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Abstract
Functional connectivity in electroencephalography (EEG) and magnetoencephalography (MEG) data is commonly assessed 
by using measures that are insensitive to instantaneously interacting sources and as such would not give rise to false positive 
interactions caused by instantaneous mixing of true source signals (first-order mixing). Recent studies, however, have drawn 
attention to the fact that such measures are still susceptible to instantaneous mixing from lagged sources (i.e. second-order 
mixing) and that this can lead to a large number of false positive interactions. In this study we relate first- and second-order 
mixing effects on the cross-spectra of reconstructed source activity to the properties of the resolution operators that are 
used for the reconstruction. We derive two identities that relate first- and second-order mixing effects to the transformation 
properties of measurement and source configurations and exploit them to establish several basic properties of signal mix-
ing. First, we provide a characterization of the configurations that are maximally and minimally sensitive to second-order 
mixing. It turns out that second-order mixing effects are maximal when the measurement locations are far apart and the 
sources coincide with the measurement locations. Second, we provide a description of second-order mixing effects in the 
vicinity of the measurement locations in terms of the local geometry of the point-spread functions of the resolution operator. 
Third, we derive a version of Lagrange’s identity for cross-talk functions that establishes the existence of a trade-off between 
the magnitude of first- and second-order mixing effects. It also shows that, whereas the magnitude of first-order mixing is 
determined by the inner product of cross-talk functions, the magnitude of second-order mixing is determined by a general-
ized cross-product of cross-talk functions (the wedge product) which leads to an intuitive geometric understanding of the 
trade-off. All results are derived within the general framework of random neural fields on cortical manifolds.

Keywords  Electroencephalography · Magnetoencephalography · Volume conduction · Signal leakage · Source modeling · 
Functional connectivity · Neural field

Introduction

There are three basic ways in which spurious interactions 
between two measurement locations can arise in recon-
structed source activity, namely through instantaneous linear 
mixing of incoherent, instantaneously coherent, or lagged 
coherent cortical activity. In the literature, different names 
have been used to describe these effects. In Drakesmith et al. 
(2013), the first two ways have been jointly referred to as 

first-order artifacts and the second way as second-order 
artifacts, in Palva and Palva (2012), the first way is referred 
to as artificial synchrony and the second and third ways are 
jointly referred to as spurious synchrony, and in Palva et al. 
(2018), the third way is referred to as ghost interactions. 
For the analysis in the current study, we find it useful to 
distinguish all three ways and will refer to them as zeroth-, 
first-, and second-order mixing effects, respectively. Thus, 
in this terminology, zeroth-, first-, and second-order effects 
refer to the effects of instantaneous linear mixing of incoher-
ent, instantaneously coherent, and lagged coherent source 
activity, respectively, on the reconstruction of interactions 
in source space. These effects are generally different for dif-
ferent interaction measures (Palva et al. 2018).

Relatively few studies have focused on the relations 
between the effects of instantaneous linear mixing and the 
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properties of the resolution operators that are used to recon-
struct the source activity (Korhonen et al. 2014; Wens 2015; 
Farahibozorg et al. 2018; Ossadtchi et al. 2018; Wang et al. 
2018; Hindriks 2020). This is perhaps surprising, because 
the way in which source signals are mixed is completely 
determined by the structure of the used resolution operator 
(Hauk et al. 2022; Hindriks 2020b) which is known and 
can therefore be exploited. For example, in Korhonen et al. 
(2014), Farahibozorg et al. (2018), resolution operators are 
exploited to design brain parcellations that minimize mix-
ing of the reconstructed source signals and in (Wens 2015), 
Ossadtchi et al. (2018), Hindriks (2020), they are used to 
construct interaction measures that are insensitive to zeroth- 
and first-order mixing effects, whereas still being sensitive 
to instantaneous interactions. Indeed, classical interaction 
measures that do not make use of the resolution operator, 
such as the imaginary coherence (Nolte et al. 2004), the 
(weighted) phase-lag index (Stam et al. 2007; Vinck et al. 
2011), the imaginary phase-locking value (Palva and Palva 
2012), and the lagged coherence (Pascual-Marqui 2007), are 
insensitive to zeroth- and first-order mixing effects, but are 
per construction insensitive to instantaneous interactions. It 
thus seems that studying the relation between mixing effects 
and resolution operators can provide new insights into and 
methods for the analysis of functional brain connectivity.

This motivates the current study, which aims to clarify 
some basic relations between the properties of resolution 
operators and the effects of linear mixing on the reconstruc-
tion of functional interactions. We focus on second-order 
effects because they are the least well studied and because 
it has recently come to light that they can cause large num-
bers of false positives in EEG/MEG functional connectiv-
ity analysis, even when using classical interaction measures 
(Palva et al. 2018). Furthermore, we focus on second-order 
effects on the imaginary part of the cross-spectral function 
of cortical activity, since this is the simplest interaction 
measure that is insensitive to zeroth- and first-order mixing. 
The analysis of second-order effects on normalized interac-
tion measures such as the phase-lag index and the lagged 
coherence is much more complicated due to their highly 
non-linear behavior and will be left for a future study. We 
do note, however, that normalization is not strictly necessary 
when the measures are used as test-statistics in a hypothesis 
test for significant interaction. This is because normalization 
only serves to obtain measures whose null-distribution is 
independent of the other model parameters (e.g. the vari-
ances of the signals) but does not change the conclusion of 
the test.

In our analysis, we adopt a spatially continuous descrip-
tion of cortical activity, because it is physically the most real-
istic (Bresslof 2012), more general than a discrete descrip-
tion (the latter is a special case of the former), and it is more 
natural when the aim is to obtain a basic understanding of 

the phenomena. Furthermore, since in EEG/MEG studies 
the interest is often in oscillatory activity, we model cortical 
activity in the frequency domain. Thus, at any point in time, 
cortical activity is described by a complex-valued scalar 
field on the cortical manifold, whose values are the time-fre-
quency coefficients of the activity at a fixed frequency. The 
scalar field is treated as random and hence cortical activity is 
modeled by a (zero-mean) random scalar field on the corti-
cal manifold. We note that if the field has a Gaussian prob-
ability distribution, its statistics are completely described by 
its cross-spectral function, and hence our characterization 
of mixing effects is complete. If the field is non-Gaussian, 
however, a complete characterization of mixing effects needs 
to take into account higher-order statistics. We leave this for 
a future study.

