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Introduction

The human brain undergoes rapid maturation and develop-
ment during the second half of gestation (i.e., from 20 to 40 
weeks of gestation). The physiological changes that occur 
in this period include the brain growth, realized through 
myelination and glial cell proliferation and differentiation, 
and the formation of functional neural networks, achieved 
through synaptogenesis and synaptic pruning (Back and 
Miller 2014; Kinney and Volpe 2012). Preterm birth disrupts 
this natural progression of brain development and puts the 
infant at risk of developing long-term neurodevelopmental 
impairments (Back 2017; Volpe 2009, 2019).

Analysing the brain dynamics of preterm neonates pro-
vides valuable insights in the maturation of the neonatal 
brain when the neonate is under surveillance in the neonatal 
intensive care unit (NICU). The most common method used 
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Abstract
Preterm neonates are at risk of long-term neurodevelopmental impairments due to disruption of natural brain development. 
Electroencephalography (EEG) analysis can provide insights into brain development of preterm neonates. This study aims 
to explore the use of microstate (MS) analysis to evaluate global brain dynamics changes during maturation in preterm 
neonates with normal neurodevelopmental outcome.

The dataset included 135 EEGs obtained from 48 neonates at varying postmenstrual ages (26.4 to 47.7 weeks), divided 
into four age groups. For each recording we extracted a 5-minute epoch during quiet sleep (QS) and during non-quiet sleep 
(NQS), resulting in eight groups (4 age group x 2 sleep states). We compared MS maps and corresponding (map-specific) 
MS metrics across groups using group-level maps. Additionally, we investigated individual map metrics.

Four group-level MS maps accounted for approximately 70% of the global variance and showed non-random syntax. 
MS topographies and transitions changed significantly when neonates reached 37 weeks. For both sleep states and all MS 
maps, MS duration decreased and occurrence increased with age. The same relationships were found using individual 
maps, showing strong correlations (Pearson coefficients up to 0.74) between individual map metrics and post-menstrual 
age. Moreover, the Hurst exponent of the individual MS sequence decreased with age.

The observed changes in MS metrics with age might reflect the development of the preterm brain, which is character-
ized by formation of neural networks. Therefore, MS analysis is a promising tool for monitoring preterm neonatal brain 
maturation, while our study can serve as a valuable reference for investigating EEGs of neonates with abnormal neuro-
developmental outcomes.
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to monitor the functional changes in the preterm neonatal 
brain is electroencephalography (EEG), which non-inva-
sively measures the electrical activity of the brain. Previous 
studies have shown that EEG can detect abnormalities in 
the functional connectivity and activity of the neonatal brain 
and can be used to track brain maturation. Those studies 
focused on analysing the background EEG (i.e., not task-
related electrical activity of the brain) in terms of continuity, 
frequency content, coherence, connectivity and complex-
ity (De Wel et al. 2017; Dereymaeker et al. 2016, 2017a; 
Lavanga et al. 2017, 2018; Pillay et al. 2020; Stevenson et 
al. 2020).

In the aforementioned studies, the EEG is typically 
segmented into windows of 30 to 60 s, in which the EEG 
signal is often assumed to be stationary (e.g., for Fourier-
based methods). However, the dynamics of brain activity 
in fact exhibit intricate non-stationary behaviour. Microstate 
(MS) analysis of EEG signals provides, without any a priori 
assumption, a comprehensive perspective on the activity of 
the entire cortex by identifying short periods of quasi-stable 
states (microstates), characterized by quasi-stable topogra-
phies (MS maps) of electric potential on the scalp (Murray 
et al. 2008). The typical duration of these quasi-stable states 
is in the order of 100 ms. The MS maps reflect the activity 
of distributed cortical networks, and the transition from one 
MS to another suggests changes in the global brain network 
activity (Lehmann et al. 1987). The MS analysis frame-
work models the EEG as a sequence of microstates, which 
allows characterizing the global brain activity and dynamics 
through specific MS sequences (Khanna et al. 2015; Michel 
and Koenig 2018). This data-driven approach provides an 
informative framework for studying changes in the activity 
of the multiple brain networks. Moreover, unlike conven-
tional EEG analysis techniques that assess the brain activity 
at specific electrode locations, during specific time inter-
vals, and within given frequency bands, MS analysis offers 
a global view of the brain activity and its dynamics.

