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Nelson et al. 2007; Paterson et al. 2006). Therefore, reliably 
characterizing the functional properties of brain activity and 
organization during infancy provides a unique opportunity 
for understanding the impact of early life experiences on 
brain development and associated behavior (Lopez et al. 
2023). Toward this end, electroencephalography (EEG) has 
been routinely used as a direct, non-invasive, and low-cost 

Introduction

Infancy is a key period of human development during which 
the neurobiological foundations of emerging social, emo-
tional, and cognitive skills are shaped through the interac-
tion of child-specific factors and environmental experiences 
(Gabard-Durnam and McLaughlin 2020; Johnson 2001; 
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Abstract
Microstate analysis of resting-state EEG is a unique data-driven method for identifying patterns of scalp potential topog-
raphies, or microstates, that reflect stable but transient periods of synchronized neural activity evolving dynamically 
over time. During infancy – a critical period of rapid brain development and plasticity – microstate analysis offers a 
unique opportunity for characterizing the spatial and temporal dynamics of brain activity. However, whether measurements 
derived from this approach (e.g., temporal properties, transition probabilities, neural sources) show strong psychometric 
properties (i.e., reliability) during infancy is unknown and key information for advancing our understanding of how 
microstates are shaped by early life experiences and whether they relate to individual differences in infant abilities. A 
lack of methodological resources for performing microstate analysis of infant EEG has further hindered adoption of this 
cutting-edge approach by infant researchers. As a result, in the current study, we systematically addressed these knowl-
edge gaps and report that most microstate-based measurements of brain organization and functioning except for transition 
probabilities were stable with four minutes of video-watching resting-state data and highly internally consistent with just 
one minute. In addition to these results, we provide a step-by-step tutorial, accompanying website, and open-access data 
for performing microstate analysis using a free, user-friendly software called Cartool. Taken together, the current study 
supports the reliability and feasibility of using EEG microstate analysis to study infant brain development and increases 
the accessibility of this approach for the field of developmental neuroscience.

Keywords Microstates · Resting-state · Source localization · Infants · Tutorial · Reliability

Received: 12 July 2023 / Accepted: 16 February 2024
© The Author(s) 2024

Microstate Analysis of Continuous Infant EEG: Tutorial and Reliability

Armen Bagdasarov1  · Denis Brunet2,3 · Christoph M. Michel2,3  · Michael S. Gaffrey1,4,5

1 3

http://orcid.org/0000-0001-9775-7787
http://orcid.org/0000-0003-3426-5739
http://orcid.org/0000-0002-9334-1079
http://crossmark.crossref.org/dialog/?doi=10.1007/s10548-024-01043-5&domain=pdf&date_stamp=2024-2-22


Brain Topography

measure of brain activity that can be collected from infants 
during various states of arousal and/or activity (Azhari et 
al. 2020; Bell and Cuevas 2012). Most commonly, given its 
ease of acquisition and tolerance of head and body move-
ment, EEG is readily and frequently acquired from infants 
while they sit on their caregiver’s lap and watch relaxing 
videos. Prior research using EEG data from awake infants 
during video-watching have tended to focus on single met-
rics of global (e.g., total power or power spectral density 
analyses) or local (e.g., region-of-interest power or event-
related potential analyses) features (Braithwaite et al. 2020; 
Jones et al. 2020). However, recent data indicates that 
understanding the associations between functional brain 
networks (i.e., whole-brain dynamics; Xie et al. 2022) and 
behavior are crucial for advancing understanding of brain 
development during the first years of life. One promising 
but relatively unexplored method for characterizing whole-
brain dynamics collected from high-density EEG during 
infancy is microstate analysis.

Microstate analysis is a data-driven approach for iden-
tifying patterns of scalp potential topographies, or micro-
states, that reflect very short periods (i.e., typically less 
than ~ 150 ms) of synchronized neural activity (i.e., large-
scale functional networks) evolving dynamically over time 
(Khanna et al. 2015; Michel and Koenig 2018). A small 
number of four to seven canonical topographies have been 
replicated and consistently shown to explain the majority 
of topographic variance in the entire EEG signal recorded 
during rest (i.e., the absence of external task demands) in 
both children and adults. Several temporal properties are 
also frequently calculated for each microstate and have 
been reported to show unique variation in their values and 
associations with individual differences in behavior. Tem-
poral measures routinely used in studies include (1) global 
explained variance (GEV), the total variance in the data 
explained by a microstate, (2) duration, the average time in 
milliseconds (ms) that a microstate was present before tran-
sitioning to another microstate, (3) coverage, the percentage 
of time for which a microstate was present, (4) occurrence, 
the frequency with which a microstate was present per sec-
ond, and (5) transition probabilities, the probability of one 
microstate coming after another in the sequence. Impor-
tantly, the neural generators for each microstate can be iden-
tified with source localization techniques, a critical step in 
understanding their functional significance and potential 
relevance to developing behavior.

While microstate analysis has proven to be a highly infor-
mative method for studying brain function and organization 
at the millisecond-level in adults, very few studies using 
this approach in infants have been published. More specifi-
cally, of the seven publications that we identified, four used 
the microstate analytic approach to examine event-related 