The mapping from true fields to their reconstructions is 
modeled by a linear integral operator with a real-valued ker-
nel, which models the composition of a linear forward opera-
tor and a linear inverse operator and is a generalization of 
the resolution operator to continues space (Hauk et al. 2022). 
The real-valuedness of the reconstruction kernel reflects the 
instantaneous nature of the forward mapping (Hämäläinen 
et al. 1993). This property is crucial in the analysis of func-
tional connectivity in source space and the classical interac-
tion measures are insensitive to zeroth- and first-order mix-
ing precisely because of this property.

We first characterize the effects of zeroth-, first-, and 
second-order mixing in terms of the cross-talk functions of 
the reconstruction kernel and derive alternative representa-
tions of the first- and second-order effects in terms of the 
symmetry properties of configurations of measurement and 
source locations. The representation of the second-order 
effects will form the basis for the subsequent analyses. In 
this representation, the contribution of a lagged interaction 
between cortical activity at a given pair of locations to the 
reconstructed lagged interaction between another pair of 
locations is proportional to a suitably defined notion of sym-
metry of the configuration under interchanging the measure-
ment locations x and x′.

This representation is the generalization of that described 
in Ossadtchi et al. (2018), Hindriks (2020) to continuous 
space. We use it to characterize the configurations with 
maximal and minimal second-order effects, to obtain a local 
approximation of second-order mixing effects in terms of 
the curvature of the cross-talk functions, to show that sec-
ond-order effects are not limited to regions surroundings 
the measurement locations, and to establish the existence 
of trade-off between zeroth- and first-order effects. This 
trade-off is described in the form of Lagrange’s identity for 
pairs of cross-talk functions and relates the magnitudes of 
the zeroth- and second-order effects. We also provide a geo-
metric interpretation of this identity in which the magnitude 
of second-order leakage between a given pair of locations is 
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identified with the surface area of the parallelogram spanned 
by the two cross-talk functions and the magnitude of zeroth-
order effects can be identified with their inner product. This 
provides a direct geometric intuition for the existence of 
this trade-off.

Materials and Methods

Random Neural Fields

We model cortical activity in the frequency domain by a 
zero-mean stationary Gaussian random field on the corti-
cal manifold Ω . The frequency coefficient of the field at a 
location x ∈ Ω is denoted by s(x) ∈ ℂ and is considered to 
be a random variable. Stationarity and Gaussianity together 
imply that the field is completely described by its cross-
spectral function

for all x, x� ∈ Ω , where the superscript ∗ denotes the com-
plex-conjugate and � denotes expectation over temporal 
windows (i.e. in the case of ongoing activity) of over trials 
(i.e. in the case of induced activity). Note that the cross-
spectral function is conjugate-symmetric: �(x�, x) = �(x, x�)∗ 
for all x, x� ∈ Ω so that Re(�(x�, x)) = Re(�(x, x�)) and 
Im(�(x�, x)) = −Im(�(x, x�)) . Also, �(x, x) ≥ 0 is the power 
of the cortical activity at location x, which we will denote 
by �2(x).

Following the terminology used in the field of spatial 
statistics (VanMarcke 1983), a neural field is called homo-
geneous if �(x, x�) = �(d(x, x�)) for all x, x� ∈ Ω , where 
d(x, x�) is a distance measure on the cortical manifold (e.g. 
the geodesic distance). In particular, a homogeneous field 
has constant power: �2(x) = �2 for all x ∈ Ω . A neural field 
is incoherent if �(x, x�) = �2(x)�(x − x�) for all x, x� ∈ Ω , 
where � denotes the Dirac delta function. A neural field 
is coherent if |�(x, x�)| is constant, where the vertical bars 
denote the modulus. A neural field can be represented as 
s(x, t) = �(x, t) exp (i�(x, t)) , where �(x, t) and �(x, t) are the 
associated amplitude field and phase field, respectively.

Linear Instantaneous Mixing of Neural Fields

When a linear inverse operator is used to reconstruct a neural 
field s, either based on observed electric potentials (EEG and 
ECoG) or on magnetic fluxes outside the head (MEG), the 
reconstructed field ŝ is related to the true field by

(1)�(x, x�) = �
[
s(x)s(x�)∗

]
,

where G(x, y) is the resolution kernel. The mapping from s to 
ŝ is the concatenation of a linear forward operator and a lin-
ear inverse operator, both of which are left implicit here. The 
forward operator describes how the neural field is mapped to 
the sensors and in practice is obtained by numerically solv-
ing the quasi-static Maxwell equations (Hämäläinen et al. 
1993; Mosher et al. 1999). The inverse operator can be non-
adaptive such as the minimum norm operator (Grech et al. 
2008) or adaptive such as a beamformer (Hillebr and Barnes 
2005). The resolution kernel describes how the neural field 
s is mixed to obtain its reconstruction ŝ . Equation (2) shows 
that mixing is linear and instantaneous, the latter is true 
because the resolution kernel is real-valued.

The resolution kernel assigns to every pair of cortical 
locations x, y ∈ Ω a real number G(x, y) that determines 
how strong the true field at y contributes to the recon-
structed field at x. In particular, the diagonal of the reso-
lution kernel, i.e. the mapping (x, x) ↦ G(x, x) determines 
the gain of the reconstructed field at x. For y ≠ x , this 
can be considered to be the amount of "leakage" from y 
to x. In these terms, the well-known surface bias of lin-
ear inverse operators is reflected in a low gain in cortical 
sulci and subcortical structures and a high gain in loca-
tions that are closer to the sensors (Grech et al. 2008). 
One class of resolution kernels are obtained by assuming 
that the leakage from y to x only depends on the (Euclid-
ean) distance (Table 1) ||x − y|| between y and x. This cor-
responds to modeling the kernel as G(x, y) = f (||x − y||) 
for some function f. Typically, f decreases with increasing 
distance, for instance f (||x − y||) = 1∕(1 + ||x − y||) or 
f (||x − y||) = exp(−||x − y||2).

