAM50 mRNA-derived signatures.

b The table shows statistically significant intersections between the

PAM50 subtypes (arranged horizontally) and copy number-driven

clusters (arranged vertically) from the METABRIC and TCGA

datasets. c Average number of mutations per sample (white) and

number of recurrently mutated genes (black) are shown for the four

major PAM50 subtypes. Luminal tumors have fewer mutations per

samples, but they tend to affect similar genes. d Boxplot statistics of

disease survival is shown for deceased patients from the METABRIC

dataset across the four major PAM50 subtypes. While Luminal A

tumors have the longest average survival, they also have the largest

diversity

Table 1 Luminal A breast cancer cohorts

Cohort No. of

samples

Data analyzed in this

study

Reference

TCGA 209 Copy number

alterations (CNA)

TCGA [10]

Somatic mutations

Pathway

METABRIC 721 CNA Curtis et al. [12]

Survival

Broad 45 Somatic mutations Banerji et al. [16]

Sanger 79a Somatic mutations Nik-Zainal et al.

[14, 15]

Wash U 25 Somatic mutations Ellis et al. [11]

Chin 42 CNA Russnes et al.

[19]Survival

MicMa 9 CNA

Survival

ULL 26 CNA

Survival

a (ER? tumors)
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the highest median overall survival, are also characterized

by the most variability in survival (Fig. 1d). Moreover, it

has been shown that the risk of late mortality in this sub-

type persists at least over 10 years after initial diagnosis,

and is higher than in the other subtypes in the long term

[17].

These preliminary observations point to Luminal A

breast cancer as the most heterogeneous both molecularly

and clinically. The diversity and incidence of this tumor

call for in depth genomic studies to explain its molecular

heterogeneity and link it to clinical outcome.

To this purpose, we integrated data from six different

datasets to explore the genomic complexity of over 1,000

Luminal A tumors (Table 1). We used the TCGA dataset

consisting of 209 Luminal A tumors as a discovery dataset

(Table S1) and confirmed our findings in the other cohorts.

We identified reproducible subgroups within this subtype,

each of which showed distinct DNA CNA, somatic muta-

tions, pathway alterations, and clinical outcome.

Materials and methods

Genomic data

Data from the TCGA study is accessible through the

TCGA web portal at https://tcga-data.nci.nih.gov/tcga/

tcgaHome2.jsp. Data from METABRIC dataset was made

available upon request and is now accessible through the

European Genome–phenome Archive (EGA) with the

accession number EGAS00000000083. Raw and pre-pro-

cessed aCGH data for the Russnes et al. combined dataset

can be accessed through the Gene Expression Omnibus

(GEO) repository with accession numbers: GSE8757 [18],

GSE20394 [19], and GSE19425 [20]. Mutation data for the

Ellis et al. and Banerji et al. dataset are available as sup-

plemental information within the respective publications.

The datasets used in this manuscript can be explored using

the cBio Cancer Genomics Portal at http://www.cbioportal.

org/public-portal/ [21].

Recurrent mutations in breast cancer subtypes

In this work, we account for somatic mutations reported by

multiple studies [10, 11, 16]. To estimate statistical sig-

nificance of recurrent mutations across multiple datasets,

we integrated the full set of reported mutations from these

studies and used the binomial distribution to model the

somatic mutation frequencies of genes. Given N samples,

to estimate if a gene had a higher somatic mutation rate

(mutations per nucleotide) than expected by chance, we

evaluated if a gene with K observed non-silent mutations

(summed over all tumor samples: K ¼
PN

i¼1 ki) and a

global coding sequence of length L (summed over all tumor

samples: L = l * N) had more mutations than expected,

i.e., the average somatic mutation rate for all genes (G)

with observed somatic mutations p ¼ 1
G

PG
i¼1

Ki

Li
:

Thus:

PðX�KÞ ¼ 1� PðX\KÞ ¼
PK�1

i¼0

L

i

� �

pið1� pÞL�i:

From the set of p-values we estimated corresponding

false discovery rates, or q-values, using the Benjamini–

Hochberg procedure [22].

