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Abstract Poly(ADP-ribose) polymerase (PARP) is an

enzyme involved in DNA repair. PARP inhibitors can act

as chemosensitizers, or operate on the principle of synthetic

lethality when used as single agent. Clinical trials have

shown drugs in this class to be promising for BRCA

mutation carriers. We postulated that inability to demon-

strate response in non-BRCA carriers in which BRCA is

inactivated by other mechanisms or with deficiency in

homologous recombination for DNA repair is due to lack

of molecular markers that define a responding subpopula-

tion. We identified candidate markers for this purpose for

olaparib (AstraZeneca) by measuring inhibitory effects of

nine concentrations of olaparib in 22 breast cancer cell

lines and identifying features in transcriptional and genome

copy number profiles that were significantly correlated

with response. We emphasized in this discovery process

genes involved in DNA repair. We found that the cell lines

that were sensitive to olaparib had a significant lower copy

number of BRCA1 compared to the resistant cell lines

(p value 0.012). In addition, we discovered seven genes

from DNA repair pathways whose transcriptional levels

were associated with response. These included five genes

(BRCA1, MRE11A, NBS1, TDG, and XPA) whose tran-

script levels were associated with resistance and two genes

(CHEK2 and MK2) whose transcript levels were associated

with sensitivity. We developed an algorithm to predict

response using the seven-gene transcription levels and

applied it to 1,846 invasive breast cancer samples from

8 U133A/plus 2 (Affymetrix) data sets and found that

8–21 % of patients would be predicted to be responsive to

olaparib. A similar response frequency was predicted in

536 samples analyzed on an Agilent platform. Importantly,

tumors predicted to respond were enriched in basal subtype

tumors. Our studies support clinical evaluation of the utility

of our seven-gene signature as a predictor of response to

olaparib.
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Bioinformatics

Introduction

Several mechanisms have been identified in mammalian

cells that function to maintain genome integrity [1, 2].

Mechanisms for the repair of single strand breaks (SSB)

include base excision repair (BER), mismatch repair
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(MMR), and nucleotide excision repair (NER). DNA

damage due to double strand breaks (DSB) is repaired via

the homologous recombination (HR) pathway or with non-

homologous end joining (NHEJ). The Fanconi anemia

(FA)/BRCA pathway is involved in repair of DSBs or

DNA interstrand cross links, and the DNA damage

response (DDR) pathway is a network of DDRs for the

regulation of many steps in the DNA repair process [3].

These repair pathways are frequently deregulated in

cancer cells, motivating efforts to develop drugs that are

preferentially effective in cells with defective repair. One

emerging class of therapeutic agents for this purpose is

based on the principle of synthetic lethality. Synthetic

lethality is defined as cell death that results from complete

inactivation of two genes in cells where inactivation of

either alone does not result in death [4, 5]. The first therapy

to reach the clinic was based on the concept that synthetic

lethality would result from coordinate inactivation of HR

repair (due to a genomic aberration) and poly(ADP-ribose)

polymerase (PARP). This approach was based on studies

showing that cells with HR repair deficiency caused by

BRCA1/2 mutation [6, 7], PTEN mutation [8, 9], RAD51D

loss of function [10], and PALB2 loss of function [11]

exhibited synthetic lethality with an inhibitor of one or

more PARP family proteins, differentiating cancerous

from non-cancerous cells by only targeting cells with

complete loss of the former genes. The PARP family

consists of 18 PARP domain enzymes [12], with the most

well-studied members being PARP1, PARP2, VPARP

(PARP4), tankyrase 1 (TNKS, PARP5a), and TNKS2

(PARP5b). PARP1 is the most ubiquitous member. This

protein rapidly binds to sites of damaged DNA to modulate

a variety of proteins involved in DNA repair and other

cellular processes, making it a key protein in the BER

pathway for SSB repair.