When viewed as a function of x for fixed y, G(x, y) is 
referred to as the point-spread function of the kernel at y 

(2)ŝ(x) = ∫
Ω

G(x, y)s(y),

Table 1   Listed are quantities, their symbols, and meanings. Their for-
mal definitions can be found in the main text

The variables x, x′, y and z denote arbitrary locations on the cortical 
manifold Ω

Symbol Meaning

Ω Cortical manifold
s(x) Random neural field
�(x, x�) Fields’ cross-spectrum
�2(x) Field power
G(x, x�) Resolution kernel
g
x
(y) Cross-talk function at x

S+(x, x
�
, y, z) Sensitivity to first-order leakage

S−(x, x
�
, y, z) Sensitivity to second-order leakage
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and when viewed as a function of y for fixed x, G(x, y) is 
referred to as cross-talk function of the kernel at x. This 
terminology follows that used in the discrete case (Hauk 
et al. 2022). If the resolution operator is symmetric, i.e. 
G(y, x) = G(x, y) , the point-spread functions are equal to 
the cross-talk functions. The cross-talk functions will play 
a central role in this study and we will denote them by 
gx(y) . Since cross-talk functions can be added and multi-
plied by real-valued scalars, they form an infinite-dimen-
sional vector space over ℝ . We define an inner product on 
this vector space by

and denote the associated norm by ��gx�� =
√⟨gx, gx⟩. Since 

Ω is compact, this turns the vector space into a Hilbert space 
over ℝ.

Fig. 1 shows a measurement location on the cortical 
surface (left superior temporal lobe), together with the 
cross-talk functions of the minimum norm resolution oper-
ator for both EEG and MEG forward models. The cortical 
surface and forward models were provided by the MNE 
Software (Gramfort et al. 2015). The MEG scanner was 
a 306-channel Elekta-Neuromag vectorview (MEGIN) 
system and the EEG cap had 60 electrodes. Observe that 
cross-talk is high around the measurement locations and 
decreases for larger distances and that the MEG cross-
talk function is more localized than the EEG cross-talk 
function. Also observe that the cross-talk functions lack 
smoothness. This is caused by the convolutions of the 
cortex surrounding the measurement location and which 
are not visible on the inflated cortex. The figure shows 
that the above examples of resolution operators are highly 
idealized.

Cross‑Spectral Functions of Reconstructed Fields

The cross-spectral function 𝛾̂ of a reconstructed random neural 
field is related to the cross-spectral function of the true field by

(3)⟨gx, gx�⟩ = ∫
Ω

gx(y)gx� (y),

where × in Ω × Ω denotes the Cartesian product of Ω with 
itself. Below, we will refer to 𝛾̂ simply as the reconstructed 
cross-spectral function. The non-negative definiteness of the 
reconstructed cross-spectral function follows directly from 
that of the true cross-spectral function. The reconstructed 
cross-spectral function can be decomposed as

where i =
√
−1 denotes the imaginary unit. We refer to the 

terms on the right-hand-side as zeroth-, first-, and second-
order terms, respectively. Note that the zeroth-order term is 
independent of the interactions in the true field as described 
by �(y, z) with z ≠ y , and only depends on its power �2(u) 
at different cortical locations u ∈ Ω . The first- and second-
order terms, on the other hand, only depend on the instanta-
neous (i.e. real) and lagged (i.e. imaginary) interactions of 
the true field, respectively, and are independent of its power.

The above decomposition emphasizes a basic property of 
random neural fields and their reconstructions, which is that 
instantaneous interactions can only give rise to instantaneous 
interactions in the reconstructed field and the same holds for 
lagged interactions. This implies that if a reconstructed cross-
spectral function has non-vanishing imaginary part, the true 
field must exhibit lagged interactions. It is this basic property 
that enables the construction of interaction measures that are 
insensitive to first- and second-order mixing.

If the true field is incoherent, i.e. �(x, x�) = �2(x)�(x − x�) , 
Eq. (5) only has a zeroth-order term:

If the field is also homogeneous, i.e. �2(x) = �2 , the zeroth-
order term reduces to

and, in par ticular, the reconstructed power is 
𝜎̂2(x) = ||gx||2𝜎2 . This direct relation between the zeroth-
order effect of mixing and the inner product between the 
cross-talk functions is a well-known property of linear 
inverse operators.

(4)𝛾̂(x, x�) = ∫
Ω×Ω

G(x, y)G(x�, z)𝛾(y, z),

(5)

�̂(x, x′) =∫
Ω

gx(u)gx′ (u)�2(u) + ∫
Ω×Ω

gx(y)gx′ (z)Re(�(y, z))

+ i ∫
Ω×Ω

gx(y)gx′ (z)Im(�(y, z)),

𝛾̂(x, x�) = ∫
Ω

gx(u)gx� (u)𝜎
2(u).

𝛾̂(x, x�) = 𝜎2∫
Ω

gx(u)gx� (u) = 𝜎2 ⟨gx, gx�⟩ ,

Fig. 1   EEG and MEG cross-talk functions. Shown is an inflated corti-
cal surface with a measurement location in the left superior tempo-
ral lobe (left panel), together with the associated (absolute values of 
the) cross-talk functions of the minimum norm resolution operator for 
EEG (middle panel) and MEG (right panel) forward models. In calcu-
lating the resolution operators, the regularization level was set to 10−8
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In Sect. Relation between total zeroth- and second-order 
mixing effects we characterize the relation between zeroth- 
and second-order effects and the cross-talk functions and 
will see that this involves a generalization of the cross-prod-
uct between the cross-talk functions known as the wedge 
product. To obtain this characterization, it will be convenient 
to first derive a different representation of the reconstructed 
cross-spectral function, which will be done in Sect. Basic 
identities for first- and second-order mixing.