Copy number clustering

DNA copy number data were produced and processed for

TCGA at the Broad Institute [10]. Briefly, copy number

levels were inferred from Affymetrix SNP 6.0 CEL files by

Birdseed and tangent normalization. Segmentation was

then performed by Circular Binary Segmentation [23].

Copy number clustering was performed on normalized and

segmented copy number data. A unified breakpoint profile

(region by sample matrix) was derived by combining all

breakpoints across all samples and determining the mini-

mal common regions of change. Unified breakpoint profiles

were computed using the R package CNTools [24] from

Bioconductor [25] (http://bioc.ism.ac.jp/2.5/bioc/html/

CNTools.html). Hierarchical clustering was done using

the R function hclust, with manhattan distance and Ward’s

agglomeration method [26].

Cluster centroids for each copy number cluster derived

from the Luminal A TCGA dataset were computed by

averaging cluster member features (unified breakpoints).

For each centroid we determined the most intrinsically

variable breakpoints using the median absolute deviation

(MAD) measure. Unified breakpoints with MAD [ 0.1

were selected to define the cluster centroids. Average MAD

values for this subset is threefold higher than the average of

the remaining breakpoints, and twofold higher than the

overall average (Fig. S1).

Samples from the METABRIC dataset have been

assigned to the cluster whose centroid shows the highest

correlation. Pearson correlation coefficient is a scale-

independent measure and, thus, able to overcome the dif-

ficulty of comparing copy number values obtained with

different platforms and on different scales. Nonetheless, we

identified few samples (20 out of 594) with low correlation

values with each centroids (pearson \ 0.1). This subset is

characterized by flat copy number spectra, such that all

probes have identical values close to zero, with the

exception of a few isolated probes likely to be either arti-

facts of the array or germline copy number variation
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(CNV). These flat samples have been assigned to the Copy

Number Quiet subtype.

The quality of the clusters obtained with the centroids

has been evaluated by different metrics: the clusters show

similar proportions as those observed for the TCGA dataset

(Fig. 1b), in-group proportion (IGP) values determined as

in [27] are statistically significant (p \ 0.001 for all clus-

ters, Fig. 1b), and copy number pattern of alterations are

remarkably similar to those observed in the TCGA dataset

(Fig. S2).

Survival analysis

Survival analysis on the METABRIC dataset has been per-

formed using the R package survival (http://cran.r-project.

org/web/packages/survival/index.html) [26]. Patient follow-

up has been limited to 15 years, and deaths related to other

causes have been ignored in the analysis. The same analysis

was performed for the Russnes et al. [19] dataset consisting

of 77 Luminal A samples and combined three different

cohorts: Ull cohort [19] (26 Luminal A samples), MicMa

cohort [20] (9), and Chin cohort [18] (42).

Cox regression multivariate analysis was performed

suing the coxph function from the survival R package.

Multivariate analysis was used to assess dependencies

between the classification induced by the Copy Number

High (CNH) cluster and multiple covariates: tumor size,

grade, stage, and age at diagnosis. This information was

available for 468 Luminal A samples in the METABRIC

dataset.

Subtype enrichment analysis

Given the tremendous heterogeneity displayed by Luminal

A breast tumors, we analyzed the overall spectrum of

genomic alterations across different subtypes looking for

copy number subtype-specific patterns. Our approach relies

on the general abstraction of gene alteration per sample,

where each alteration belongs to one of the three catego-

ries: (a) gene is altered by mutations; (b) gene is primarily

altered by CNA, and mRNA expression levels correlate

with copy number changes; (c) ‘‘Wild-card’’ events (e.g.,

gene shows aberrant mRNA expression and/or methylation

status independent of mutations and copy number).

These categories rely on two systematic approaches: for

mutations we selectively analyzed the list of SMGs iden-

tified by the algorithm MuSiC [28], for copy number we

analyzed frequently amplified and deleted region of interest

(ROI) as identified by GISTIC [29]. We used the set of

wide copy number gains and losses as the wild-card events.