PARP is involved in SSB DNA repair and PARP

inhibitors cause some of them to be converted into DSBs at

replication forks [13, 14]. In HR competent cells, DSBs are

repaired so that the cells can survive. However, in HR-

deficient cells, DSBs are repaired via the less accurate

NHEJ pathway or the single strand annealing subpathway

of HR, resulting in chromatid aberrations that usually lead

to cell death. These conditions therefore make cells with

BRCA mutations or other HR defects [11, 15, 16] prefer-

entially sensitive to (i.e., to show synthetic lethality with)

PARP inhibitors. PARP inhibitors also have been proposed

as possibly useful for treatment of triple negative breast

cancers that exhibit ‘‘BRCAness’’ [7, 17]. BRCAness is

defined as the spectrum of phenotypes that some sporadic

tumors share with BRCA mutated cancers, reflecting the

underlying distinctive DNA repair defects arising from loss

of HR; for example, by epigenomic down regulation of

BRCA1 and FANCF [17].

PARP inhibitors in clinical studies for BRCA-associ-

ated, triple negative and/or basal-like breast cancer include

olaparib (AstraZeneca, London), ABT-888 (also known as

Veliparib; Abbott Laboratories, IL), and PF-01367338

(AG014699; Pfizer Inc., NY) [14, 18, 19]. These agents are

licensed for monotherapy in DNA repair deficient patients

or as chemo-potentiating agents after SSBs are created by

common anticancer treatments such as radiotherapy and

DNA damaging agents [19]. Results obtained from clinical

trials so far, however, appear to vary depending on the

specific breast cancer patient population, the specificity of

the PARP inhibitor, and the nature of the therapeutic agent

used in combination with the PARP inhibitor [20, 21].

A multicenter phase 2 trial showed that olaparib as

monotherapy led to objective response rates in 41 % of

BRCA1/2 mutation carriers who had previously received

several courses of chemotherapy [22]. Results for triple

negative breast cancer patients without known BRCA1/2

mutations have been inconsistent. Preclinical studies and

phase 1 trials suggested that PARP inhibitors can increase

cell death in these patients when combined with paclitaxel

[23], whilst triple negative breast cancer patients largely

did not respond to olaparib monotherapy in a phase 2 trial

[24]. Thus, our aim in this study was to identify candidate

biomarkers that can be tested for their ability to better

identify subsets of sporadic cancers with defects in HR-

directed repair that will respond to PARP inhibitors.

We focused in this study on olaparib, a small-molecule,

reversible, oral inhibitor of both PARP1 and PARP2 [25].

We identified candidate biomarkers associated with

response to olaparib by correlating responses to nine con-

centrations of olaparib in a panel of well-characterized

breast cancer cell lines with the transcription levels of

genes involved in aspects of DNA repair. Genes tested for

correlation with olaparib response included those reported

in the literature to be directly relevant to PARP inhibitor

response or involved more generally in some aspect of

DNA repair (Fig. 1). We applied this signature to primary

tumor data to identify the frequency and characteristics of

tumors that might be expected to respond to olaparib.

These studies set the stage for a clinical test of the sensi-

tivity and specificity of this predictor and indicate known

subtypes of breast cancers that might be preferentially

sensitive to olaparib.

Materials and methods

Breast cancer cell lines, assay, and molecular data

The sensitivity of a panel of 22 breast cancer cell lines to

KU0058948 (olaparib; KuDOS Pharmaceuticals/AstraZe-

neca) was measured with a growth inhibition assay as
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described in Supplementary Material and [7, 26]. The

following molecular data were collected for the panel: copy

number (Affymetrix SNP6), gene expression (Affymetrix

U133A, Affymetrix Exon 1.0 ST), transcriptome

sequencing (Illumina GAII), methylation (Illumina Meth-

ylation27), protein abundance (reverse protein lysate

array), and mutation status (COSMIC, [27]). A detailed

description of the availability and preprocessing of all

molecular data sets is provided in Supplementary Material

and [28].