MS analysis has been used in adult populations to inves-
tigate global brain activity alterations in various neurologi-
cal and psychiatric diseases, such as dementia, Alzheimer’s 
disease, schizophrenia, bipolar disorders, stroke and mul-
tiple sclerosis (Brown and Gartstein 2023; da Cruz et al. 
2020; Nishida et al. 2013; Vellante et al. 2020; Zappasodi 
et al. 2017). Studies on brain maturation were conducted in 
paediatric and adult populations to assess normative micro-
state data (Koenig et al. 2002) and to investigate age and sex 
related changes of the temporal dynamics of EEG micro-
states (Tomescu et al. 2018). However, these studies only 
considered children from 6 years of age onwards. Indeed, 
the application of MS analysis in preterm neonates is lim-
ited. Khazaei et al. studied microstates in neonatal back-
ground EEG and were able to discriminate between sleep 

states using MS analysis (Khazaei et al. 2021). Another 
study used MS analysis to characterize the brain response to 
pain in preterm and term neonates (Rupawala et al. 2023). 
In the latter, event-related potentials with an epoch length of 
2 s were studied.

To our knowledge, no research exists that explored the 
use of microstates to analyse brain maturation from neona-
tal background EEG. Therefore, the aim of this study was 
to assess whether MS analysis can evidence changes in the 
global dynamics of the preterm neonatal brain during the 
first weeks of life that can be related to maturation. To this 
aim, microstates were extracted from the EEG recordings of 
a cohort of preterm neonates with different post-menstrual 
ages and normal neurodevelopmental outcome, and the rela-
tion between MS features and the brain age was explored.

Materials and methods

Dataset

Data was recorded from the NICU of the University Hos-
pitals, Leuven (Belgium) in accordance with the relevant 
guidelines and regulations and approved by the ethics com-
mittee of the University Hospitals, Leuven. All neonates 
were recruited after informed consent from the parents. For 
this retrospective data analysis, the anonymized data of 48 
preterm neonates (23 females, 25 males) were included. 
The neonates were born between 24.6 and 32.0 weeks of 
gestational age (GA), see Fig. 1. All included neonates had 
a normal neurodevelopmental outcome at nine months of 
age, defined according to the Bayley Scores of Infant mental 
and motor Development II (BSID-II) (Dereymaeker et al. 
2017a). EEG was recorded using BrainRT OSG Equipment 
(Mechelen, Belgium) at a sampling rate of 250 Hz using the 
standard 10–20 electrode system with nine channels (Fp1, 
Fp2, C3, C4, T3, T4, O1, O2 and Cz) (Jasper 1958). Each 
neonate had multiple recordings (median of 3 recordings) 
at various post-menstrual ages (PMA) ranging from 26.4 to 
43.6 weeks. The PMA is the age of the neonate at the time 
of recording, counted from the first day of the mother’s last 
menstrual period. The timings of the recordings are visual-
ized in Fig. 1. In total, 135 EEG recordings were included, 
and the median duration of a recording was 4.4  h. The 
recordings were categorized into age groups based on PMA 
at the time of recording. Based on previous studies and 
aiming for groups with a similar number of recordings, we 
defined four age groups based on PMA (De Wel et al. 2017; 
Lavanga et al. 2017): ≤31 weeks (n = 34), 32–33 weeks 
(n = 36), 34–36 weeks (n = 38), ≥37 weeks (n = 27). When 
assigning the EEG recordings to these groups, we made sure 
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that no neonate had more than one recording in an age group 
(see Fig. 1).

Sleep classification, preprocessing and epoch 
selection

MS analysis was not done on the entire raw EEG record-
ings, but on carefully selected 5-minute epochs. To manu-
ally select appropriate epochs from each recording, we first 
classified sleep states in the EEG and subsequently pre-pro-
cessed the data. This is explained in more detail below.