First, we selected the chromosome arms that were found to

be recurrently gained or lost by GISTIC in [10]. Second,

for each event we classified a sample as altered if segments

accounting for at least 50 % of the whole chromosome arm

length had values above (gain) or below (loss) selected

thresholds. In this study, we used T = 0.15 as the absolute

value for the threshold, where gains are defined by copy

number level [T and losses by copy number levels \-T.

To systematically look for subtype-specific genomic

events, we developed a method called Subtype-Enriched

Alterations (SEA). Subtype enrichment is tested in two

steps: (1) the distribution of alterations is compared to the

expected distribution given in the number of samples that

belong to each subtype by a goodness-of-fit test; (2) a

hypergeometric p-value is derived for the subtype with the

highest percentage of alterations when compared against

all others. Enrichment p-values are then corrected for

multiple testing [22]. Alterations in each category are tes-

ted separately and treated independently.

Differential mRNA expression analysis

To characterize the CNH subtype, beyond CNA and

somatic mutations, we looked for genes differentially

expressed between CNH tumors and the rest of Luminal A.

We tested each gene by ANOVA, computed nominal p-

values and corrected for multiple testing. High level

amplification of the 8q region in the CNH group strongly

influences this analysis with a high presence of genes

located in this region. For this reason we used slightly less

strict thresholds to select genes with nominal p-

value \ 0.05 and FDR-corrected q-value \ 0.2.

Using this procedure we extracted two lists, one for

genes that are up-regulated in CNH tumors, and one for

genes that are down-regulated in the same set when com-

pared to the other Luminal A tumors. Each list has been

tested for functional enrichment using the DAVID Func-

tional Annotation Tool [30].

Interestingly, despite a high number of genes from the

highly amplified genomic region 8q21–24, only 3 out of 59

genes associated to ‘‘mitotic cell cycle’’ (GO: 0000278) are

in this locus. Thus, mRNA up-regulation driven by this

amplification does not seem to be related with mitosis

regulation, spindle assembly, and chromatids segregation.

We repeated the same functional enrichment test [30] after

removing genes from 8q21–24, and separately for the up-

regulated genes in this region to untangle potential differ-

ent phenotypes associated to this copy number amplifica-

tion and to other mRNA aberrations independent of it.

Up-regulated genes in CNH Luminal A that are not in

the 8q21–24 region are similarly highly enriched for

‘‘mitosis cell cycle’’ (GO: 0000278), but also for related

processes like ‘‘cell division’’ (GO: 0051301), ‘‘spindle’’

(GO: 000581), and ‘‘nuclear division’’ (GO: 0000280).

These categories show elevated expression of both Aurora
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kinase A and B, as well as several genes in their pathways

(e.g., PLK1, CDC25B, CCNA2, CDK1, INCENP, BIRC5,

CDCA3/5/8, KIF2C). On the other hand, up-regulated

genes in 8q21–24 were not found to be enriched for any

functional annotation.

Mutual exclusivity analysis

All pairwise tests of mutual exclusivity were done using

the switching permutation procedure described in [31].

This permutation strategy has the desirable property of

preserving both number of alterations per gene and number

of alterations per samples.

Mutual exclusivity modules (MEMo) were identified

using the algorithm MEMo [31]. MEMo automatically

identifies mutually exclusive alterations targeting fre-

quently altered genes that are likely to belong to the same

pathway. Genomic events were defined, as described in the

previous section, following the ‘‘gene alteration per sam-

ple’’ abstraction and including focal copy number altered

regions from GISTIC and recurrently mutated genes

identified by MuSiC. Wild-card events included NF1

down-regulation (\1.5 standard deviations from the aver-

age) observed in 12 cases. The corresponding oncoprints

for these modules are shown in Fig. S3 highlighting sample

specific alterations in each module (samples are in the

columns, altered genes in the rows). Module oncoprints

were generated using the cBio Cancer Genomics Portal

[21].

Results

The landscape of Luminal A CNA

Luminal A tumors show great heterogeneity in terms of

somatic mutations and CNA [10], indicating that additional

substructure may be present within this large group. Dis-

secting the genetics of this tumor could be fundamental to

inform therapeutics and predict clinical outcome.