Statistical analyses

The Wilcoxon rank sum test was used to test the associa-

tion of drug response with individual biomarkers. Drug

response was associated with subtype, triple negativity, and

mutation status with use of the Fisher’s exact test. Due to

the small sample size, a p \ 0.05 was deemed significant,

whilst a p \ 0.1 was considered a trend. Logistic regres-

sion (LR) with forward feature selection (fivefold CV) was

used to identify candidate biomarkers and was applied to

each considered DNA repair pathway separately. The

resulting biomarkers were combined into a predictor using

a weighted voting algorithm [29]. The Matlab code used

for signature development and validation is provided in

Supplementary Material. A Chi-square test was used to test

for associations of breast cancer subtype with response to

olaparib. We refer to Supplementary Material for a detailed

description of the statistical methods.

Results

Olaparib response in a panel of 22 breast cancer cell

lines

Twenty-two breast cancer cell lines previously profiled for

RNA transcript levels were tested for response to nine

concentrations of olaparib (see Table 1). These cells mirror

many of the transcriptional and genomic characteristics of

primary breast tumors and have been used to model

responses to a large number of experimental and approved

therapeutic compounds [28, 30]. The concentration of

olaparib needed to reduce survival to 50 % (SF50) was

Fig. 1 Approach for the development of a predictor of olaparib

response in a breast cancer cell line panel with inclusion of prior

knowledge of DNA repair pathways. For 22 breast cancer cell lines,

growth inhibition assays were used to measure their sensitivity to

olaparib, expressed as the surviving fraction at 50 % (SF50). For these

cell lines, expression data were obtained with three different platforms

(Affymetrix U133A, Affymetrix Exon 1.0 ST, and whole transcriptome

shotgun sequencing). The bottom-up approach was used for biomarker

selection, incorporating prior knowledge of the principal DNA repair

pathways BER, NER, MMR, HR/FA, NHEJ, and DDR. Biomarkers

from [31] were systematically expanded with genes assigned to any of

these pathways in the KEGG database, resulting in 118 genes. For each

DNA repair pathway and expression data set the most important markers

were obtained with LR in combination with forward feature selection,

followed by reduction to those selected with consistent pattern of

sensitivity for all three platforms
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used as a quantitative measure of sensitivity and ranged

from 0.44 nM to 32 lM. The SF50 was not reached for five

cell lines at the maximum treatment concentration of 50 lM

olaparib. Olaparib response obtained with the growth inhi-

bition assay was not influenced by growth rate assessed as

doubling time (Spearman correlation coefficient -0.036,

p value 0.874). Figure 2 shows the waterfall plot of SF50 with

cell lines ordered from most resistant at the left to most sen-

sitive at the right. Cell lines were divided into a group of 15

resistant and 7 sensitive cell lines, based on an SF50 threshold

of 1 lM. Drug response was not significantly associated with

breast cancer subtype (p value luminal vs. basal 0.136;

Fig. 3), and did not differ between ERBB2-amplified and

non-ERBB2-amplified cell lines (p value 1), with transcrip-

tional subtypes assigned to cell lines as previously reported

[28]. Four of the seven sensitive cell lines (57 %) were triple

negative, compared to 5 of 15 (33 %) resistant cell lines

(p value 0.376). Table 1 summarizes characteristics for the 22

cell lines, with SF50, doubling time, transcriptional ER, PR,

and ERBB2 status, and the molecular data available for each

of them.

Molecular features involved in DNA repair associate

with olaparib response

We selected candidate molecular features that might be

developed as biomarkers for prediction of response to

olaparib as those features involved in DNA repair activities

that were associated with quantitative response to olaparib

in the cell line panel. Molecular features included pre-

treatment RNA transcript levels, mutation status, copy

number variation, and promoter methylation status. Spe-

cific genes tested involved aspects of DNA repair listed by

Wang and Weaver [31]; ER, PR and ERBB2 due to the

Table 1 Overview of the breast cancer cell line panel with response to

olaparib expressed as SF50 (lM); ER, PR, and ERBB2 expres-

sion with ? indicating up-regulation relative to the other cell lines,

- down-regulation, and NC no change in expression; and availability of

the different molecular data sets indicated with N for unavailability and

Y for availability

Cell line Olaparib SF50

(lM)