data (Bucsea et al. 2023; Gui et al. 2021; Maitre et al. 2020; 
Rupawala et al. 2023), two examined microstates during 
sleep (Hermans et al. 2023; Khazaei et al. 2021), and one 
used microstate analysis to examine spontaneous EEG data 
collected from infants (i.e., 34, 6-10-month-olds) during 
video-watching (Brown and Gartstein 2023). Unfortunately, 
none of this prior work investigated the reliability of micro-
state-related measures at this age, a critical step in under-
standing the potential use of microstates to study individual 
differences in behavior and development (Lopez et al. 2023). 
However, previous work has demonstrated the reliability of 
microstate analysis in adults and suggests it is likely present 
in younger age groups as well. More specifically, in adults, 
prior studies have indicated good-to-excellent internal con-
sistency (i.e., stability of temporal properties within the 
same session) and short- and long-term test-retest reliability 
(i.e., stability of temporal properties between multiple ses-
sions recorded in the same week) for each temporal property 
of each identified microstate (Antonova et al. 2022; Khanna 
et al. 2014; Kleinert et al. 2023; Liu et al. 2020; Popov et 
al. 2023). Notably, Liu et al. (2020) demonstrated that as 
little as 1–2 min of data showed sufficient psychometric 
properties for GEV, duration, coverage, and occurrence val-
ues (i.e., intraclass correlations (ICCs) > 0.60). Recently, 
Kleinert et al. (2023) demonstrated good-to-excellent short-
term (ICCs = 0.87-0.92) and long-term (ICCs = 0.67-0.85) 
test-retest reliability of duration, coverage, and occurrence. 
Transition probabilities, however, have been shown to be 
much less reliable than GEV, duration, coverage, and occur-
rence values (Antonova et al. 2022; Kleinert et al. 2023; Liu 
et al. 2020). Critically, strong reliability has been demon-
strated across microstate clustering algorithms (Khanna et 
al. 2014), recording lengths (two vs. three minutes; Kleinert 
et al. 2023), and EEG channel densities (Khanna et al. 2014; 
Kleinert et al. 2023; Zhang et al. 2021); though Zhang et 
al. (2021) demonstrated 8- and 19-channel arrays to have 
significantly lower reliability than higher density arrays. 
While previous research has indicated high reliability of 
resting-state EEG source localization with approximately 
1.5-2 minutes of data (Cannon et al. 2012), no research 
exists examining the reliability of microstate sources at 
any age. Taken together, while studies in adults indicate 
strong promise for the reliability of microstate analysis in 
EEG data collected from infants, equal reliability cannot be 
assumed across developmental stages as shown in Popov et 
al. (2023), and must be individually examined for each pop-
ulation. Indeed, previous work using other EEG approaches 
such as functional connectivity (e.g., phase lag index) and 
event-related potentials has demonstrated that different 
quantities of data may be needed for reliable estimates of 
brain-based measures during infancy (Haartsen et al. 2020; 
Munsters et al. 2019).
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One barrier that may be contributing to the dearth of 
published studies using the microstate analytic approach 
for characterizing infant EEG data is the lack of compre-
hensive, step-by-step methodological resources for infant 
researchers to employ this approach in their own work. 
Resources that specifically use examples from infant EEG 
data are more likely to be adopted by infant EEG research-
ers than resources that focus on other populations. Pro-
duction of resources for analyzing EEG data in ways that 
inform understanding of brain function and organization 
(such as microstate analysis) are especially important as 
large-scale, multi-site, longitudinal infant EEG studies such 
as the HEALthy Brain and Child Development Study (Jor-
dan et al. 2020), Bucharest Early Intervention Project (Zea-
nah et al. 2003), Bangladesh Early Adversity Neuroimaging 
Study (Turesky et al. 2019), Safe Passage Study (Dukes et 
al. 2014), YOUth Cohort Study (Onland-Moret et al. 2020), 
Eurosibs Consortium (Jones et al. 2019), and Baby Siblings 
Research Consortium (Levin et al. 2017) are amidst or have 
completed data collection, with opportunities for data access 
and analysis. And, in line with the open science movement, 
sharing of data and analytic methods will be critical for the 
replication of findings. Another potential explanation for the 
paucity of microstate studies during infancy is the lack of 
adaptation of the microstate analytic method for use with 
EEG data from infants. For example, current and popular 
tools for performing microstate analysis (e.g., Cartool) do 
not include age-appropriate MRI brain templates for the 
source localization of microstates. Whether the microstate 
analytic method requires infant-specific changes for how 
microstates and their temporal properties are identified and 
measured also remains unknown.

As a first step toward validating the use of EEG micro-
states for investigating infant brain development, the cur-
rent study explored the feasibility of identifying microstates 
during video-watching resting-state and examined their 
psychometric reliability in 48, 5-10-month-old infants using 
high-density EEG. Specifically, we assessed (1) the stabil-
ity of microstate topographies, their temporal properties, 
their transition probabilities, and their neural sources with 
increasing EEG data durations (i.e., 1–5 min), and (2) the 
internal consistency (i.e., split-half reliability) of the tem-
poral properties, transition probabilities, and neural sources 
at each data duration. Given the lack of studies examining 
resting-state microstates during infancy, we did not make 
specific predictions about microstate characteristics (i.e., 
topographies, temporal properties, transition probabilities, 
neural sources) or their reliability. In order to facilitate 
methodological access to microstate analysis, the current 
study also provides resources for analyzing microstates 
during infancy in line with recent efforts to maximize the 
potential of EEG as a developmental neuroscience tool 

(Buzzell et al. 2023). Toward this end, we have provided a 
step-by-step tutorial, accompanying website, and required 
files (e.g., age-appropriate MRI brain templates) for per-
forming microstate analysis and microstate source local-
ization of EEG data using Cartool software (Brunet et al. 
2011). We also shared our EEG data in the Brain Imaging 
Data Structure (BIDS; Pernet et al. 2019) format on Open-
Neuro (Markiewicz et al. 2021).

Methods

Participants

Participants were 48, 5-10-month-old infants (27 or 56.25% 
male). Recruitment and demographic details are described 
in Supplementary Materials S1 and S2, respectively. All 
research was approved by the Duke University Health Sys-
tem Institutional Review Board and carried out in accor-
dance with the Declaration of Helsinki. Caregivers provided 
informed consent, and compensation was provided for their 
participation.

EEG data Acquisition, Preprocessing, and Quality 
Checks

Infants sat on their caregiver’s lap and watched up to 
15 minutes of dynamic, relaxing videos with sound (i.e., 10, 
90-second videos separated by breaks during which care-
givers could play with their infant; information about the 
videos are provided in Supplementary Materials S3). Before 
each video started, an attention grabber (i.e., three-second 
video of a noisy rattle) directed the infant’s attention to 
the screen. Videos were presented with E-Prime software 
(Psychological Software Tools, Pittsburgh, PA). Caregivers 
were instructed to silently sit still during videos. If infants 
shifted their attention away from the screen, caregivers were 
permitted to re-direct their attention only by pointing to the 
screen. EEG was recorded at 1000 Hz (Hz) and referenced 
to the vertex (channel Cz) using a 128-channel HydroCel 
Geodesic Sensor Net (Electrical Geodesics, Eugene, OR). 
Impedances were maintained below 50 kilohms throughout 
the EEG session.

Offline preprocessing was performed with EEGLAB 
(Delorme and Makeig 2004) in MATLAB (MathWorks, 
Natick, MA). Details with instructions for their use are 
available on https://github.com/gaffreylab/EEG-Micro-
state-Analysis-Tutorial. Briefly, 24 outer ring channels that 
often contain a large amount of artifact in infant data were 
removed due to their location near the base of the skull or 
on the neck or face. Data were downsampled to 250 Hz, and 
bandpass filtered 1–20 Hz. A 20 Hz cutoff was chosen to 
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(see below). After removal of participants, data from the 
final pool of participants was cut to one-, two-, three-, four-, 
and five-minute durations, resulting in five data files per 
participant.

Microstate Analysis

Tutorial and Data Availability

Microstate analysis was performed in Cartool, a free, easy-
to-use, publicly available, and soon-to-be open-source soft-
ware that does not have any software dependencies (Brunet et 
al. 2011). Cartool is programmed by Denis Brunet, from the 
Functional Brain Mapping Laboratory (FBMLab), Geneva, 
Switzerland, and is supported by the Center for Biomedical 
Imaging (CIBM) of Geneva and Lausanne. Cartool includes 
documentation for all processes performed here. We add to 
this documentation by providing a step-by-step tutorial and 
accompanying website for performing microstate analysis: 
https://github.com/gaffreylab/EEG-Microstate-Analysis-
Tutorial. Importantly, while the current paper is focused 
on microstate analysis of data collected from infants, this 
tutorial is applicable to data collected from most human 
populations. Our tutorial includes (1) instructions for data 
preprocessing, including MATLAB scripts, (2) instructions 
for performing all stages of microstate analysis, including 
information about data preparation (e.g., formatting the 
EEG data, creating a compatible channel locations file) 
and source localization (e.g., template MRI files), (3) raw 
and preprocessed data files that are openly shared in BIDS 
format on OpenNeuro (OpenNeuro Accession Number: 
ds004635; https://openneuro.org/datasets/ds004635), and 
(4) outputs of all statistical analyses performed to assess 
the reliability of microstates as described below. Moreover, 
step-by-step instructions are accompanied by screenshots 
and video recordings to increase accessibility.