Basic Identities for First‑ and Second‑Order Mixing

The conjugate symmetry of the cross-spectral function can 
be used to obtain formulas for the real and imaginary parts 
of the reconstructed cross-spectral function that simplify 
the analyses of mixing effects in the subsequent sections. 
Specifically, in Appendix A, we derive two identities that 
express the real/imaginary part of the reconstructed cross-
spectral function in terms of the real/imaginary part of the 
true cross-spectral function. For x ≠ x′ these identities are:

and

where  t he  in teg ra l  i s  t aken  over  t he  se t 
A = {(y1, y2, z1, z2)|y1 > z1} . The functions S+ and S− are 
defined by

and

We will refer to an ordered quadruple (x, x�, y, z) , in which x 
and x′ are measurement locations and y and z are source loca-
tions, as a configuration. The squared values S2

+
(x, x�, y, z) 

and S2
−
(x, x�, y, z) can be interpreted as measures of the lack 

of anti-symmetry and symmetry, respectively, of the con-
figuration (x, x�, y, z) , under interchanging the measurement 
locations x and x′ . Symmetry in this context does not refer to 
spatial symmetry, but to the more abstract notion of invari-
ance of an object under a class of transformations. Thus, the 
lack of symmetry and anti-symmetry of a configuration are 
directly related to the mixing effects and both are determined 
by the quantities gx(y) , gx� (z) , gx(z) , and gx� (y).

Eq. (6) shows that the contribution of a true instantaneous 
interaction Re(�(y, z)) between y and z to the reconstructed 
instantaneous interaction Re(𝛾̂(x, x�)) between x and x′ is 

(6)Re(𝛾̂(x, x�)) = ∫
A

S+(x, x
�, y, z)Re(𝛾(y, z)),

(7)Im(𝛾̂(x, x�)) = ∫
A

S−(x, x
�, y, z)Im(𝛾(y, z)),

S+(x, x
�, y, z) = gx(y)gx� (z) + gx� (y)gx(z),

S−(x, x
�, y, z) = gx(y)gx� (z) − gx� (y)gx(z).

proportional to the lack of anti-symmetry of the configura-
tion (x, x�, y, z) . Likewise, Eq. (7) shows that the contribution 
of a true lagged interaction between y and z to the recon-
structed lagged interaction between x and x′ is proportional 
to the lack of symmetry of the configuration (x, x�, y, z) . In 
other words, S+(x, x�, y, z)2 and S−(x, x�, y, z)2 are measures 
for the strength of, respectively, first- and second-order mix-
ing of the true interaction between y and z into the recon-
structed interaction between x and x′.

No t e  t h a t  S+(x, x
�, y, z) = 0  p r e c i s e ly  w h e n 

gx(y)gx� (z) = −gx� (y)gx(z), i.e. when gx(y)gx� (z) flips sign 
under the transformation that interchanges x and x′ . We 
refer to such a configuration as anti-symmetric. Likewise, 
S−(x, x

�, y, z) = 0 precisely when gx(y)gx� (z) = gx� (y)gx(z), i.e. 
when gx(y)gx� (z) in invariant under the transformation that 
interchanges x and x′ . We refer to such a configuration as 
symmetric. Thus, symmetric/anti-symmetric configurations 
are those for which second-order/first-order mixing effects 
are absent. By summing S2

−
(x, x�, y, z) and S2

+
(x, x�, y, z) we 

find that they satisfy

which holds for all configurations (x, x�, y, z) . The term on the 
right-hand-side of Eq. (8) is a measure for the total (i.e. first- 
and second-order) strength of mixing of the true interaction 
between y and z into the reconstructed interaction between x 
and x′ and hence shows that, given the total mixing strength, 
there is a trade-off between the strength of first- and second-
order mixing. In particular, given the total mixing strength, 
symmetric configurations have maximal first-order mixing 
effects and anti-symmetric configurations have maximal 
second-order mixing effects.

Results

Illustration of the Basic Identities

As an illustration of the basic identities, we selected two 
pairs of homologue measurement locations (x, x�) on the 
cortical surface and, for each of the pairs, computed S2

+
 and 

S2
−
 for all homologue source pairs (y, z) obtained from the 

cross-talk functions of the minimum norm resolution oper-
ator. The forward operators (i.e. leadfield matrices) were 
obtained from 89 subjects of the MEG data-set provided 
by the Human Connectome Project (HCP) (Larson-Prior 
et al. 2013) using the Fieldtrip toolbox (Oostenveld et al. 
2011). The resulting values were averaged over all subjects. 
In calculating the resolution operators, we used two different 
values for the regularization level: � = 10−10 (high SNR) and 
� = 10−6 (low SNR).

(8)
S2
+
(x, x, y, z) + S2

−
(x, x�, y, z) = 2g2

x
(y)g2

x�
(z) + 2g2

x�
(y)g2

x
(z),
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Fig. 2A shows the first-order leakage in both conditions 
(high and low SNR) for the first pair of locations (black 
arrows). It shows that leakage is more severe when the SNR 
is low, but that it is still confined to the tissue surrounding 
the measurement locations. The same holds for second-order 
leakage (Fig. 2C). Figure 2B shows the first-order leakage 
in both conditions for the second pair of locations (black 
arrows). The figures shows that, in both conditions, leakage 
is not confined anymore to a neighborhood of the measure-
ment locations and that distant cortical regions leak into the 
connectivity between the measurement locations. Figure 1D 
shows that the same is true for second-order leakage. As a 
reference, the optimal regularization level for resting-state 
MEG data in the alpha frequency band (7–13 Hz) from this 
data-set, as determined by generalized cross-validation, is 
about � = 10−8.5(Hindriks et al. 2017).