Doubling

time (h)

ERa PRa ERBB2a COSMIC SNP6 RPPA Methylation RNA-

seq

Exon

array

U133A

HCC1428 50 88.5 ? ? - N Y Y Y Y Y Y

SKBR3 50 56.2 - ? ? Y Y Y Y Y Y Y

BT20 50 66.1 - NC - Y Y Y Y Y Y Y

HCC38 50 51.0 - - - Y Y Y Y Y Y Y

CAMA1 50 72.9 ? NC NC Y Y Y Y Y Y Y

BT474 31.99 92.5 - - - Y Y Y Y Y Y Y

MDAMB134VI 30.90 82.7 ? ? - Y N N Y Y Y Y

MDAMB231 29.96 25.0 - - - Y Y Y Y Y Y Y

BT549 21.43 25.5 - - ? Y Y Y Y Y Y Y

T47D 19.95 55.8 ? ? NC Y Y Y Y Y Y Y

SUM159PT 16.29 21.7 - ? - Y Y Y Y Y Y Y

HCC1954 15.49 43.8 - - - Y Y Y Y Y Y Y

MCF7 14.69 56.5 - - - Y Y Y Y Y Y Y

HS578T 6.55 32.3 - - - Y Y Y Y Y Y Y

MDAMB157 2.41 67.0 - ? ? Y Y Y Y Y Y Y

HCC70 0.655 67.8 - - NC Y Y Y Y Y Y Y

MDAMB468 0.514 79.8 - - - Y Y Y Y N Y Y

HCC202 0.413 212.5 - NC NC N Y Y Y Y Y Y

HCC1143 0.0211 54.6 - - - Y Y Y Y Y Y Y

SUM149PT 0.0161 33.9 ? ? - Y Y Y Y Y Y Y

MDAMB453 0.00915 62.5 - ? ? Y Y Y Y Y Y Y

MDAMB436 0.00044 89.3 - NC - Y Y Y Y N Y Y

# cell lines 20 21 21 22 20 22 22

Doubling times were estimated for each cell line from measurements of the number of doublings of untreated cells that occurred in 72 h during

the course of assessing responses to 123 therapeutic compounds (Heiser et al. [28], PNAS 2012)
a For ER, probe 205225_at on the Affymetrix U133A array was investigated; for PR, probe 208305_at; and for ERBB2 probes 210930_s_at and

216836_s_at
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importance of PARP inhibition for triple negative breast

cancer [17, 19]; and PARP family members PARP1,

PARP2, VPARP, TNKS, and TNKS2. This approach is

based on observations that in vitro models showing high

sensitivity to PARP inhibitors often have BRCA and PTEN

deficiencies [7, 8], copy number variations involving

BRCA1 and PARP1 [32], and/or hypermethylation of the

promoter regions of genes BRCA1 and FANCF [20].

Molecular features showing statistically significant asso-

ciations with SF50 values are summarized in Supplemen-

tary Table 1 and illustrated in Fig. 4.

The transcription levels of MRE11A, NBS1, TNKS,

TNKS2, XPA, and XRCC5 were significantly lower

(p \ 0.05; fold-change[2) in the sensitive compared to the

resistant cell lines for at least one expression platform

(U133A, exon array and RNA-seq), whilst transcription

levels for BRCA1, ERCC4, FANCD2, and PR tended to be

lower in sensitive lines (p \ 0.1). We refer to Supple-

mentary Table 1a for the list of significant associations per

platform. PR protein levels measured using reverse phase

protein lysate arrays [33] were also significantly reduced in

the sensitive cell lines (p \ 0.05). Transcript levels for

CHEK2 and MK2 were significantly higher in the sensitive

compared to the resistant lines (p \ 0.05), with a similar

trend for PARP2 and XRCC3 (p \ 0.1). Although PARP1

has been shown to be overexpressed in 58 % of invasive

breast cancer samples [34] and upregulated at protein level

in 82 % of BRCA1-associated breast cancer samples [35],

Fig. 2 Waterfall plot of the

response to olaparib (expressed

as SF50 in lM) for 22 breast

cancer cell lines, ordered from

most resistant at the left to most

sensitive at the right, with bars
colored according to subtype

(luminal in light grey, basal in

black, claudin-low in dark grey,

and ERBB2 amplified in white).