In this tutorial, microstate analysis was performed in 
three stages: individual-level clustering, group-level clus-
tering, and backfitting. Then, source localization was per-
formed to identify the neural generators of each microstate. 
Before beginning the first stage, however, a spatial filter was 
applied to the data (Michel and Brunet 2019). This filter, 
which is unique to Cartool and particularly beneficial for 
source localization, helped increase the signal-to-noise of 
the data by removing topographic outliers and smoothing 
topographies at each time point of the preprocessed data. 
Further, since reliability analyses were performed for each 
of five data durations (i.e., one, two, three, four, and five 
minutes), microstate and source analyses were performed 
five times.

minimize the impact of high frequency noise on the data, 
and this cutoff has been used in other published microstate 
studies (Koenig et al. 2002; Milz et al. 2016). Periods of 
inattention were manually rejected based on session notes. 
Bad channels were removed and interpolated using spheri-
cal splines if they were (1) flat for more than five seconds, 
(2) contained more than four standard deviations of line 
noise relative to all other channels, or (3) correlated at less 
than 0.80 to surrounding channels. Following, data were re-
referenced to the average. Then, a copy of the data was cre-
ated, cleaned using Artifact Subspace Reconstruction (ASR; 
Mullen et al. 2015; i.e., artifacted periods were removed 
using a burst criterion of 20 as recommended by Chang et 
al. 2020), and submitted to extended infomax independent 
component analysis (ICA; Lee et al. 1999) with principal 
component analysis dimensionality reduction (i.e., 50 com-
ponents). The ICLabel plugin was used to flag components 
that had a probability of at least 0.70 of being related to eye 
activity, muscle activity, heart artifacts, line noise, or chan-
nel noise (Pion-Tonachini et al. 2019). The resulting ICA 
fields and flags were subsequently copied over to the full-
length data before ASR was performed, and flagged ICA 
components were removed. Application of the ICA matrix 
to the full-length data and subsequent removal of indepen-
dent components allowed for the preservation of data that 
would have otherwise been removed by ASR or other arti-
fact removal methods. Data was segmented into nonover-
lapping one-second epochs and were removed in two steps 
using the TBT plugin (Ben-Shachar 2018). First, to remove 
data containing residual eye-related artifacts, epochs were 
removed if any one of six frontal channels contained ampli-
tudes > 150 or < -150 µV as recommended for infant data 
by Debnath et al. (2020). Next, epochs were removed if at 
least 10 channels contained (1) amplitudes > 150 or < -150 
µV (Debnath et al. 2020), (2) joint probabilities (i.e., prob-
abilities of plausible activity) above 3 standard deviations 
for local or global thresholds as performed in our previous 
work (Bagdasarov et al. 2022) and suggested by the work 
of others (Gabard-Durnam et al. 2018), or (3) a > 100 µV 
maximum-minimum amplitude difference between data 
samples. To avoid rejecting epochs that contained only a 
small number of noisy channels, if less than 10 channels 
met rejection criteria, representing < 10% of the total num-
ber of channels, the epoch was not removed, but the chan-
nels were interpolated for that epoch only. Lastly, data was 
re-referenced to the average a final time.

Data quality was rigorously assessed. Participants who 
did not pass EEG data quality checks were excluded from 
further analyses (see Supplementary Materials S4). Also, 
participants with less than five minutes of EEG data passing 
initial preprocessing and subsequent quality control were 
excluded so that reliability analyses could be conducted 
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use that solution as the optimal one. However, if the meta-
criterion shows multiple local maxima, the researcher must 
decide which solution is optimal rather than simply select-
ing the one with the highest value. The tutorial GitHub page 
provides a step-by-step guide for selecting the optimal num-
ber of microstates using the meta-criterion.

Stage 3: Backfitting

The last stage of microstate analysis – backfitting – was per-
formed on each participant’s preprocessed, spatially-filtered 
data, and resulted in rich temporal information character-
izing each group-level microstate for each participant. First, 
each participant’s data was normalized by the median of 
GFP to account for individual differences in scalp poten-
tial due to varying skull conductivity. Then, each time point 
of each participant’s data was labeled with one group-level 
microstate; the one that was most spatially correlated with 
the topography at that time point (i.e., winner-take-all 
approach). The polarity of topographies was ignored when 
calculating the correlation and the minimum correlation for 
time points assigned to a microstate was 0.50. After backfit-
ting, temporal smoothing was applied (window half-size of 
32 ms and Besag factor of 10; Pascual-Marqui et al. 1995), 
and improbably small segments were removed, such that 
segments smaller than 32 ms were divided in half with the 
first half added to the preceding segment and the second half 
added to the proceeding segment. Lastly, the GEV, duration, 
coverage, and occurrence values of each microstate were 
calculated for each participant, as well as first-order Mar-
kov chain transition probabilities (expected and observed). 
Transition probabilities for each transition direction were 
normalized to account for the occurrence of microstates, 
which varied by participant, by dividing observed probabil-
ity values by expected probability values.

Stage 4: Source Localization

After backfitting, microstates were organized by cluster 
into separate files for each participant, and source localiza-
tion was performed for each cluster separately. Two sets 
of T1-weighted template MRI files (5-8-month-old and 
8-11-month-old templates) were obtained from the National 
Institutes of Health-funded MRI Study of Normal Brain 
Development (Fonov et al. 2009). Downloaded files included 
the head (brain with skull), the brain (skull-stripped), and 
grey matter (extracted from brain). In addition, for each set 
of files, tissues were segmented in Cartool to identify the 
following tissue boundaries: scalp, fat, muscle, cerebrospi-
nal fluid, blood, eyes, air, skull and three skull tissue types 
(compact, spongy, suture), brain, and grey and white matter.

Stage 1: Individual-Level Clustering

At the individual-level (i.e., for each participant’s data), 
topographies at global field power (GFP) peaks represent-
ing timepoints of the highest signal-to-noise ratio were 
extracted (Brunet et al. 2011). Fifty epochs, each composed 
of a random subsample of the extracted topographies and 
representing 99.9% of the participant’s data, were submit-
ted to a polarity-invariant modified k-means cluster analy-
sis (Pascual-Marqui et al. 1995), which was set to repeat 
50 times and identify 1–12 clusters of topographies for 
each epoch (see Supplementary Materials S5 for number 
of subsamples, which varied, for each data duration). The 
resampling approach is thought to improve the reliability 
of k-means clustering and has been used in recent work 
(Bagdasarov et al. 2022, 2023; Férat et al. 2022). The meta-
criterion – an aggregate measure of six independent criteria 
(Bréchet et al. 2019; Custo et al. 2017) – determined the 
optimal number of clusters for each epoch, resulting in k 
optimal clusters for each of 50 epochs or k*50 topographies 
for each participant.

Stage 2: Group-Level Clustering

At the group-level (i.e., for data from the group of partici-
pants), the 50 epochs of k optimal clusters from each par-
ticipant were combined, resulting in 50*k topographies for 
each of 48 participants or 50*k*48 topographies for the 
group. One-hundred epochs, each composed of a random 
subsample of these topographies and representing 99.9% 
of the group’s 50*k*48 topographies were submitted to a 
polarity-invariant modified k-means cluster analysis, which 
was set to repeat 100 times and identify 1–15 clusters of 
topographies for each epoch. The meta-criterion determined 
the optimal number of clusters for each epoch, resulting in 
k optimal clusters for each of 100 epochs or k*100 topogra-
phies. These topographies were combined and submitted to 
a final k-means cluster analysis with the same parameters, 
and the meta-criterion was used as guidance from which we 
selected the optimal number of clusters based on resting-
state topographies observed in prior work (see below); now, 
the group-level microstates.