Configurations with Maximal and Minimal Mixing 
Effects

To illustrate the use of the basic identities (Eqs. (6) and (7)) 
we provide characterizations of the configurations that are 
maximally and minimally sensitive to first- and second-order 
mixing effects. These characterizations will be in terms of 
the configurations’ geometry, i.e. in terms of the relative 
positions of the measurement and source locations. Because 
these positions determine the symmetry of the configuration 
only indirectly via the cross-talk functions, to relate the sym-
metry to the geometry of a configuration, we need to make 
some mild assumptions about the cross-talk functions. We 
assume that for every location x, (i) gx is maximal in x, (ii) 

gx decreases with increasing Euclidean distance from x, and 
(iii) gx is non-negative, i.e. gx ≥ 0.

We ask which configurations (x, x�, y, z) minimize/maxi-
mize S−(x, x�, y, z)2 and S+(x, x�, y, z)2 . The only non-trivial 
case is for which configurations S−(x, x�, y, z)2 is mini-
mized and will be discussed last. First consider for which 
configurations

is maximized. This is the case if gx(y)gx� (z) is maximal 
and gx� (y)gx(z) is minimal (or the other way around). Now, 
gx(y)gx� (z) is maximal if y = x and z = x� (assumption (i)), 
in which case gx� (y)gx(z) reduces to gx� (x)gx(x�) , which is 
minimal if x and x′ are far apart (assumption (ii)). Thus, 
the configurations that are maximally sensitive to second-
order mixing effects are those for which the source locations 
coincide with the measurement locations and for which the 
measurement locations are far apart. Now consider for which 
configurations

is maximized. This is the case if both gx(y)gx� (z) and 
gx� (y)gx(z) are maximal. The first term is maximal if y = x 
and z = x� (assumption (i)). This reduces the second term 
to gx� (x)gx(x�) , which is maximal if x = x� (assumption (i)). 
Thus, the configurations that are maximally sensitive to first-
order mixing effects are those in which both measurement 
and source locations coincide. From the above expression for 
S+(x, x

�, y, z)2 it is also immediately clear that S+(x, x�, y, z)2 
is minimal if both terms gx(y)gx� (z) and gx� (y)gx(z) are zero, 
which is the case if one of the cross-talk functions in each 

S−(x, x
�, y, z)2 = (gx(y)gx� (z) − gx� (y)gx(z))

2,

S+(x, x
�, y, z)2 = (gx(y)gx� (z) + gx� (y)gx(z))

2,

Fig. 2   First- and second-order leakage in MEG minimum norm solu-
tion. A Total first-order leakage into the homologue measurement 
pair located in the posterior temporal lobe (black arrows) in the high 
SNR scenario. B Total first-order leakage into the connectivity of 

the homologue measurement pair located in the medial wall (black 
arrows) in the high SNR case. C Same format as A. but for second-
order leakage. D Same format as B. but for second-order leakage
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term is zero, for which there are four possibilities. Two of 
these are that both sources are sufficiently far from both 
measurement locations (assumption (i)).

We are left with the question for which configurations is 
S−(x, x

�, y, z)2 is minimal, or equivalently, for which configu-
rations gx(y)gx� (z) = gx� (y)gx(z). There is no general answer 
to this question, because it depends on the particular form of 
the cross-talk functions gx and gx′ . Consider the special case

where ||x − y|| denotes the Euclidean distance between x and 
y and � is the characteristic scale of gx . The above condition 
then takes the form

which is equivalent to ⟨x − x�, y − z⟩ = 0, where the brackets 
denote the dot product in ℝ3 . This shows that sensitivity to 
lagged interactions is zero precisely when the line through 
the measurement locations x and x′ and the line through the 
source locations y an z are perpendicular. In particular, for 
fixed source locations y and z, the measurement locations for 
which sensitivity to lagged interactions is zero form a plane 
in ℝ3 . If the configuration is confined to a plane, they form 
a line in ℝ2 , and in the configuration is confined to a line, 
sensitivity to lagged interactions is never zero.

In general, characterizations of the symmetric configura-
tions are more complicated than in the above special case. 
For example, if gx(y) is a rational function (i.e. a quotient 
of polynomials) in ||x − y||2 , the planes will be replaced by 
curved surfaces. An example is

in which case the symmetric configurations are characterized 
by the condition

For fixed source locations y and z, the solutions of this equa-
tion form a two-dimensional surface in ℝ3.

Mixing Effects in the Vicinity of the Measurement 
Locations

In Sect. 3.2 we established that the configurations that are 
maximally sensitive to second-order mixing effects are those 
for which the source locations coincide with the measure-
ment locations and for which the measurement locations are 
far apart. We now consider the case that the sources are located 
in the vicinity of the measurement locations (and the latter are 
far apart). This case was explored extensively using numeri-
cal simulations by Palva et al. (2018). Specifically, we relate 

gx(y) = exp (−||x − y||2∕2�2),

||x − y||2 + ||x� − z||2 = ||x� − y||2 + ||x − z||2,

gx(y) =
1

1 + ||x − y||2 ,

(1 + ||x − y||2)(1 + ||x� − z||2) − (1 + ||x� − y||2)(1 + ||x − z||2) = 0.

S−(x, x
�, y, z) to the geometric properties of the cross-talk func-

tions gx and gx′ in the vicinity of x and x′ , respectively.
If x and x′ are far apart, we neglect the term gx� (x)gx(x�) in 

S−(x, x
�, y, z) and approximate gx(y) and gx� (z) by a second-

order Taylor series in x and x′ , respectively. For y close to x 
and z close to x′ , S−(x, x�, y, z) can then be approximated as

where Hg(x) and Hg(x
�) denote the Hessian matrices of gx at 

x and of gx′ at x′ , respectively (see Appendix B). Thus, the 
(i, j)-th entry of Hg(x) is given by the second-order partial 
derivative of gx to xi and xj at x:

This approximation is also valid for S+(x, x�, y, z) . Equa-
tion (9) shows that the local structure of signal leakage is 
determined by the Hessian matrices of the cross-talk func-
tions at the two measurement locations and that the effects 
are additive. Assumptions (i) and (ii) imply that Hg(x) and 
Hg(x

�) are negative definite. Combining this with assumption 
(iii) we conclude that the second and third term on the right-
hand-side of Eq. (9) are negative. From this we can conclude 
that leakage is maximal at the measurement locations and 
decreases in the neighborhood of the measurement locations.