The threshold of 1 lM used to

divide the cell lines into a group

of 15 resistant cell lines

(indicated with R) and a group

of 7 sensitive cell lines

(indicated with S) is represented

with a horizontal dashed line

Fig. 3 Boxplot of SF50 for the cell lines divided according to breast

cancer subtype (9 luminal, 7 claudin-low, and 6 basal lines). No

association was found between breast cancer subtype and response to

olaparib in the cell line panel (Fisher’s exact test for basal vs. luminal,

p value 0.136)
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there is no consensus on its importance as a biomarker of

response to PARP inhibitors [36, 37]. In our cell line panel,

expression of PARP1 mRNA levels were not significantly

higher in the sensitive lines compared to the resistant lines

(median p value 0.277) (Supplementary Table 1a).

The BRCA1-mutated cell lines MDAMB436 and

SUM149PT had a trend to be more sensitive to olaparib

compared to the wild-type cell lines (p value 0.091)

(Supplementary Table 1b). Likewise, cells with reduced

BRCA1 copy number were significantly more sensitive to

olaparib than cells with normal copy number at this locus

(p value 0.012) (Supplementary Table 1c). PTEN loss of

function, which was defined as mutation and/or lack of

expression, was not significantly associated with olaparib

SF50 response (p value 0.145), even though previous

studies from our group suggested that PTEN deficiency can

cause olaparib sensitivity [8, 9]. Lack of association in the

cell line panel could be ascribed to the small sample size

and/or to the possibility that the univariate associations do

not take into account important multigene effects. Since

BRCA1 mutations have been associated with reduced

PTEN expression [38], we tested for association of either

BRCA1 mutation or PTEN deficiency with olaparib sen-

sitivity. We found that cell lines with a deficiency in either

gene tended to be more sensitive to olaparib than cell lines

with functional BRCA1 and PTEN (p value 0.052) (Sup-

plementary Table 1b). No association was found between

TP53 mutation status and drug response (p value 0.376).

Cell line-based seven-transcript signature predicts

response to olaparib

We used a breast cancer cell line panel comprised luminal,

basal, and claudin-low cell lines to develop a multi-transcript

predictor of sensitivity to olaparib according to the REMARK

recommendations [39]. We limited the predictor to transcript

levels to facilitate clinical application. We considered all

breast cancer subtypes for the development of the predictor

based on a study of RAD51 focus formation in cells

responding to a PARP inhibitor. That study showed that

30–40 % of triple negative breast cancers appeared not to

have defective HR and therefore might not benefit from a

PARP inhibitor whilst *20 % of non-triple negative breast

cancers appeared to have defective HR and therefore might

respond to a PARP inhibitor [40]. Thus, we reasoned that a

predictor developed using the complete cell line panel might

be applicable to the full spectrum of breast cancer covered by

the cell line panel. As shown in Fig. 1, the molecular features

tested as candidate biomarkers were limited to genes

involved in DNA repair pathways BER, NER, MMR, HR/

FA, NHEJ, and DDR as defined by Wang and Weaver [31]

and in the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database release 55.1 [41]. This led to the selection

of 118 genes (see Supplementary Table 2) that were tested for

association between transcript levels and response to olapa-

rib. These transcript levels were measured using three dif-

ferent mRNA analysis platforms (Affymetrix U133A arrays,

Affymetrix exon arrays and Illumina RNA-seq).

We identified the most important transcripts by applying

LR with forward feature selection (fivefold CV) 100 times.

Markers significantly associated with olaparib response in

over half of the iterations are shown in Table 2. These were

further reduced to seven gene transcripts that were signifi-

cantly associated with olaparib response in at least 2 out of 3

mRNA analysis platforms. Five transcript levels (candidate

resistance markers BRCA1, MRE11A, NBS1, TDG, and XPA)

were inversely associated with predicted probability of

response and two transcript levels (candidate sensitivity

markers CHEK2 and MK2) were positively associated with

predicted probability of response (see Table 3). BRCA1 is

involved in DSB repair via RAD51-mediated HR [42, 43].