We first explored the spectrum of copy number changes

across Luminal A tumors, to identify novel and subset-

specific alterations. We performed hierarchical clustering

of Affymetrix 6.0 SNP copy number data from 209

Luminal A tumors from the TCGA dataset. Segments of

uniform copy number value for each patient were com-

pared to compute the set of unified breakpoints across the

whole dataset, and the so determined set of minimal seg-

ments of change were used as features for the clustering

procedure. Hierarchical clustering of copy number changes

across the whole genome on the TCGA dataset revealed a

complex structure of recurrent patterns of alterations.

Based on clustering results and recurrent CNA, we were

able to identify four major characteristic patterns and a

mixed group (Fig. 2a; Table S1).

The first major pattern is characterized by 1q gain and

16q loss (1q/16q pattern, clusters a, b, and c). This pattern

has been frequently observed in breast tumors and has been

associated with the translocation der(1;16) [32, 33]. The

1q/16q pattern is dominant in cluster a, which features

otherwise mostly diploid genomes. By contrast, cluster b is

characterized by a broad deletion occurring on 6q, and

cluster c has concurrent 11q13–14 focal amplification and

11q loss. High level amplification of the 11q13 and 11q14

loci is frequently observed in breast tumors and minimal

regions of overlap target CCND1 and PAK1, respectively.

Notably, these amplicons significantly co-occur with loss

of the remaining part of the 11q arm across all tumors in

the TCGA dataset (p = 6E-8, by one-tail-Fisher’s exact

test).

Another group of Luminal A patients is characterized by

a surprisingly quiet copy number spectrum (Copy Number

Quiet pattern). These tumors (cluster d) have almost

completely diploid genomes, with only few cases showing

whole arm loss of 16q.

The third group includes clusters e, f, and g, and is

strongly characterized by CNA of chromosome 8, with loss

of 8p and gain of 8q (Chr8-associated pattern). Within this

group, cluster f shows an interesting pattern of CNA, where

8p loss and 8q gain co-occur with 16p gain and 16q loss.

These gains and losses affect the whole arms of the chro-

mosomes, and in this group they do not co-occur with other

CNAs. Cluster g, on the other hand, displays more copy

number changes and is enriched for focal amplifications of

8p11.23–22 (FGFR1, ZNF703, and WSHC1L1), 8p11.21

(IKBKB), and 11q13–14 (Table S2).

The fourth group is characterized by the highest level of

genomic instability among Luminal A tumors, including

multiple focal CNAs (CNH pattern, cluster h). This group

shows recurrent 20q gain, 5q loss, 8p loss, 8q gain, and is

enriched for focal amplifications of the MYC oncogene on

8q24.21 (Table S2). Finally, the Mixed group is charac-

terized by frequent whole-arm and whole-chromosome

gains and losses, lacking the recognizable patterns seen in

the other four groups (cluster i).

We validated our clusters using the 721 Luminal A sam-

ples from the METABRIC dataset [12]. We classified these

tumors using centroids derived from the TCGA Luminal A

dataset to identify clusters with the same alteration patterns

(Fig. S2; Table S3). The clusters obtained from the META-

BRIC dataset occurred in similar proportions as the TCGA

clusters and their quality was confirmed by the IGP [27]

measure (Fig. 2b). Interestingly, the CN-Quiet and Chr.8-

associated clusters show strong correspondences with two of

the Luminal-enriched clusters from METABRIC and col-

leagues (IC4 and IC7, respectively), whereas components of

Breast Cancer Res Treat (2013) 141:409–420 413

123



the Mixed and CN-High groups are spread across multiple

clusters (Fig. 2c).

The landscape of Luminal A somatic mutations

Distinct copy number patterns frequently come in tandem

with equally variable landscapes of somatic mutations.

Indeed, despite the lowest mutation rate among breast

cancer subtypes, the Luminal A subtype shows the largest

number of genes mutated with statistically significant

recurrence (Fig. 3a; Table 2).