Neonates spend most of their time asleep, and as in 
adults, different sleep states can be distinguished during a 
sleep cycle. There are two main sleep states in neonates: 

active sleep (AS) and quiet sleep (QS). Compared to adults, 
active sleep is related to rapid eye movement (REM) sleep, 
whereas quiet sleep is related to non-REM sleep. Among 
other physiological signs such as breathing rate and heart 
rate, brain function and EEG dynamics differ between sleep 
states. For this reason, differentiating sleep states when ana-
lysing neonatal EEG is important when studying brain mat-
uration (Dereymaeker et al. 2017a). In the context of MS 
analysis, this was recently confirmed in a study by Khazaei 
et al., who found that neonatal MS features differ between 
AS and QS (Khazaei et al. 2021). Therefore, it is important 
to separately analyse EEG data obtained in different sleep 
states. In this study, we used an automated sleep classifier 
to identify parts in the data that correspond to QS (Ansari 
et al. 2020). All parts that were not identified as such, are 
referred to as non-quiet sleep (NQS). Therefore, this sleep 
classifier classifies each moment of the EEG recording as 
either QS or NQS (see Fig. 2 at the top). The NQS parts can 
either correspond to AS or wakefulness. The model does not 
distinguish AS from wakefulness, which was a deliberate 
choice by the authors of the sleep classifier for the reason 
that AS and wakefulness without movements/artefacts have 
similar EEG characteristic (Ansari et al. 2020). However, 
since neonates spent most of their time asleep, the non-quiet 
sleep data can be assumed to consist predominantly of AS.

After identifying the sleep states in the recording, the 
raw EEG data was pre-processed to facilitate MS analysis. 
The EEG was first bandpass filtered (7th order Butterworth) 
to reduce noise and artefacts. The low-pass frequency was 
set to 25 Hz (Rupawala et al. 2023), and the high-pass fre-
quency was set to 0.2 Hz to preserve the delta frequency 
band which is dominant in neonatal EEG (0.5-4 Hz) (Finn et 
al. 2019; Khazaei et al. 2021; van ’t Westende et al., 2022). 
Second, the EEG was resampled to 100 Hz to speed up sub-
sequent computations. Third, the EEG was re-referenced 
to the common average, which is common practice in MS 
analysis (Murray et al. 2008; Pascual-Marqui and Lehmann 
1993). An example of this pre-processed EEG is shown in 
Fig. 2.

After preprocessing, two artefact-free epochs (each of 
5 min duration) were selected from each EEG recording for 
subsequent MS analysis: one epoch during quiet sleep (QS), 
and the other one during non-quiet sleep (NQS). We selected 
these epochs such that they were free from movement or 
recording artefacts (by visual inspection). This epoch selec-
tion procedure is illustrated in Fig. 2. For the group analysis 
explained below, each selected EEG epoch was assigned to 
one of eight groups, based on the PMA and the sleep state 
(4 age groups x 2 sleep states), i.e., <=31-QS, <=31-NQS, 
32-33-QS, 32-33-NQS, etc.

Fig. 1  Overview of the dataset, illustrating the timings of the EEG 
recordings. Each row represents a neonate. The grey marker indicates 
the gestational age (GA, i.e. the age at birth), and the remaining mark-
ers represent the post menstrual ages (PMA) at the time of the included 
EEG recordings, where the colors indicate the age category to which 
each recording belongs
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to one particular MS, such as the average duration of all 
microstates. Given that both approaches have their advan-
tages and disadvantages, we included both approaches in 
this study. More concretely, we did a group-level analysis 
making use of group-level maps to investigate the relation 
between age group and map topographies, map-specific 
metrics, and transitions. Then, we also performed an indi-
vidual analysis making use of individual maps to study the 
relation between age and individual map metrics. All com-
putations were performed in MATLAB using custom code 
and the microstates plugin for EEGLAB, written by Thomas 
Koenig (https://www.thomaskoenig.ch/index.php/software/
microstates-in-eeglab).

The pipeline for obtaining the MS results is illustrated in 
Fig. 3. It consists of four blocks. In the first block, individual 
MS maps are identified per data epoch. To this end, a modi-
fied k-means clustering method was applied to each EEG 
epoch to find the dominant microstates at an individual level 
(Pascual-Marqui et al. 1995). The input to this clustering 
was a matrix with EEG data where the first dimension cor-
responds to different time-points in the EEG epoch and the 
second dimension to the nine channels. Here, only the time-
points at global field power (GFP) peaks were used for clus-
tering and polarity was ignored by the modified clustering 
method. This resulted in the identification of MS maps in 
each 5-minute EEG epoch (referred to as individual maps).