CHEK2 is a kinase with signal transduction function in cell-

cycle regulation and checkpoint responses [2], and is

involved in the major parallel DDR pathway ATM-CHEK2

[31]. CHEK2 has also been reported as an intermediate-level

breast cancer risk gene, regardless of family history [44, 45].

Besides the standard DDR pathways, the cell-cycle check-

point pathway p38MAPK/MK2 is additionally activated in

TP53 mutant cells [46]. MK2 activity is critical for prolonged

checkpoint maintenance through a process of posttranscrip-

tional regulation of gene expression [47]. MRE11A and NBS1

are part of the MRN complex, a multifaceted molecular

machine for DSB recognition [48]. Finally, TDG is part of the

BER pathway, whilst XPA encodes a zinc finger protein that is

part of the NER complex.

We combined information on the seven-transcript levels

to form a predictive signature using a weighted voting

algorithm (Supplementary Material and [28]). This algo-

rithm assigns a weight and decision boundary to each of the

seven genes, based on their expression distribution for the

class of sensitive versus resistant cell lines (see Table 3). For

Fig. 4 Overview of individual DNA repair-associated markers that

are significantly associated with or do trend towards an association

with response to olaparib in the 22 breast cancer cell lines, based on

mutation, copy number, and expression data (see Supplementary

Table 1 for the complete list of markers). The four boxplots at the top
show the association results for BRCA1. The BRCA1-mutated cell

lines MDAMB436 and SUM149PT tend to be more sensitive to

olaparib compared to the wild-type cell lines (p value 0.091). The

sensitive cell lines are also characterized by a significant lower copy

number of BRCA1 (p value 0.012) and by BRCA1 down-regulation

(RNA-seq, p value 0.055). Cell lines with a deficiency in BRCA1 and/

or PTEN tend to be more sensitive to olaparib than cell lines with

functional BRCA1 and PTEN (p value 0.052). The boxplots at the

bottom show the association for genes NBS1 and XRCC5 that are

significantly down-regulated and for genes CHEK2 and MK2 that are

significantly up-regulated in the sensitive compared to the resistant

cell lines

b
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this signature to work on external samples, the transcript

levels were normalized to the geometric mean of seven

control genes, followed by median normalization across the

cell lines (see Supplementary Material). The larger the weight

for a gene transcript level, the more influence this gene has on

predicted probability of response. Positive weights were

assigned for sensitivity markers and negative weights were

assigned for resistance markers.

Prevalence of 8–21 % of predicted responding patients,

with trend towards the basal subtype

We analyzed expression profiles measured for breast can-

cer patients not treated with PARP inhibitors to understand

which patients would have a likelihood of response to

olaparib according to our seven-transcript predictor. We

used seven U133A and one U133 plus two data sets on

1,846 primary breast tumors with or without metastasis,

heterogeneous in treatment and ER/PR/LN status. Our

seven-transcript response algorithm predicted that 8–21 %

of patients in the eight data sets would be responsive to

olaparib (Table 4), using threshold 0.0372 obtained from

the cell lines to distinguish sensitive from resistant (see

Supplementary Material). The fraction predicted to respond

was inversely related to the fraction of ER-positive patients

in each data set (Pearson correlation coefficient -0.614,

p value 0.1). We also tested the seven-transcript predictor

in Agilent mRNA transcript profiles measured for 536

Table 2 Overview per expression platform of genes from six principal DNA repair pathways that are selected with the LR approach in over half

of the iterations

Biomarker source Platform # Genes Genes selected in [250/500 iterationsa Avg. AUC (std)b

DNA repair biomarkers

(Wang and Weaver [31])

U133A (standard) 11/29 BRCA1, BRCA2, CHEK2, DSS1, MRE11A, NBS1, PALB2,

PARP2, PTEN, TP53, XPA
0.793 (0.083)