As a special case, suppose that both Hessian matrices are 
proportional to the 3 × 3 identity matrix, with proportionality 
constant −� for some 𝜉 > 0 , i.e. Hg(x) = Hg(x

�) = −�I3 , where 
I3 denotes the 3 × 3 identity matrix. Then Eq. (9) reduces to

Since the Gaussian curvature K of gx at x and of gx′ at x′ is 
given by the determinant of the respective Hessian matri-
ces, which equals �3 , we see that the local leakage effect 
is proportional to K1∕3 . If, in addition, gx(x) = gx� (x

�) = 1 
and ||y − x|| = ||z − x|| = � , we obtain the following 
approximation:

which is also valid for S+ . It shows that, in the vicinity of 
the measurement locations, leakage decreases linearly 
with � and quadratically with distance. As an example, let 
gu(v) = exp (−||u − v||2∕2�2) , where 𝜅 > 0 is the character-
istic width of gu . Thus, large values of � correspond to a low 
spatial resolution. Its Hessian is proportional to the 3 × 3 
identity matrix with � = 1∕�2 so that S− ≈ 1 − �2∕�2.

(9)
S−(x, x′, y, z) =gx(x)gx′ (x′) +

1
2
(y − x)THg(x)(y − x)gx′ (x′)

+ 1
2
(z − x′)THg(x′)(z − x′)gx(x)

(
Hg(x)

)
i,j
=

�2gx(x)

�xixj
.

(10)
S−(x, x

�, y, z) = gx(x)gx� (x
�) −

�

2

(||y − x||2gx� (x�) + 2||z − x�||2gx(x)
)
.

(11)S− ≈ 1 − ��2,
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Relation Between Total Zeroth‑ and Second‑Order 
Mixing Effects

In Sect. 2.4 we showed that, for a given configuration of 
measurement and source locations, and given the total mix-
ing strength, there is a tradeff between first- and second-
order mixing effects. We now show that a related trade-off 
exists when integrated over all true interactions.

As a measure for the total strength of zeroth-order mix-
ing effects in the reconstruction of the interaction between 
x and x′ we take the squared inner product of the cross-talk 
functions at x and x′:

Note that zeroth-order effects are absent precisely when gx 
and gx′ are orthogonal. As a measure for the total strength 
of second-order mixing we take the quantity ||gx ∧ gx� ||2 , 
which we define by

The notation ||gx ∧ gx� || will be explained in Sect. 3.5 when 
we discuss the special case of finitely many point-sources. 
We first discuss the following relation, which is derived in 
Appendix B:

where ||gx|| denotes the norm of gx (see Sect. 2.2). It is a 
continuous version of Lagrange’s identity and shows that, 
given the norms ||gx|| and ||gx′ || of the cross-talk functions, 
there is a trade-off between the total zeroth- and second-
order mixing effects to the reconstruction of the interaction 
between x and x′.

Note that, given ||gx|| and ||gx′ || , if gx and gx′ are orthogo-
nal, zeroth-order effects are absent and second-order effects 
are maximal and if gx and gx′ are linearly dependent, second-
order effects are absent and zeroth-order effects are maxi-
mal. By dividing both sides of Eq. (13) by ||gx||2||gx′ ||2 , we 
obtain the following relation

between the normalized measures of the strengths of zeroth- 
and second-order mixing effects. This relation can also be 
written as

(12)⟨gx, gx�⟩2 =
⎛⎜⎜⎝∫Ω

gx(u)gx� (u)

⎞⎟⎟⎠

2

.

||gx ∧ gx� ||2 = ∫A

S−(x, x
�, y, z)2.

(13)��gx ∧ gx� ��2 + ⟨gx, gx�⟩2 = ��gx��2��gx� ��2,

(14)
��gx ∧ gx� ��2
��gx��2��gx� ��2

+
⟨gx, gx�⟩2

��gx��2��gx� ��2
= 1,

(15)sin2 � + cos2 � = 1,

where � denotes the angle between gx and gx′ and clearly 
shows the trade-off between the relative strengths of zeroth- 
and second-order mixing effects.

Lastly, we provide a geometric interpretation of the trade-
off in Eq. (14) in terms of the parallelogram spanned by gx and 
gx′ . For two finite-dimensional vectors v and v′ , the area of the 
parallelogram spanned by v and v′ equals the square root of the 
determinant of their Gram matrix:

This can be generalized to infinite-dimensional Hilbert 
spaces, which allows to define the area of the parallelogram 
spanned by two cross-talk functions. Thus, the area of the 
parallelogram spanned by two cross-talk functions gx and 
gx′ can be defined as

Note that the area is always non-negative because the Gram 
matrix is non-negative definite. Comparing Eq. (16) with 
Eq. (13) we conclude that

which shows that the total strength of second-order mix-
ing to the reconstructed interaction between x and x′ can be 
interpreted as the area of the parallelogram spanned by the 
cross-talk functions gx and gx′.

The Discrete Case

In this section we consider the special case that the neural field 
comprises N point-sources at locations x1,… , xN ∈ Ω . This 
largely amounts to replacing integrals by sums, but will also 
provide some geometric insight into the structure of mixing 
effects. The neural field in this case takes the following form:

where sn is the Fourier coefficient of the n-th source. Let 
�n,m = �

[
sns

∗
m

]
 be the cross-spectrum between the n-th and 

m-th source. The cross-spectrum �(x, x�) between measure-
ment locations x and x′ now becomes

Furthermore, the reconstructed field takes the form

area2 = det

� ��v��2 ⟨v, v�⟩
⟨v�, v⟩ ��v���2

�
= ��v��2��v���2 − �

v, v�
�2

.

(16)

area2 = det

� ��gx��2 ⟨gx, gx�⟩
⟨gx� , gx⟩ ��gx� ��2

�
= ��gx��2��gx� ��2 − ⟨gx, gx�⟩2 .