The most frequently mutated genes ([10 %) are

PIK3CA, GATA3, MAP3K1, and TP53. Interestingly, all

show significant associations with recurrent copy number

patterns. PIK3CA and GATA3 mutations are mostly found

in tumors with low CNA (CN-Quiet and 1q/16q), and in

particular GATA3 mutations are enriched for the 1q/16q

subgroup (pGATA3 = 0.009). Notably, 9 out of 15 hotspot

mutations for GATA3 are in this subgroup. MAP3K1

mutations are enriched in the Chr.8-associated subgroup

(pMAP3K1 = 4.22E-04). MAP3K1 mutations strongly co-

occur with the 8p-/8q?/16p?/16q- pattern observed in

cluster f (pMAP3K1(f) = 1.9E-5), and thus, are largely

mutually exclusive with focal amplification of 8p11.23–21

(Fig. 3b). All MAP3K1-mutated cases harbor at least one

inactivating mutation, indicating loss of function, and most

of them have at least two mutations, suggesting bi-allelic

inactivation (Fig. 3c). Finally, the CNH subgroup shows an

overall depletion for all recurrent Luminal A mutations,

except for a strong presence of TP53 mutations

(pTP53 = 9.35E-6).

Luminal A tumors show also an interesting presence of

hotspot mutations beyond PIK3CA and GATA3. AKT1

E17K activating mutations were observed in 3 out of 4

datasets and predominantly in Luminal A tumors (14 out of

20). Interestingly these mutations are perfectly mutually

exclusive with those targeting PIK3CA. Additional hotspot

mutations include those targeting KRAS (G12V/D),
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a Hierarchical clustering of copy number data from 209 Luminal A
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left to right, and tumors are arranged vertically and grouped according
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with the breast cancer subtypes proposed in [12]. Lines connect

clusters with non-empty overlap with a thickness proportional to the

extent of overlap
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associated, and TP53 mutations in the CNH subtgroup. All recurrent

Luminal A mutations are displayed (one mutated gene per row).

Mutations are color coded based on type (dark blue frame-shift,

splice-site, and nonsense/light blue missense) and recurrent hotspots

(red). All TCGA tumors, grouped by copy-number subtype, are

shown in columns, together with mutated cases from the Sanger [13],

WashU [11], and Broad [16] datasets. b MAP3K1 mutations are

strongly associated with a subset of the Chr8-associated cluster

characterized by 8p-/8q?/16p?/16q-. The heatmap shows copy

number profiles for all the Chr.8-associated samples (arranged

vertically). The panel on the right shows that high level amplification

in 8p11 and mutations at MAP3K1 are largely mutually exclusive and

characterize distinct subgroups of tumors in this Luminal A subtype.

c Most patients affected by MAP3K1 mutations have more than one

mutation, suggesting bi-allelic inactivation. The plot shows all

samples with at least one MAP3K1 mutation (X axis), and the actual

number of MAP3K1 mutations for each sample (Y axis)

Table 2 Recurrent somatic mutations of breast cancer subtypes [10, 11, 16]

Subtype No. of non-silent

mutations per sample (avg)

No. of recurrently

mutated (RM) genes

RM genes: FDR \ 0.05

Luminal A 27 28 PIK3CA, MAP3K1, GATA3, TP53, CDH1, MLL3,

MAP2K4, NCOR1, AKT1, PTEN, RUNX1, CTCF,

CBFB, SF3B1, MED23, WNT7A, TBL1XR1,

TBX3, GPS2, FOXA1, DGKG, SMCHD1, KRAS,

CCND3, NKAIN4, HIST2H2BE, HIST1H3B, SHD,

GPR32

Luminal B 38 15 PIK3CA, TP53, GATA3, CDH1, MAP3K1, RUNX1,

PTEN

OR2L2, TBX3, MAP2K4, AKT1, KCNB2, RB1,

PRRX1, HIST1H3B

Basal-like 55 5 TP53, PIK3CA, PNPLA3, C11orf85, HLF

Her2-enriched 61 4 TP53, PIK3CA, SRPR, PIK3R1
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splicing factor SF3B1 (K666E, K700E), and c-Myc tran-

scriptional repressor CTCF (R283C, H284P/Y/N).