U133A (custom) 7/29 BRCA1, BRCA2, CHEK2, DSS1, NBS1, RAD51, XPA 0.945 (0.059)

Exon array 12/29 BRCA2, CHEK2, DSS1, ERCC1, ERCC4, FANCD2, MK2,

MRE11A, NBS1, USP11, XPA, XRCC5

0.717 (0.084)

RNA-seq 14/29 ATM, BRCA1, DSS1, FANCD2, JTB, MK2, MRE11A,

NBS1, PALB2, PARP1, PARP2, XPA, XRCC5, XRCC6

0.715 (0.132)

KEGG U133A (standard) 5/103 DNTT, MUTYH, POLM, RPA2, TOP3B 0.745 (0.075)

U133A (custom) 9/103 DNTT, FEN1, MUTYH, NBS1, POLD1, POLM,

RAD51, RAD51C, XRCC5

0.725 (0.092)

Exon array 4/103 DNTT, MRE11A, TDG, UNG 0.753 (0.083)

RNA-seq 5/103 DCLRE1C, FEN1, RPA4, TDG, XRCC5 0.839 (0.054)

a Genes with consistent pattern of sensitivity for all three platforms (U133A, exon array, RNA-seq) and for both measures of class comparison

(mean, median) are shown in bold
b Average fivefold CV area under the receiver operating characteristics curve (AUC) (standard deviation) across 100 randomizations for a LR

model with optimized coefficients and inclusion of the platform-specific genes selected in [1/2 of the iterations

Table 3 Overview of the seven genes selected for prediction of response to treatment with olaparib based on breast cancer cell line expression

data

Gene symbol Gene name Pathway Entrez

gene ID

Marker Probe Weight

(wg)

Decision

boundary (bg)

BRCA1 Breast cancer 1, early onset HR 672 Resistance 204531_s_at -0.5320 -0.0153

CHEK2 CHK2 checkpoint homolog DDR 11200 Sensitivity 210416_s_at 0.5806 -0.0060

MK2 Mitogen-activated protein kinase-activated

protein kinase 2

DDR 9261 Sensitivity 201461_s_at 0.0713 0.0031

MRE11A MRE11 meiotic recombination 11 homolog A DDR/HR 4361 Resistance 205395_s_at -0.1396 -0.0044

NBS1 Nibrin DDR 4683 Resistance 202906_s_at -0.1976 0.0014

TDG Thymine-DNA glycosylase BER 6996 Resistance 203743_s_at -0.3937 -0.0165

XPA Xeroderma pigmen-tosum, complemen-tation

group A

NER 7507 Resistance 205672_at -0.2335 -0.0126

The weights and decision boundaries were determined with data from the U133A expression array platform measured for the 22 cell lines used to

assess response to olaparib. For each of the five resistance and two sensitivity markers, gene symbol is shown together with gene name, the DNA

repair pathway the gene belongs to, entrez gene identifier, corresponding probe set from the Affymetrix U133A array, and weight and decision

boundary obtained with the weighted voting algorithm
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breast invasive carcinoma samples collected by The Cancer

Genome Atlas (TCGA) [49]. This required that an Agilent-

specific threshold distinguishing sensitive from resistant be

established. We accomplished this using a set of Affyme-

trix and Agilent mRNA transcript profiles measured for 80

I-SPY 1 samples [50, 51]. The Agilent threshold was set so

that the fraction of I-SPY 1 samples in the Agilent data set

predicted to be sensitive was the same as that predicted to

be sensitive using the Affymetrix data (see Supplementary

Materials). The fraction of samples predicted to be sensi-

tive in the TCGA data set was 12 % (Table 4). We

assessed the transcriptional subtypes of the patient popu-

lations predicted to respond to olaparib in 464 samples

from GSE25066 and in 528 TCGA tumor samples after

exclusion of the normal-like samples. The tumors predicted

to respond were enriched in samples classified as basal-like

compared to samples classified as luminal A, luminal B or

HER2 (p value 0.002 and 2.6 9 10-28 for GSE25066 and

TCGA, respectively; Table 5).