For analysis of resting-state data, Cartool’s built-in Ref-
erence Guide recommends use of the meta-criterion auto-
matically at the individual-level; that is, the meta-criterion 
should select the optimal number of clusters for each partic-
ipant. However, at the group-level, it is recommended to use 
the meta-criterion as guidance from which the researcher 
must interpret its suggestions based on previous research, 
their experience, and the type of data they are working with. 
For example, if the meta-criterion clearly shows a solution 
with a single maximum position, then the researcher should 
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values), their transition probabilities, and their neural 
sources were stable or changed with increasing data dura-
tions (one, two, three, four, and five minutes). For each of 
the five data durations, the number of microstates selected 
by the meta-criterion and their topographies were compared 
(topographies were compared visually and with spatial cor-
relations). Whether topographic stability or lack thereof was 
a function of sample size was also assessed by randomly 
assigning participants into five nested groups of increasing 
sample sizes (n = 10, 20, 30, 40, and 48). For each group and 
data duration, additional microstate analyses (only stages 1 
and 2) were performed, resulting in 25 additional microstate 
analyses from which topographies were compared.

Next, to assess the stability of each microstate’s four 
temporal properties across data durations, each microstate-
temporal property combination was submitted to a linear 
mixed-effects model; data duration (fixed effect) served 
as the predictor. We included a crossed random intercept 
for participant and an autoregressive covariance structure 
to account for dependencies in data duration (i.e., the two-
minute chunk of data contained the one-minute chunk, the 
three-minute chunk contained the two-minute chunk, and so 
on). We fit the model using the nlme package (Pinheiro et 
al. 2017) in R (R Core Team 2022). The estimation method 
was maximum likelihood. A Type III Analysis of Variance 
(ANOVA) with the Kenward-Roger method was performed 
to assess the significance of the effect of data duration on 
the dependent variable. Given the large number of models, p 
values for the fixed effect of data duration for each ANOVA 
were Bonferroni-corrected (Bland and Altman 1995) for the 
total number of models (i.e., the number of microstates mul-
tiplied by the number of temporal properties assessed). To 
estimate the magnitude of the effect of data duration, partial 
eta squared (η2) was calculated using the effectsize pack-
age (Ben-Shachar et al. 2020). The stability of transition 
probabilities across data durations was similarly assessed 
for each transition direction using linear mixed-effects mod-
els with data duration as a fixed effect and participants as a 
random effect. Given the large number of models, p values 
for the fixed effect of data duration for each ANOVA were 
Bonferroni-corrected for the total number of models (i.e., 
the number of possible transition directions). For ANOVA 
models with a significant fixed effect of data duration, pair-
wise differences were estimated using the emmeans pack-
age (Lenth et al. 2019), and p values were Scheffé-corrected 
(Ruxton and Beauchamp 2008; Scheffé 1953) for the num-
ber of comparisons, which was always ten. For significant 
pairwise differences, bias-corrected and accelerated 95% 
confidence intervals of the paired mean differences were 
calculated by performing nonparametric bootstrap resam-
pling (5000 resamples) using the dabestr package (Ho et al. 
2019). Further, analyses were performed with and without 

Source localization was performed separately for 
5-7-month-old (using the 5-8-month-old template files) and 
8-10-month-old infants (using the 8-11-month-old template 
files). For each age group, solution points were distributed 
equally in a grey matter-constrained head model of the 
age-appropriate infant MRI brain volume template with a 
5 mm voxel resolution (6591 solution points for 5-8-month-
old template grey matter and 6768 solution points for 
8-11-month-old template grey matter). The 105-channel 
EEG net template was co-registered to the MRI head model. 
Sources were modeled using a 4-shell, adaptive local spher-
ical model with anatomical constraints (LSMAC), which 
built local spheres with different radii for each channel by 
estimating the thickness of the scalp, skull, cerebrospinal 
fluid, and brain under each channel, allowing the real geom-
etry between solution points and channels to be accounted 
for (Brunet et al. 2011). Then, the Low Resolution Brain 
Electromagnetic Tomography (LORETA; Pascual-Marqui 
et al. 1994) distributed linear inverse solution was calcu-
lated to estimate the strength of activity at each solution 
point. The results were optimized with regularization, which 
accounted for background EEG noise and enforced smooth-
ness, and standardized to correct for the variability of EEG 
power across time, a procedure automatically implemented 
in Cartool to eliminate activation biases (Michel and Brunet 
2019). The amplitude of activity produced at each solution 
point was saved as a scalar, positive value and averaged 
across time points for each microstate. Inverse solutions 
were combined across participants and thresholded to the 
solution points above the 95th percentile of values as done 
in previous work (Bagdasarov et al. 2022; Bréchet et al. 
2020, 2021). The final product was a thresholded, group-
level source distribution for each microstate.

Results of source localization can be viewed in Cartool 
or other software. Here, sources were viewed in the Analy-
sis of Functional NeuroImages (AFNI; Cox 1996) program, 
which facilitated the assessment of their reliability (see 
below). Sources were first converted from two-dimensional 
to three-dimensional in Cartool by computing intermediate 
voxels from the grey matter-constrained head model using 
cubic kernel convolution (no new maxima were artificially 
created). Then, in AFNI, sources were converted to binary 
values (0 and 1) using the 3dcalc command to indicate pres-
ence of solution points above the 95th percentile of values 
or lack thereof at each voxel.

Reliability Analyses

Stability Across Data Durations

We assessed whether microstate topographies, their tem-
poral properties (GEV, duration, coverage, and occurrence 
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qualitative descriptors based on previous work using simi-
lar thresholds (Lopez et al. 2023): poor (values < 0.40), 
fair (0.40 ≤ values ≤ 0.59), good (0.60 ≤ values ≤ 0.74), and 
excellent (values ≥ 0.75).

Results

Stability Across Data Durations

The meta-criterion for determining the optimal number of 
microstates revealed five microstates labeled 1–5, which 
explained between 0.74 and 0.78 of GEV at the group-level, 
for all five data durations (Fig. 1). Microstate topographies 
were visually very similar (Fig. 1) and highly spatially 
correlated (correlations all > 0.99) across data durations. 
Descriptive statistics of microstate temporal properties 
and transition probabilities are provided in Supplementary 
Materials S7. Backfitting details are provided in Supple-
mentary Materials S8. Comparing microstate topographies 
across increasingly larger groups of participants and data 
durations up to five minutes, results revealed that all data 
durations and groups of participants showed a five-micro-
state solution with the exception of the following combina-
tions: (1) one minute of data with 30 participants showed a 
six-microstate solution, (2) two, four, and five minutes of 
data with 10 participants showed a six-microstate solution, 
and (3) three minutes of data with 10 participants showed a 
five- or six-microstate solution (see Supplementary Materi-
als S9 and tutorial GitHub page for all topographies). Of 
note, solutions that contained a transition state (i.e., topo-
graphically appeared to represent the transition between two 
canonical microstates and was spatially poorly correlated 
with a canonical microstate) were excluded from being can-
didates of the optimal solution (see Supplementary Materi-
als S10). That is, while transition states may be meaningful, 
their interpretation in the context of the current literature is 
unclear.