Associations with clinical outcome reveal high-risk

Luminal A subtype

The characterization of Luminal A tumors provided so far

clearly identifies distinct subgroups within this tumor

subtype, whose clinical relevance needs to be addressed

now. The large dataset analyzed by Curtis et al. [12] has

extensive clinical follow-up, enabling a reliable survival

analysis. Kaplan–Meier analysis showed significantly dif-

ferent disease survival within the Luminal A subgroups

(log-rank p = 0.015, Fig. S4). In particular, the CNH

subgroup had significantly worse outcome (log-rank

p = 4.6E-5, Fig. 4a) despite receiving similar treatments

(Table S3). We validated the poor prognosis for the CNH

tumors in an independent dataset consisting of 77 Luminal

A tumors from three different cohorts [19] (log-rank

p = 0.003, Fig. 4b; Table S4).

To assess dependencies between the CNH classification

and other clinical covariates, we used Cox multivariate

regression. We tested for dependencies for tumor grade,

stage, size, and age at diagnosis. We found independent

statistically significant association with outcome for tumor

size (p = 6E-05), age at diagnosis (p = 0.004), and CNH

classification (p = 0.01); no association was found

between these covariates. The overall log-rank p-value for

the combined covariates is p = 2E-08. The CNH classi-

fication showed, therefore, independent prognostic value

(Table S5).

Finally, we compared scores derived from research-

based versions of Oncotype DX [1], Mammaprint [34], and

PAM50 Risk of Recurrence (ROR-S) [8] across Luminal A

subgroups. We found that the CNH subgroup is consis-

tently associated with a higher risk than the other Luminal

A subgroups (Fig. S5), confirming the prediction of a worse

prognosis.

As shown above, the CNH tumors are (1) characterized

by high genomic instability, (2) depleted for typical
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Fig. 4 CNH tumors. a Survival analysis across two independent

datasets shows significantly worse outcome for the CNH Luminal A

tumors. b Unbiased enrichment analysis of genomic alterations found

CNH tumors to be enriched for TP53 mutations, focal amplification of

MYC, 5q loss, 20q gain, and depleted for PIK3CA mutations.

c Differential expression analysis shows that significantly up-

regulated genes in CNH tumors are enriched for regulators of mitosis

and Aurora kinase pathway components. The heatmap shows all

genes that are differentially expressed in CNH tumors when compared

to other Luminal A samples (red indicates high expression, green low

expression). Aurora kinase is a mitotic serine/threonine kinase that

phosphorylates multiple proteins including PLK1 and Cdc25; it is

required for CDK1 activation and regulates mitotic events
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Luminal A mutations (e.g., PIK3CA, 29 vs. 51 %,

pPIK3CA = 0.04), (3) highly enriched for TP53 mutations

(48 vs. 7 % on average in the other Luminal A samples),

and (4) tend to have MYC focal amplification, 20q gain

and 5q loss (Fig. 4c). Interestingly, genes that are signifi-

cantly over-expressed in CNH tumors compared to the rest

of Luminal A cases are enriched for regulators of mitosis

including Aurora kinases A and B, PLK1, Cyclin-A,

Cyclin-E, CDK1, and Cdc25 (Fig. 4d; Table S6). A similar

set of genes was previously found to be associated with 5q

loss in Basal-like breast cancers [12]. Most of these genes

have also been identified as ‘‘proliferation marker’’ genes

[35]. The observed clinical outcome for CNH tumors,

confirmed in two independent datasets, is therefore

strongly associated to high genomic instability and prolif-

eration as revealed by their molecular features.

Integrated pathway analysis reveals mechanisms

of resistance to endocrine therapy

The great diversity of genomic lesions observed in Luminal

A tumors maps to different cellular processes. To explore

the role of these alterations in a pathway context, we used

the MEMo algorithm [31], which identifies micro-path-

ways or modules whose components are frequently altered

in a mutually exclusive manner. Statistically significant

mutual exclusivity between recurrent alterations strength-

ens the hypothesis of functional relatedness and, more

importantly, may reflect either functional redundancy,

highlighting multiple ways to de-regulate the same path-

way, or synthetic lethal interactions [31].