Discussion

In this hypothesis generating study, our overall aim was to

use quantitative measurements of response to olaparib in

22 breast cancer cell lines to identify molecular features

associated with response as a first step towards develop-

ment of a molecular signature to predict clinical responses.

We limited our search for features associated with olaparib

response to copy number, DNA sequence abnormalities or

transcription levels for 42 genes suggested in [31] for their

association with DNA repair. Molecular features associated

with 15 of these 42 genes were found to be significantly

associated or to show a trend of association with olaparib

response. Specifically, cell lines that were sensitive to

olaparib were enriched in BRCA1 mutations or deletions,

PARP1 amplification, reduced expression of BRCA1,

ERCC4, FANCD2, MRE11A, NBS1, PR, TNKS, TNKS2,

XPA, and XRCC5 and increased expression of CHEK2,

MK2, PARP2, and XRCC3.

Since multiple mechanisms may contribute to olaparib

sensitivity, we developed a weighted voting signature to

combine influences from multiple markers. We included

only transcript levels in our algorithm since most molecular

features associated with response were apparent at the

transcript level. We limited the search space to molecular

features of 118 genes from six principal DNA repair

pathways in order to increase statistical power. Associa-

tions of transcript levels for 118 genes and responses to

olaparib for 22 breast cancer cell lines resulted in a seven-

gene predictive signature that included five resistance

markers (BRCA1, MRE11A, NBS1, TDG, and XPA) and

two response markers (CHEK2 and MK2).T
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The transcript levels of the seven genes in the predictor

were consistent with expectations from the literature.

Mutations in BRCA1, loss of heterozygosity at the BRCA1

locus and deregulated expression have been described in

the literature as potential markers for prediction of

response to PARP inhibitors [17]. These studies are con-

sistent with our finding that reduced BRCA1 transcript

levels are associated with olaparib sensitivity. PARP1 is

required for rapid accumulation of MRE11A at DSB sites.

Due to the direct interaction between PARP1 and

MRE11A, deficiency in MRE11A has been suggested as a

mechanism of sensitizing cells to PARP1 inhibition based

on the concept of synthetic lethality [52]. Moreover, a

dominant negative mutation in MRE11A in MMR deficient

cancers has been shown to sensitize cells to agents causing

replication fork stress [53]. These reports are consistent

with our finding that reduced MRE11A transcription is

associated with olaparib sensitivity. Experimental disrup-

tion of the HR pathway protein NBS1 by RNAi has been

reported to increase sensitivity to PARP inhibitors [15].

This is consistent with our finding that reduced transcrip-

tion of NBS1 is associated with olaparib sensitivity. Cells

with defective NER have been shown to be hypersensitive

to platinum agents, with low XPA protein levels in testis

tumor cell lines explaining the low capacity to repair cis-

platin-induced DNA damage [54]. PARP inhibitors also

enhance lethality in XPA-deficient cells after UV irradia-

tion [55]. Tumor cells with deficiency of the DDR pathway

have been suggested to be hypersensitive to PARP inhib-

itors, with the DNA repair biomarker CHEK1 shown to be

overexpressed in BRCA1-like versus non-BRCA1-like

triple negative breast cancer [56]. This is consistent with

our finding that increased CHEK2 transcription is associ-

ated with olaparib sensitivity.

Our seven-gene transcript algorithm suggests that

8–21 % of patients with primary breast cancers may

respond to olaparib and that the responsive tumors are

enriched in basal-like breast cancers. This represents a

hypothesis that can now be tested in clinical trials. Since

the signature has not yet been tested clinically, it is inap-

propriate to use it to select patients for treatment with

olaparib or other PARP inhibitors or to use it in any way to

manage breast cancer treatment. However, it does present a

signature that can be tested in planned translational anal-

yses of ongoing clinical trials of PARP inhibitors and that

can be used to determine whether clinical trials are prop-

erly sized to detect a response of the magnitude predicted

by this signature.
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