Results of linear mixed-effects models are presented for 
models with outliers removed while models without outli-
ers removed are available on the tutorial GitHub page. No 
differences were observed in the overall significance of 
models or their post-hoc comparisons with and without 
outliers removed. Also, given the large number of models, 
only those with significant effects are presented here; mod-
els with non-significant results are available on the tutorial 
GitHub page. Data duration was a significant predictor of: 
(a) microstate 1 (F = 5.83, corrected p = .004, η2 = 0.11), 
2 (F = 13.50, corrected p < .001, η2 = 0.22), 4 (F = 21.10, 
corrected p < .001, η2 = 0.31), and 5 (F = 22.09, corrected 
p < .001, η2 = 0.32) GEV, (b) microstate 1 (F = 11.36, cor-
rected p < .001, η2 = 0.19), 2 (F = 18.86, corrected p < .001, 

outliers, which were identified using the rstatix package 
(Kassambara 2020). Boxplots within each data duration 
determined outliers as values above Quartile 3 + 3*IQR or 
below Quartile 1–3*IQR (IQR = Interquartile Range).

Lastly, to assess the stability of group-level source local-
ization results across data durations, the Dice similarity 
coefficient (DSC) was calculated between microstate source 
distributions from the five data durations in AFNI using the 
3dSliceNDice command. The DSC represents the spatial 
overlap between source distributions and was calculated on 
a slice-by-slice basis along each axis of the brain for slices 
where either or both of the source distributions had at least 
one nonzero voxel. Then, DSC values were averaged across 
axes. Since source localization was performed separately 
for 5-7-month-old and 8-10-month-old infants, the DSC 
procedure was performed separately as well, and then val-
ues were averaged.

Internal Consistency

The internal consistency of microstate temporal properties 
(GEV, duration, coverage, and occurrence values) and tran-
sition probabilities (for each transition direction) at each 
data duration (one, two, three, four, and five minutes) was 
assessed with Spearman-Brown split-half reliability coeffi-
cients in R using the splithalfr package (Pronk et al. 2022). 
During the third stage of microstate analysis, backfitting 
for each data duration was performed on even and odd seg-
ments. Specifically, data for each duration was split into 
six equal segments (see Supplementary Materials S6 for 
number of time frames representing each segment for each 
data duration), and backfitting was performed twice; once 
on even segments and once on odd segments, resulting in 
two sets of temporal properties and transition probabilities. 
The Spearman-Brown split-half reliability coefficient was 
then calculated between the two sets for all temporal proper-
ties and transition probabilities for each microstate and data 
duration. Analyses were performed with and without multi-
variate outliers, which were identified using the Minimum 
Covariance Determinant (MCD; Rousseeuw and Driessen 
1999) using the MASS package (Ripley et al. 2013). The 
internal consistency of source localization results at each 
data duration was assessed with the DCS. Source localiza-
tion was performed separately on even and odd segments for 
each data duration from the backfitting procedure described 
above. Then, the DCS was calculated between the two sets 
of source distributions for each microstate and data dura-
tion. As done above, the DSC procedure was performed sep-
arately for source localization results from 5-7-month-old 
and 8-10-month-old infants, and then values were averaged.

To facilitate the interpretation of internal consistency 
and DSC stability estimates, values were reported using 
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Given the large number of significant post-hoc compari-
sons, we present three additional exploratory analyses in 
Supplementary Materials S12 to aid in the interpretation of 
our results: (1) the Pearson correlation coefficient for each 
comparison showing high correlations between values even 
for statistically significant comparisons, and, at times, much 
higher correlations for significant comparisons than other 
non-significant comparisons, (2) the standard deviation of 
the paired difference scores for each comparison showing 
small standard deviations for some significant compari-
sons but comparatively large standard deviations for other 
non-significant comparisons, and (3) the coefficient of 

η2 = 0.29), 4 (F = 15.57, corrected p < .001, η2 = 0.25), and 
5 (F = 22.26, corrected p < .001, η2 = 0.32) coverage, and 
(c) microstate 1 (F = 8.72, corrected p < .001, η2 = 0.16), 
2 (F = 15.00, corrected p < .001, η2 = 0.24), 4 (F = 12.13, 
corrected p < .001, η2 = 0.21), and 5 (F = 19.71, corrected 
p < .001, η2 = 0.30) occurrence. Data duration was not a sig-
nificant predictor of the duration of any microstate or the 
duration, GEV, coverage, and occurrence of microstate 3. 
Pairwise differences of data duration on temporal property 
values for the significant models are presented in Table 1, 
and their bias-corrected and accelerated 95% confidence 
intervals are provided in Supplementary Materials S11.

Fig. 1 Five infant microstates 
show similar topographies across 
varying EEG data durations. 
Note. Microstates are polarity-
invariant (i.e., colors do not 
indicate polarity).
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Internal Consistency

Results of internal consistency analyses are presented for 
models with outliers removed while models without outliers 
removed are available on the tutorial GitHub page. Spear-
man-Brown split-half reliability coefficients for microstate 
temporal properties are plotted in Fig. 2. Mean values for 
GEV across microstates were excellent for all data dura-
tions: one (M = 0.78; Range = 0.69-0.86), two (M = 0.84; 
Range = 0.65-0.93), three (M = 0.90; Range = 0.82-0.95), 
four (M = 0.94; Range = 0.92-0.96), and five (M = 0.94; 
Range = 0.92-0.97) minutes of data (Fig. 2a). Mean values 
for duration were good with one (M = 0.61; Range = 0.47-
0.77), two (M = 0.65; Range = 0.52-0.86), three (M = 0.73; 
Range = 0.58-0.81), and four (M = 0.74; Range = 0.58-0.90) 
minutes of data, and excellent with five minutes of data 
(M = 0.84; Range = 0.76-0.93) (Fig. 2b). Mean values for 
coverage across microstates were excellent for all data dura-
tions: one (M = 0.78; Range = 0.65-0.87), two (M = 0.80; 
Range = 0.62-0.94), three (M = 0.87; Range = 0.76-0.94), 
four (M = 0.91; Range = 0.88-0.94), and five (M = 0.92; 
Range = 0.90-0.95) minutes of data (Fig. 2c). Mean val-
ues for occurrence across microstates were good with one 
minute of data (M = 0.71; Range = 0.60-0.81), and excellent 
with two (M = 0.82; Range = 0.77-0.91), three (M = 0.85; 
Range = 0.73-0.89), four (M = 0.88; Range = 0.80-0.92), 

variation showing individual, within-participant variability 
in stability.

Data duration was not a significant predictor of the tran-
sition probability of any transition direction (see models 
available on tutorial GitHub page).

Mean DSC values between neural source distributions 
of varying data durations across microstates are provided 
in Table 2. All mean DSC values were considered excel-
lent (≥ 0.75). Sources from the five-minute data duration 
results displayed on an MRI brain are available on the tuto-
rial GitHub page.