Modules extracted by MEMo in a Luminal A-only

analysis highlight frequent alteration to the PI(3)K/Akt,

MAP-kinase, and Ras/ERK signaling cascades (Figs. 5a,

S3; Table S7). Alterations include PTEN inactivation,

mutations of PIK3CA and AKT1, inactivation of MAP3K1

and MAP2K4, amplification of receptor tyrosine kinases

(ERBB2 and IGF1R), and RAS activation either through

activating mutations of KRAS or NF1 depletion by either

DNA homozygous deletion or mRNA down-regulation

(Fig. S6). Mutually exclusive inactivation of MAP3K1 and

MAP2K4 was confirmed in the Ellis et al. [11] dataset,

corroborating the hypothesis of reduced JNK signaling in

Luminal A tumors and providing further insights into

MAP3K1 mutations.

MEMo also identified a set of less frequent alterations

targeting the N-Cor and SMRT complexes (Fig. 5b). While

not statistically significant due to the small number of

altered samples (28 out of 209 in total), alterations in these

modules are almost completely mutually exclusive. Alter-

ations include recurrent mutations targeting core compo-

nents of the nuclear co-repressor complex (NCOR1,
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TBL1XR1, and GPS2) and the nuclear co-repressor 2

(NCOR2) or SMRT. Most of these mutations are either

frame-shift or nonsense and thereby likely inactivating,

they correlate with low mRNA expression, and frequently

co-occur with hemizygous loss of the target gene. The

modules also include homozygous deletions of ANKRD11,

consistent with its ability to inhibit p160 steroid receptor

co-activator recruitment [36, 37].

Co-repressor and co-activator complexes play a major

role in regulating ER-a transcription and the inhibitory

activity of Tamoxifen. Tamoxifen-bound ER has an

increased affinity to co-repressors and specifically to

N-Cor/SMRT. These co-repressors are required for the

anti-proliferative effects of Tamoxifen (Fig. 4c). Repress-

ing the NCor and SMRT complexes in human breast cancer

cell lines turns Tamoxifen into an agonist of cell prolifer-

ation [38, 39], and lower or absent mRNA expression of

NCor in patients correlates with shorter relapse [40, 41].

Here, for the first time, we identify distinct molecular

mechanisms of inactivation of these complexes in patients.

We directly link multiple genomic alterations, occurring in

13 % of the patients, to loss of co-repressors activity

(Fig. 4d). These alterations may predict resistance to

endocrine therapy.

Discussion

Recently, multiple studies of human breast cancer provided

novel insights into the biology of this cancer and its

intrinsic subtypes [7], as well as an unprecedented amount

of genomic information still not completely explored and

understood. This information is fundamental to inform

patient treatments with targeted agents [42, 43]. Our work

aimed at complementing recent breast cancer genomic

studies, with an in-depth analysis of the most diverse breast

cancer subtype: Luminal A. We dissected the genomics of

Luminal A tumors in multiple datasets and have explained

more of its molecular and clinical heterogeneity.

We identified four major subgroups of Luminal A

tumors that are characterized by distinct patterns of CNA,

somatic mutations, and clinical outcomes (Table 3). These

include a subgroup (i.e., CNH) presenting molecular fea-

tures atypical of Luminal tumors and associated with

worse prognosis. Poor clinical outcome was confirmed in

multiple datasets and is independent of other markers, such

as tumor size, grade, stage, and age of diagnosis. Inter-

estingly, the CNH distinction was also associated with

higher scores coming from current clinical assays for

breast cancer prognosis/prediction (Oncotype DX, Mam-

maprint, PAM50 ROR-S), thus providing a molecular

explanation for these gene expression risk assays. This

subtype shows a high level of CNA, recurrent TP53

mutations, and over-expression of mitotic regulators

including Aurora kinases A and B (Table 3). Over-

expression of these genes has been associated with high

genomic instability and tumorigenesis [44, 45] and, more

importantly, Aurora kinases are targets of specific inhibi-

tors currently in clinical trials [46].