Microstate analysis

MS analysis was performed on the extracted 5-minute 
epochs of the 9-channel EEG. To determine the optimal 
number of microstates (k), we did the clustering for varying 
k (ranging k from 3 to 15) and looked for the elbow-point in 
the dispersion (a clustering-quality metric), according to the 
Krzanowski-Lai (KL) criterion (Murray et al. 2008).

To represent the EEG data as a sequence of microstates, 
MS analysis generally requires two steps, i.e., determina-
tion of the MS maps, and (back)fitting the MS maps to the 
EEG data. For the MS maps we can either use individual 
maps (i.e., dominant topographies found within one specific 
epoch), or group-level maps (i.e., dominant topographies 
found within a specific group of epochs, e.g., all QS epochs 
of one specific age group). For the analysis of map-specific 
MS metrics (such as the average duration of one particular 
MS), the use of group-level (or global) maps is generally 
more reliable (Khanna et al. 2014). However, a group-level 
approach suffers from the limitation that sometimes not all 
recordings in the group can be adequately modelled by a 
common set of MS maps. This limitation can be solved by 
using individual maps, where the optimal set of MS maps 
is found for each individual EEG recording. The limitation 
of using individual maps is that only individual map met-
rics can be reliably studied, i.e., metrics that are not specific 

Fig. 2  Epoch selection procedure. The sleep state was automatically 
detected using the method of Ansari et al. (Ansari et al. 2020), and its 
results are visualized by the coloured bar at the top. Here, blue indi-
cates quiet sleep (QS) and yellow non-quiet sleep (NQS). Next, a QS 

and a NQS epoch of 5 min was manually selected for further analy-
sis, verifying that they were free from artefacts (by visual inspection). 
Note: for visualization purposes only a part of the EEG recording is 
shown, of which the total length was 3.6 hours
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stability of the underlying brain dynamics), MS occurrence 
(in Hz; it expresses the tendency of the underlying neural 
sources to become active and dominant), and MS coverage 
(in %; it indicates the relative predominance of the active 
sources underlying the given MS) (Khazaei et al. 2021; 
Lehmann et al. 2005). In the group-level analysis, these 
metrics are computed per MS.

In the fourth block, the individual analysis was done. Here, 
the individual maps were backfitted to the EEG data of the 
corresponding epoch, with the same method as described in 
the previous paragraph. Likewise, a set of metrics, includ-
ing MS duration and MS occurrence, was computed to 
characterize the MS sequence. Unlike for the group-level 
analysis, in this individual analysis, these metrics are not 
computed separately per MS, but instead individual map 
metrics are obtained by computing the average duration and 
occurrence of all microstates. For this reason, coverage was 
not included, since coverage is always 100% when consid-
ering all microstates. Besides duration and occurrence, we 
computed the Hurst exponent of the MS sequence, which 
is another individual map metric which captures the degree 
of temporal dependence (Tait and Zhang 2022a; Van De 
Ville et al. 2010). The Hurst exponent was estimated using 
detrended fluctuation analysis using the +microstate tool-
box for brain MS analysis in sensor and cortical EEG/MEG 
(plus-microstate.github.io) (Tait and Zhang 2022b).

Statistical Analysis

We analysed the effect of maturation on brain dynamics by 
analysing the obtained MS features and their relation with 

In the second block, the group-level MS maps are identi-
fied, i.e., per age-sleep group (e.g., all QS epochs from a 
specific age group). To obtain the group-level maps, the 
individual maps were pooled per age-sleep group and from 
the pooled MS maps the dominant group-level MS maps 
were identified for each group (using the same modified 
k-means algorithm as before). More specifically, the input 
to this clustering step was an EEG data matrix obtained by 
concatenating all individual maps of all epochs in the group. 
This step yielded group-level maps for each of the eight 
age-sleep groups. The order of the group-level maps was 
matched among groups by finding an ordering of the maps 
that maximized the average spatial correlation between cor-
responding maps among groups (Khazaei et al. 2021). To 
quantify how well these group-level MS maps were able to 
model the EEG data, the global explained variance (GEV) 
was computed per group (Murray et al. 2008).