(17)||gx ∧ gx� || = area,

s(x) =

N∑
n=1

�(x − xn)sn,

�(x, x�) =

N∑
n=1

N∑
m=1

�(x − xn)�(x − xm)�n,m.
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where gx is the cross-talk function at x. We assume that the 
measurement locations do not coincide with the source loca-
tions so that the reconstructed field is entirely spurious. Note 
that the cross-talk functions gx and gx′ are now N-dimen-
sional vectors and that gx(xn) is the n-th coordinate of gx.

The cross-spectrum of the reconstructed field is

which can be decomposed as

where �2
k
= �k,k is the power of the k-th source. Equation (18) 

is the discrete version of Eq. (5). Note that the first term 
(zeroth-order mixing) is independent of the interaction 
structure of the sources and only depends on their power, 
whereas the second and third terms (first- and second-order 
mixing, respectively) only depend on the instantaneous 
and lagged interaction structure, respectively, and are 
independent of power. The basic identities from Sect. 2.4 
take the form

and

The term ||gx ∧ gx� ||2 reduces to

hence the notation gx ∧ gx� now gets meaning because it is 
equal to the wedge product between the vectors gx and gx′ , 
which is defined as

and is a vector of dimension N(N − 1)∕2 . Strictly speaking, 
the wedge product is not a vector at all, but an oriented 

ŝ(x, t) =

N∑
n=1

gx(xn)sn,

𝛾̂(x, x�) =

N∑
n=1

N∑
m=1

gx(xn)gx� (xm)𝛾n,m,

(18)

�̂(x, x′) =
N
∑

k=1
gx(xk)gx′ (xk)�2

k

+
∑

n≠m
gx(xn)gx′ (xm)Re(�n,m)

+ i
∑

n≠m
gx(xn)gx′ (xm)Im(�n,m)

(19)

Re(𝛾̂(x, x�)) =
∑
n<m

(gx(xn)gx� (xm) + gx� (xn)gx(xm))Re(𝛾n,m),

(20)

Im(𝛾̂(x, x�)) =
∑
n<m

(gx(xn)gx� (xm) − gx� (xn)gx(xm))Im(𝛾n,m).

(21)||gx ∧ gx� ||2 =
∑
n<m

(
gx(xn)gx� (xm) − gx� (xn)gx(xm)

)2
,

(22)

gx ∧ gx′ = (gx(x1)gx′ (x2) − gx′ (x1)gx(x2),… ,
gx(xp−1)gx′ (xp) − gx′ (xp−1)gx(xp)),

plane spanned by gx and gx′ . It is a generalization of the 
cross product to higher dimensional vectors: In the special 
case N = 3 , gx = (a, b, c) and gx� = (d, e, f ) are vectors in ℝ3 
and (after permutation of its entries and signs) their wedge 
product reduces to

where gx × gx� denotes the cross-product between gx and gx′ 
and, as such, satisfies the same properties, e.g. gx ∧ gx = 0 
and gx� ∧ gx = −gx ∧ gx� . In fact, the wedge product is 
uniquely determined by these axioms. Lagrange’s identity 
for cross-talk functions hence reduces to

and in the normalized case this reduces to Eq. (15).

Discussion

In this study we established several basic properties 
regarding the effects of instantaneous linear mixing on 
the reconstructed cross-spectra of random neural fields. 
Although these properties are rather superficial from 
a mathematical point of view, they do provide some 
insight into aspects of signal mixing that are relevant to 
experimentalists working with EEG or MEG data. For 
instance, one of the results is that second-order mixing 
effects are most severe when the measurement locations 
are far apart and the sources are located in the vicinity 
of the measurement locations. The result provides some 
formal understanding of the large number of false positive 
interactions in the vicinity of the measurement locations as 
observed via numerical simulations (Palva et al. 2018).

Although mixing effects are usually studied within a 
discrete framework by discretizing the source space, we 
used continuous kernels and random neural fields on cortical 
manifolds, because it allows for a more natural description of 
some of the effects, e.g. the relation between mixing effects 
and the curvature of the point-spread functions. Another 
reason for adopting this framework is that macroscopic 
cortical activity is a spatiotemporal phenomenon exhibiting 
properties such as traveling waves, which are more naturally 
studied within such a framework. For instance, a description 
of mixing effects in the spatial frequency domain is readily 
obtained from the continuous description used in this study 
by taking the spatial Fourier transforms of the neural fields 
and the resolution kernels (Hindriks 2020b).

An obvious next question is how the coherences (i.e. 
normalized cross-spectra) of the true and reconstructed 
fields are related. Although the decomposition into zeroth-, 
first-, and second-order effects (see Eq. (5)) is still valid, 
the coherence is a non-linear function of the different terms 

gx ∧ gx� = (bf − ce, cd − af , ae − bd) = gx × gx� ,

(23)��gx × gx� ��2 + ⟨gx, gx�⟩ = ��gx��2��gx� ��2,
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and this considerably complicates the analysis. One faces 
similar difficulties when analyzing the relationship between 
non-linear properties of the true and reconstructed fields, 
for example their phase- or amplitude-dynamics. For exam-
ple, in Hindriks et al. (2016) forward simulations are used 
to explore the highly non-linear relation between true and 
observed phase-fields in the context of local field potential 
recordings. One of the effects that could be analyzed math-
ematically is phase-contraction, which refers to the fact 
that the phase-difference between reconstructed signals is 
typically smaller than that between the true signals, which 
leads, for example, to overestimation of propagation speeds 
of neural activity.