Integrated analysis of CNA and mutations showed a sig-

nificant prevalence of GATA3 and PIK3CA hotspot muta-

tions in tumors characterized by 1q gain and 16q loss; thus,

the tumors with the fewest copy number changes showed not

only associations with mutations within specific genes, but

associations with distinct types of mutations within these

genes. These results suggest that one type of mutation within

GATA3 (i.e., intron 4 CA deletion) is strongly associated

Luminal A 1q/16q cancers, while other mutations (exon 5

frameshifts) cause Luminal B cancers; thus, these mutations

are likely to be cancer driving events, and early events within

the evolution of these tumors.

Mutations within the PI3K pathway became of partic-

ular clinical interest with the advent of many specific

PIK3CA inhibitors now in clinical trials [42, 47]. Of

particular interest will be if the different pathway muta-

tion types (PIK3CA mutation vs. PTEN mutation vs.

AKT1 mutation) are all biomarkers of PIK3CA inhibitor

sensitivity, and how these might interact with the different

Table 3 Genomic features of Luminal A Copy Number Subtypes

Focal CNA Whole-arm events Somatic mutations

1q/16q 16q23-24 HomDel (ANKRD11) 1q gain, 16q loss PIK3CA, PIK3R1, GATA3,

AKT1, KRAS

Copy Number Quiet None None PIK3CA, AKT1

Chr8-associated 8p11.23-22 Amp (ZNF703,

WHSC1L1, FGFR1)

8p loss, 8q gain, 16p gain,

16q loss

MAP3K1

8p11.21 Amp (IKBKB)

Copy Number High 8p24.21 Amp (MYC) 8q gain, 5q loss, 20q gain TP53

20q13.2 Amp (AURKA, ZNF217)
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inhibitors, many of which have differing affinities for the

PI(K) family of kinases. Lastly, multiple inactivating

mutations in MAP3K1 were found in tumors with whole-

arm events on chromosome 8 and 16. Alterations of these

genes point to deregulated AKT and MAPK signaling,

and this was confirmed by an unbiased pathways analysis.

In particular, MAP3K1 and its direct target MAP2K4

negatively regulate JNK-mediated cell death, possibly

compromising response to chemotherapeutic agents [48];

thus, a pressing clinical question is do mutations in

MAP3K1 and/or MAP2K4 predict for lower response

rates to chemotherapy and endocrine therapy, which can

be addressed retrospectively if mutation detection can be

performed using FFPE materials from existing clinical

trial archives.

Our analysis of deregulation of cellular pathways in

Luminal A tumors also revealed inactivation of the ER co-

repressors N-Cor/SMRT. We identified multiple rare, but

mutually exclusive, alterations targeting components of

these complexes, as well as ANKRD11, an inhibitor of

p160 co-activator complexes. Nuclear co-repressors regu-

late ER transcriptional activity and are required for the

anti-proliferative effects of Tamoxifen [40, 41]. Alterations

of these complexes may, therefore, promote ER-driven

proliferation in the presence of Tamoxifen, and predict a

lack of response to endocrine therapy. These alterations

were observed almost exclusively in Luminal A tumors.

Indeed, the same unbiased pathway analysis performed on

the whole TCGA breast cancer dataset was unable to

highlight them [10].

Our work integrated multiple genomic and genetic data

types within the Luminal A breast cancer subtype and

spanned multiple data sets. Our results have shed new light

on the intrinsic heterogeneity within this subtype and

strengthen the importance of genomic studies within tumor

subpopulations. These in-depth analyses already show

intrinsic heterogeneity in other breast cancer subtypes. Her-

2 positive tumors have been shown to be composed of two

main groups defined by different ER and EGFR status [10],

and recently Her-2 mutations have been shown to be

activating and tumorigenic [49] in tumors without DNA

amplification of the Her-2 locus. Moreover, these muta-

tions are prominent in relapsed invasive lobular breast

cancer [50]. Similarly, basal-like and triple negative breast

cancers have been object of extensive investigations due

their aggressive nature [51–53]. We can now add Luminal

A disease to the list of heterogeneous diseases with distinct

subtypes within this previously defined single subtype. The

wealth of genomic data available today enables these in-

depth analyses of selected tumor subgroups and highlights

the need for comprehensive genomic characterization of

tumor samples to inform clinical trials and therapeutic

choices.
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