Table 1 Pairwise differences of data duration on temporal property values for significant models
Data Duration Comparisons
1–2 1–3 1–4 1–5 2–3 2–4 2–5 3–4 3–5 4–5

M1 GEV NS NS NS NS NS NS NS 0.004 (0.001) 0.005 (0.001) NS
M2 GEV NS 0.008 

(0.001)
NS NS 0.006 

(0.001)
NS NS -0.005 

(0.001)
NS NS

M4 GEV 0.004 (0.001) NS -0.006 
(0.002)

NS -0.005 
(001)

-0.010 
(0.001)

-0.008 
(0.002)

-0.005 
(0.001)

NS NS

M5 GEV NS 0.006 
(0.001)

0.012 (0.002) 0.007 
(0.002)

0.006 
(0.001)

0.013 (0.002) 0.008 
(0.002)

0.006 (0.001) NS -0.005 
(0.001)

M1 Coverage -0.485 
(0.125)

NS NS NS NS 0.741 (0.174) 0.976 
(0.211)

0.645 (0.125) 0.881 (0.174) NS

M2 Coverage 0.741 (0.146) 1.034 
(0.199)

NS NS NS -0.686 
(0.199)

NS -0.978 
(0.146)

-0.664 
(0.199)

NS

M4 Coverage NS NS -1.105 
(0.221)

-0.958 
(0.254)

NS -1.222 
(0.182)

-1.075 
(0.221)

-0.971 
(0.129)

-0.824 
(0.182)

NS

M5 Coverage NS NS 1.452 (0.234) NS NS 1.293 (0.194) NS 1.047 (0.139) NS -0.759 
(0.139)

M1 Occurrence -0.041 
(0.012)

NS NS NS NS 0.071 (0.017) 0.089 
(0.021)

0.056 (0.012) 0.073 (0.017) NS

M2 Occurrence 0.070 (0.014) 0.093 
(0.017)

NS NS NS -0.068 
(0.017)

NS -0.090 
(0.014)

-0.071 
(0.017)

NS

M4 Occurrence NS NS -0.098 
(0.019)

-0.096 
(0.022)

NS -0.098 
(0.016)

-0.096 
(0.019)

-0.074 (0.011) -0.071 
(0.016)

NS

M5 Occurrence NS NS 0.119 (0.021) NS NS 0.093 (0.018) NS 0.093 (0.013) NS -0.060 
(0.013)

Note. M = microstate (e.g., M1 = microstate 1). Column headings represent data duration comparisons (e.g., 1–2 represents comparison between 
one- and two-minute data durations). Pairwise differences are presented as the mean difference (standard error). NS = non-significant.

Table 2 Mean DSC values between neural source distributions of 
varying data durations across microstates

1 min 2 min 3 min 4 min
1 min
2 min 0.81 (0.05); 

0.71–87
3 min 0.79 (0.06); 

0.70–89
0.82 (0.04); 
0.74-0.89

4 min 0.78 (0.08); 
0.67-0.89

0.82 (0.05); 
0.73-0.91

0.82 (0.09); 
0.66-0.72

5 min 0.76 (0.05); 
0.70-0.84

0.80 (0.06); 
0.72-0.91

0.80 (0.06); 
0.72-0.88

0.82 
(0.07); 
0.73-0.91

Note. Presented as mean (standard deviation); range.
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removed). No differences were observed between models 
with outliers removed and models without outlier removed 
(see models available on tutorial GitHub page). Mean val-
ues were poor for all data durations (one-minute M = 0.02; 
two-minute M = 0.16; three-minute M = 0.27; four-minute 
M = 0.27; five-minute M = 0.26), and the range of val-
ues indicated large variability across transition directions 
with the majority showing poor values (even anticorre-
lated) and a small handful showing fair, good, and excel-
lent values (one-minute Range = -0.91-0.68; two-minute 
Range = -0.23-0.54; three-minute Range = -0.28-0.63; four-
minute Range = -0.39-0.66; five-minute Range = -0.29-81). 

and five (M = 0.91; Range = 0.87-0.93) minutes of data 
(Fig. 2d). Exact values for each microstate and data dura-
tion combination are available on the tutorial GitHub page. 
When outliers were not removed, the mean value for dura-
tion was in the fair rather than the good range at one min-
ute, and in the excellent rather than the good range at three 
and four minutes; the only differences in mean values when 
comparing models with and without outliers removed (see 
models available on tutorial GitHub page).

The mean and range of Spearman-Brown split-half reli-
ability coefficients for microstate transition probabilities 
across transition directions are plotted in Fig. 3 (outliers 

Fig. 2 Split-half reliability of temporal properties
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group-level stability) and within (i.e., individual-level 
internal consistency) data of increasing durations. To fur-
ther support wider availability and use of EEG microstate 
analysis for the study of brain development, a step-by-step 
tutorial for a free, easy-to-use, publicly available, and soon-
to-be open-source EEG microstate analysis software pack-
age – Cartool – was also developed. And to facilitate open 
science practices, EEG data were shared in BIDS format on 
OpenNeuro. Findings revealed that video-watching resting-
state EEG data collected from infants during the first year of 
life yielded highly reliable microstate-based measurements 
of brain function and organization with as little as one or 
four minutes of data, depending on the analytical goals. As 
a result, the current findings support the use of EEG micro-
states as a reliable and accessible analytical approach for 
studying the spatiotemporal dynamics of the developing 
brain from a very early age.

Stability Across Data Durations

Group-level stability of microstate measures reflects the pre-
dictability of patterns observed when analyzing data from 
a group of individuals. It allows researchers to understand 
how much data and number of participants are required to 
develop a quantitative understanding of overall expected 
patterns of change in microstate measures with age. Find-
ings indicated that across all data durations investigated 

Exact values for each transition direction and data duration 
combination are available on the tutorial GitHub page.

Split-half DSC values for microstate sources are plot-
ted in Fig. 4. Mean DSC values across microstates were 
good with one minute of data (M = 0.73; Range = 0.70-
0.76) and excellent with two (M = 0.77; Range = 0.73-
0.85), three (M = 0.79; Range = 0.75-0.84), four (M = 0.82; 
Range = 0.77-0.84), and five (M = 0.80; Range = 0.75-0.87) 
minutes of data. Exact values for each microstate and data 
duration combination are available on the tutorial GitHub 
page.

Discussion

Reliably characterizing the functional properties of brain 
activity and organization during infancy provides a unique 
opportunity for understanding expected patterns of brain 
development and their association with developing infant 
abilities and early life experiences. EEG microstates are a 
promising but relatively unexplored method for measur-
ing global patterns of brain activity and organization very 
early in development. As an important step in demonstrating 
the significant potential of using an EEG microstate-based 
analytic approach to study functional brain development, 
the current study examined the reliability of resting-state 
EEG microstates characterized during infancy across (i.e., 

Fig. 3 Split-half reliability of 
transition probabilities. Note. 
Bars indicate the minimum and 
maximum Spearman-Brown 
split-half reliability coefficient 
values for transition probabilities 
across transition directions for 
each data direction
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First, the temporal properties of microstate 3 were stable 
with just one minute of data. Microstate 3 had the highest 
values for all its temporal properties compared to the other 
microstates. Increased occurrence of microstate 3 compared 
to the other microstates may have contributed to earlier sta-
bility of its temporal properties (i.e., more instances for the 
computation of its reliability). Second, duration was stable 
with just one minute of data for all microstates. While GEV, 
coverage, and occurrence quantify how much microstates 
are represented in the EEG signal, duration quantifies how 
long microstates are present when they occur, regardless of 
how much they are represented in the EEG signal. There-
fore, duration values may be less affected by the duration of 
the data being analyzed or, in other words, opportunities for 
its occurrence. Third, GEV, coverage, and occurrence were 
stable with four minutes of data for all microstates except 
microstate 5, which did not reach stability. Microstate 5 is 
highly spatially correlated with microstate 3. Indeed, prior 
work has shown that when only four microstates are used, 
microstate 3 becomes a combination of microstates 3 and 5 
(Custo et al. 2017). Thus, it is possible for some instances 
that microstate 5 shows temporal property values similar to 
those of microstate 3 (i.e., when more spatially aligned with 
microstate 3). Additional research is needed to understand 
whether microstates 3 and 5 are functionally distinct during 
infancy.