The resolution operator was modeled by a linear integral 
operator with general real-valued kernel and some simple 
choices for the kernel were considered (e.g. a Gaussian ker-
nel). Although this allowed to clarify some basic aspects 
of second-order signal leakage, the study of specific effects 
requires making ad hoc choices. For example, effects of 
source depth can be incorporated by suitably parametrizing 
the kernel, e.g. by multiplying it with a positive constant 
< 1 and increasing its spatial width. These choices, however, 
are not derived from first principles. To arrive at a more 
fundamental formalism, the forward and inverse operators 
that make up the resolution operator should be modelled 
explicitly. For MEG, the forward operator is given by the 
Àmpere–Laplace law, and for EEG and ECoG, the forward 
operator is given by the integral form of Poisson’s equation, 
both of which are linear integral operators (Hämäläinen 
et al. 1993). Effects of source depth, unknown dipole orien-
tation, etc. can then be studied from first principles without 
the need for ad hoc choices. Since the brain is modeled as 
a spatial continuum, it does, however, require the use of 
inverse operators that map sensor activity into a Hilbert 
space of brain activity (in contrast to a finite-dimensional 
vector space). In contrast to the field of electromagnetic 
brain imaging (Grech et al. 2008), such continuous for-
mulations of inverse methods are standard in most other 
fields, e.g. acoustic scattering, optical tomography, and 
seismology, and enable rigorous mathematical analysis (for 
instance, see (Zhdanov 2002)).

Appendices

Appendix A: Derivation of the Basic Identities

The above formulas can be derived in the following way. Let 
Ω = ℝ

2 so that for x, x� ∈ ℝ
2:

𝛾̂(x, x�) = ∫
ℝ4

gx(y)gx� (z)𝛾(y, z),

where y = (y1, y2) and z = (z1, z2) are in ℝ2 . Define 
subsets of ℝ4 by A+ = {(y1, y2, z1, z2)|y1 > z1} and 
A− = {(y1, y2, z1, z2)|y1 < z1} and write

Now define f ∶ ℝ
4
→ ℝ

4 by f (x, y) = (y, x) and note that f 
induces a diffeomorphism between A+ and A− with (absolute 
value of) determinant 1 so that we can write the second term 
of the above equation as:

where in the last step we have used the conjugate symme-
try of � , i.e. �(z, y) = �(y, z)∗ for all x, y ∈ ℝ

2 . We can thus 
rewrite 𝛾̂(x, x�) as an integral over A+:

and therefore its real and imaginary parts are

and

Appendix B: Local Approximation of Second‑Order 
Leakage

We consider the configuration (x, x�, y, z) , where x and x′ are 
measurement locations and y and z are source locations and 
assume that y is close to x and z is close to x′ . We also assume 
that, for all locations v, the cross-talk function gv(u) is maxi-
mal at u = v and decreases with increasing Euclidean distance 
between u and v. Under these assumptions, gx� (y)gx(z) ≈ 0 so 
that S−(x, x�, y, z) and S+(x, x�, y, z) are approximately equal 
to gx(y)gx� (z) . Since y is close to x and z is close to x′ , gx(y) 
and gx� (z) can be approximated by second-order Taylor series 
around x and x′ , respectively:

and

where Hg(x) and Hg(x
�) denote the Hessian matrices 

of gx at x and of gx′ at x′ , respectively. Thus, the (i, j)-th 
entries of Hg(x) and Hg(x

�) are equal to �2gx(x)∕�xixj, and 

𝛾̂(x, x�) = ∫A+

gx(y)gx� (z)𝛾(y, z) + ∫A−

gx(y)gx� (z)𝛾(y, z).

∫A−

gx(y)gx� (z)�(y, z) = ∫A+

gx(z)gx� (y)�(z, y) = ∫A+

gx(z)gx� (y)�(y, z)
∗,

𝛾̂(x, x�) = ∫A+

(
gx(y)gx� (z)𝛾(y, z) + gx(z)gx� (y)𝛾(y, z)

∗
)
,

Re(𝛾̂(x, x�)) = ∫A+

(
gx(y)gx� (z) + gx� (y)gx(z)

)
Re(𝛾(y, z)),

Im(𝛾̂(x, x�)) = ∫A+

(
gx(y)gx� (z) − gx� (y)gx(z)

)
Im(𝛾(y, z)).

gx(y) ≈ gx(x) +
1

2
(y − x)THg(x)(y − x),

gx� (z) ≈ gx� (x
�) +

1

2
(z − x�)THg(x

�)(z − x�),
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�2gx� (x
�)∕�x�ix

�
j, respectively. The first-order terms in the 

Taylor series of gx and gx′ vanish due to the assumptions that 
gx and gx′ are maximal at x and x′ , respectively. Combining 
the approximations for gx(y) and gx� (z) yields the following 
approximation for S−(x, x�, y, z):

which is also valid for S+(x, x�, y, z) . If y is sufficiently close 
to x and z is sufficiently close to x′ , the last term on the 
right-hand side will be much smaller than the second- and 
third terms, thus we can further approximate S+(x, x�, y, z) as

which is also valid for S+(x, x�, y, z).

Appendix C: Derivation of Lagrange’s Identity

To prove Lagrange’s identity, we again use the 
diffeomorphism g between A+ and A− to write
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S−(x, x′, y, z) ≈ gx(x)gx′ (x′) +
1
2
(y − x)THg(x)(y − x)gx′ (x′)

+ 1
2
(z − x′)THg(x′)(z − x′)gx(x)

+ 1
4
(y − x)THg(x)(y − x)(z − x′)THg(x′)(z − x′),

S−(x, x′, y, z) ≈ gx(x)gx′ (x′) +
1
2
(y − x)THg(x)(y − x)gx′ (x′)

+ 1
2
(z − x′)THg(x′)(z − x′)gx(x),

||gx ∧ gx′ ||2 =
1
2 ∫ℝ4

(

gx(y)gx′ (z) − gx′ (y)gx(z)
)2

=1
2 ∫ℝ4

(

gx(y)2gx′ (z)2 + gx′ (y)2gx(z)2

−2gx(y)gx′ (z)gx′ (y)gx(z)
)

=∫ℝ4
gx(y)2gx′ (z)2 − ∫ℝ4

gx(y)gx′ (y)∫ℝ4
gx(z)gx′ (z)

=||gx||2||gx′ ||2 − ⟨gx, gx′⟩
2 .
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