(i.e., 1-5 min), five data-driven microstates explained the 
majority of topographic variance. Topographies derived 
from one minute of data were visually and quantitatively 
(i.e., spatial correlation) similar to those from two-, three-, 
four-, and five-minute data durations. Further, when topo-
graphic stability was assessed by varying sample size (i.e., 
n = 10-48), a minimum of 20 participants was sufficient for 
topographic stability with two minutes of data or more. Even 
with one minute of data, each sample size yielded the same 
five microstates, except for when the sample size was 30, 
which yielded six microstates. Importantly, topographies 
were also similar to those reported in previously published 
studies of microstates in children and adults (Bagdasarov et 
al. 2022, 2023 (4-8-year-olds); Custo et al. 2017 (6-87-year-
olds); Hill et al. 2023 (4-12-year-olds); Michel and Koe-
nig 2018 (review of primarily adult studies); Tomescu et 
al. 2018 (6-87-year-olds), indicating future potential for the 
direct comparison of their temporal properties, transition 
probabilities, and neural sources across the lifespan. This 
finding is especially promising for longitudinal work that 
aims to uncover individual differences in brain development 
and behavior from a very early age.

The stability of microstate temporal properties (GEV, 
duration, coverage, and occurrence) across data of increas-
ing durations depended on the type of temporal property 
and microstate assessed. Overall, four patterns emerged: 

Fig. 4 Split-half reliability of 
neural sources
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had on the internal consistency of duration at one minute 
of data, transition probabilities may have suffered from a 
similar problem, and potentially to a greater degree because 
the computation of each transition probability involved the 
activity of two microstates rather than one. However, in this 
case, as observed for duration, we would have expected an 
increase in internal consistency values with increasing data 
durations, which was not observed. Alternatively, transi-
tion probabilities may reflect state-related measures of brain 
activity that are modulated by environmental demands or 
external stimuli (e.g., idiosyncratic patterns of attention to 
movements of stimuli within the videos) while temporal 
properties may reflect trait-like measures of highly con-
served patterns of brain activity and organization underly-
ing more general cognitive (e.g., sustained attention) and/
or sensory (e.g., processing of visual stimuli) domains. 
However, previous work in adults showed that transition 
probabilities did not distinguish between mental states (i.e., 
mind-wandering, verbalization, and visualization condi-
tions; Antonova et al. 2022). The same study also indicated 
that compared to temporal properties, transition probabili-
ties show much lower test-retest reliability (most ICCs fall-
ing below 0.7; Antonova et al. 2022), as did another study 
(most ICCs falling below 0.5; Kleinert et al. 2023); though 
neither study assessed internal consistency. Another hypoth-
esis is that the infant brain does not have well-developed 
rules that govern intrinsic brain activity. Specifically, while 
microstate transitions are non-random in adults (Gschwind 
et al. 2015; Lehmann et al. 2005; Ville et al. 2010; Wack-
ermann et al. 1993), they may be more spontaneous during 
infancy when the brain’s structural and functional organiza-
tion is constantly and rapidly changing (Grayson and Fair 
2017). Future longitudinal work is needed to elaborate on 
this possibility. Finally, first-order Markov models may not 
be appropriate for assessing microstate sequences, which 
may have contributed to their poor internal consistency. Pre-
vious work has demonstrated that microstate sequences are 
complex and show long-range dependencies; they cannot be 
adequately explained by simple first-order Markov models 
(Artoni et al. 2023; Ville et al. 2010). As such, higher-order 
dependencies and/or more sophisticated models need to be 
considered to accurately describe their syntax, which may in 
turn increase their reliability. Until further investigation, we 
do not recommend the use of first-order Markov transition 
probabilities with infant data.

The internal consistency of source distributions was good 
with one minute of data and excellent with two-, three-, four-, 
and five-minute data durations. This is line with previous 
research in adults indicating high reliability of resting-state 
EEG source localization with 1.5-2 minutes of data (Cannon 
et al. 2012) and suggests that the neural generators under-
lying specific microstates during infancy exhibit consistent 

The transition probabilities between microstates showed 
no differences in their values across data of increasing dura-
tions. However, this may be more reflective of their poor 
internal consistency rather than stability across different 
amounts of data, as discussed below.

Source distributions had good and excellent overlap 
(i.e., high DSC values) across data of increasing durations. 
Comparison of source distributions from varying data dura-
tions indicated stability of sources even with one minute of 
data. Taken together, the current results suggest that mea-
surements of infant EEG microstate topographies are stable 
at the group-level with 20 participants and two minutes 
of data, that brain dynamics of the resulting topographies 
achieve stability with four or more minutes of data for most 
microstates, and that estimation of source distributions for 
each topography reach stability with as little as one minute 
of data.

Internal Consistency

Internal consistency of microstate measures reflects the con-
sistency and accuracy of measures at the individual-level. It 
allows researchers to understand how much data is required 
to reliably examine individual differences in brain (e.g., 
within-subject changes in microstate measures) and behav-
ior (e.g., brain-behavior relationships). Similar to stabil-
ity results, the internal consistency of microstate temporal 
properties within data of increasing durations depended on 
the type of temporal property and microstate assessed. On 
average, all temporal properties showed good or excellent 
internal consistency with just one minute of data, and excel-
lent internal consistency with two or more minutes, except 
for duration which required five minutes to show excellent 
values. The slightly lower internal consistency of duration 
relative to other temporal properties may be due to the dis-
continuous nature of our preprocessed EEG data. During 
EEG preprocessing, data were segmented into one-second 
epochs and epochs were removed if they met artifact rejec-
tion criteria. Thus, each removed epoch may have altered 
the duration of a given microstate immediately preceding 
and/or following a removed epoch. For example, at the start 
or end of the epoch, a microstate’s duration may have been 
cut in half if the epoch before it or after it was removed 
during preprocessing. This would have less of an impact on 
GEV, coverage, and occurrence values, which are largely 
independent of duration. With more data (5 minutes), this 
disruption may have been averaged out.

Transition probabilities showed poor internal consis-
tency for all data durations. There was also considerable 
variability in internal consistency values between transition 
directions, from highly negative to highly positive coeffi-
cients. Similar to the impact that preprocessing may have 
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of microstates changed across data of different durations, 
statistical significance does not replace or imply biological 
significance. More specifically, the presence or absence of 
a statistically significant difference between the temporal 
properties of two data durations is agnostic as to whether 
their difference is biologically meaningful. As designed, the 
current study cannot inform this question (though see Sup-
plementary Materials S12 for additional clarity). However, 
as in many areas of research, it does point to the importance 
of future research on how statistical significance can be used 
to inform measure selection and design when investigating 
biological processes and systems using EEG microstates.

Nevertheless, when considering the pragmatic impli-
cations of study results for future infant EEG microstate 
research, they indicate that four minutes of data are required 
to achieve both stable and internally consistent temporal 
properties for almost all microstates. This combination – 
stability and internal consistency – is likely to be critical 
for longitudinal analyses and those investigating individual 
differences in brain/behavior relationships and/or neurobio-
logical mechanisms underlying the effects of discrete events 
(e.g., early intervention). Our results also suggest that while 
lacking stability, temporal properties derived from shorter 
durations of data are internally consistent and may still be 
useful in certain contexts. For example, if the goal is to 
investigate potential biomarkers with predictive utility, then 
one minute of data may be sufficient to identify microstate-
related properties that indicate a potential outcome when 
a detailed understanding of mechanism is not required. In 
fact, resting-state EEG data are often collected as part of a 
larger battery of tasks, and, as a result, may be of brief dura-
tion. In this case, the use of this data to assess predictive 
utility and potentially suggest areas for further investigation 
into potential mechanisms is still possible. Nevertheless, 
regardless of use case, the current results suggest that the 
amount of data used to calculate EEG microstate properties 
should be identical across participants included in the same 
analyses.

Importantly, we did not perform supplemental analyses 
for transition probabilities because an acceptable level of 
internal consistency was not achieved. That is, internal con-
sistency must be achieved to validly interpret the statistical 
findings of stability analyses. Therefore, despite stability 
reached at one minute according to statistical models, we 
view transition probabilities as measured in the current study 
as highly unreliably given their poor internal consistency.

Strengths, Limitations, and Future Directions

The current study is the first to assess the psychometric reli-
ability of EEG microstates – their topographies, temporal 
properties, transition probabilities, and neural sources – from 

and distinct spatial configurations. While these findings 
provide a key piece of data supporting each microstate as 
a unique neurobiological marker of brain function(s), the 
potential associations between microstate properties and 
specific aspects of behavior will require additional research.

Altogether, good or excellent internal consistency of 
temporal properties and source distributions was achieved 
with just one minute of data. Internal consistency was poor 
for transition probabilities at all data durations. Thus, to 
achieve a desirable level of internal consistency of infant 
EEG microstates, it is recommended that at least one min-
ute of data is used for individual-level analyses. This will 
ensure that all microstate measures from individuals are 
consistent and dependable, allowing for valid conclusions 
to be drawn regarding their unique characteristics, within-
subject changes, brain-behavior relationships, and develop-
mental trajectories.

Integration of Stability and Internal Consistency 
Findings

Our stability and internal consistency findings suggest that 
the amount of data required to achieve reliable estimates of 
microstate temporal properties varies based on the metric 
of interest. Indeed, we demonstrated that while microstate 
temporal properties reached high levels of internal consis-
tency with one minute of data, in order to reach stability 
of these properties at least 4 minutes of data was required. 
Considering this, we worked to clarify how the stability of 
EEG microstate temporal properties changed across data of 
different durations through a series of supplemental analy-
ses (Supplementary Materials S12). Briefly, we found that 
even when comparisons between data of different durations 
were statistically significant, the correlations between their 
values were very strong, and the standard deviations of their 
paired differences were smaller compared to when compari-
sons were not statistically significant. We also found large 
within-participant variability in how the temporal properties 
changed across data durations, with some participants show-
ing stable values across data durations and other participants 
showing large differences. In addition to these supplemen-
tal analyses, we observed surprisingly small paired mean 
differences for statistically significant comparisons, includ-
ing those between 4- and 5-minutes of data for microstate 
5 (Table 1). In all, the results of our analyses suggest that 
statistical differences in the stability of temporal properties 
for most microstates are not present when four or more min-
utes of data are used to measure them. However, they also 
indicate that statistical findings of stability and internal con-
sistency need to be interpreted within the specific context 
of their intended use. That is, although we used statistical 
significance to determine whether the temporal properties 
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whether individual MRI scans and EEG channel coordinate 
locations impact microstate source localization results or if 
template files are acceptable, which would increase the fea-
sibility of performing source localization to researchers who 
do not have access to individual MRI scans and EEG chan-
nel coordinate location. Fourth, we did not directly examine 
stability past five minutes of data. Future research should 
elaborate on whether our statistically defined four-minute 
data cutoff is optimal for individual differences, mechanis-
tic, and/or longitudinal work. Lastly, although the results 
of our investigation suggest that current methods for per-
forming microstate analysis are compatible with EEG data 
collected from infants and yield reliable measures, future 
research is necessary to further understand the appropriate-
ness of the current methods to facilitate longitudinal inves-
tigations of brain development at this age.

Conclusion

In conclusion, we established microstate analysis as a fea-
sible and reliable approach for characterizing infant brain 
development using continuous EEG. With this and our 
practical tutorial, developmental EEG researchers can 
begin exploring what new information about the develop-
ing brain during the first years of life can be gleaned using 
the microstate analytic approach. Given rapid changes in 
brain structure and function during infancy and early child-
hood (Bethlehem et al. 2022; Johnson 2001), we expect to 
see large changes in the temporal properties of microstates 
as resting-state networks reorganize and fine-tune across 
development. We hope microstate analysis can facilitate 
understanding of these changes by incorporating informa-
tion across the entire brain, from all EEG channels, and in 
the source space.
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supplementary material available at https://doi.org/10.1007/s10548-
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infants during the first year of life. Our findings give guid-
ance to researchers interested in using the microstate ana-
lytic approach in their own work; specifically, for how much 
data may be required for reliable results (i.e., approximately 
one or four minutes depending on the analysis goal). Given 
this guidance, and the unique advantages of this approach 
for investigating brain organization and functioning, 
microstates hold strong promise for individual differences 
research, which may lead to new insights characterizing 
the spatial and temporal dynamics of the infant brain and 
potential associations with emerging social, emotional, and 
cognitive skills. The current study is also the first to pro-
vide a comprehensive, step-by-step tutorial for performing 
microstate analysis in Cartool. Cartool does not require any 
computer programming knowledge (i.e., it is user-friendly) 
or software dependencies (i.e., it is a standalone program). 
As such, it makes performing microstate analysis feasible 
for researchers of varying computer programming skill 
levels. In addition, to support researchers who will want to 
perform source localization of infant microstates, MRI files 
(i.e., brain, head, grey matter, and segmented tissues) for 
5-11-month-old infants are provided in the accompanying 
tutorial website.

This work has several limitations and avenues for future 
research. First, we did not have data from multiple sessions 
to assess the test-retest reliability of microstates. While pre-
vious work demonstrated adequate to excellent short- and 
long-term test-retest reliability of microstate measures over 
multiple sessions in adults (Antonova et al. 2022; Khanna 
et al. 2014; Kleinert et al. 2023; Liu et al. 2020; Popov et 
al. 2023), future work will need to directly assess this in 
infants. And while high reliability of microstate analysis 
during infancy opens the possibility of using this approach 
in longitudinal samples, reliability has not yet been system-
atically examined across childhood (e.g., toddlers, school-
aged children, adolescents). This may be an important 
avenue for future research as previous work has indicated 
different levels of reliability of EEG metrics across devel-
opmental stages (Popov et al. 2023). Second, while EEG 
data was collected during video-watching to reduce move-
ment-related artifacts, dynamic videos are not identical to 
traditional resting-state, and it is not clear whether these 
videos impacted microstate measures. Future work should 
assess whether different types of videos impact microstate 
measures differently. Also, video recordings of infants dur-
ing EEG were not available to precisely assess whether 
infants were looking at the screen at all times. Third, we 
did not use individual MRI scans and EEG channel coordi-
nate locations during source localization procedures, which 
have been previously demonstrated by Conte and Richards 
(2022) to reduce localization errors of infant event-related 
potentials. It will be critical for future research to discern 
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