In the third block, the group-level analysis is done. Here, 
the group-level maps are backfitted onto the entire continu-
ous EEG epoch (i.e., not only on the GFP peaks), for all the 
epochs in the corresponding group. This backfitting proce-
dure assigns a MS to each time point in the EEG data by 
selecting the MS whose topography has maximum spatial 
correlation with the recorded scalp potentials at that time 
point. Additionally, in this backfitting procedure a smooth-
ing procedure was applied as described by Pascual-Marqui 
et al., using a time window of 30 ms and a non-smoothness 
penalty factor of 1 (Pascual-Marqui et al. 1995). The back-
fitting produces a sequence of microstates, from which a 
set of MS metrics was computed for each epoch. These MS 
metrics include MS duration (in seconds; it is an index of 

Fig. 3  Microstate analysis pipeline that shows how a 5-minute EEG epoch is processed
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to individual map metrics (mean duration, mean occurrence 
and Hurst exponent). We used a mixed effects model to 
quantify the relationships. Given that in this analysis we use 
individual maps instead of group-level maps, we used PMA 
as a continuous age variable instead of the discretized age 
groups. In the mixed effects model, fixed effects were PMA, 
sleep state, and their interaction. Like in the group-level 
analysis, the patient-dependence was accounted for by add-
ing a random intercept as a random effect to the model. The 
results of the mixed effect model (using SPSS) are reported, 
as well as the Pearson correlation coefficients between the 
individual map metrics and PMA.

Results

MS topography

According to the KL criterion, we found that four MS maps 
(k = 4) was optimal, and this was the same for all age groups 
and sleep states. Figure 4 shows the group-level MS maps 
and Fig. 5 shows the GEV for each group. Using the group-
level maps, the mean GEV (± SD) across all recordings was 
69.5 (± 3.0) %. The GEV drops from around 70–67% in the 
oldest age group.

Visually comparing the maps between age groups in 
Fig. 4 concludes that the maps remain similar between age 
groups. Figure 6 confirms this as it compares the topogra-
phies of each microstate among the four age groups (1, 2, 
3 4). Comparisons annotated with an asterisk indicate that 
those MS maps are significantly similar (i.e., spatially cor-
related). Only the oldest age group (PMA > = 37 weeks) 
has microstates maps that significantly differ from the other 
three age groups: for QS, maps M1 and M2 are different 
from maps M1 and M2 in the other age groups, and for NQS 
map M1 is different from M1 in the other age groups.

MS metrics

A mixed effects model was applied to check for differences 
in MS metrics between age groups. We excluded the oldest 
age group from this mixed effects model, because its MS 
maps differed from the other age groups. Table 1 shows the 
statistical summary of these mixed effects models and Fig. 7 
shows the marginal means of the mixed effects models for 
duration, occurrence and coverage for each age group, 
sleep state and MS map. These results show that age group 
and sleep state have significant effects on the MS metrics 
(Table 1). For example, in Fig. 7, a clear trend with PMA 
is seen for duration and occurrence. MS duration decreases 
and MS occurrence increases with PMA, and this relation-
ship is similar across microstates and sleep states, as evident 

PMA. The MS analysis is divided into two main parts: 
group-level analysis and individual analysis. In the group-
level analysis, we find and analyse group-level MS maps 
and their corresponding MS sequences. In the individual 
analysis, we analyse the MS sequences obtained with indi-
vidual maps.

The group-level analysis consists of three sections: MS 
topography, MS metrics, and MS syntax. First, it was inves-
tigated whether the topography of the dominant MS varied 
with PMA. To this end, the similarity of dominant group-
level MS maps was compared between groups by means 
of topographical analysis of variance (TANOVA) using the 
spatial correlation between the maps as effect size (Koenig 
and Melie-García 2009). This TANOVA is a randomized 
permutation test, whereby the channels of the maps are ran-
domly permuted. We repeated this permutation 5000 times 
to get an empirical distribution of the random effect size, 
against which the actual effect size is tested for significance, 
at a significance level of α = 0.05.

Second, we analysed the effect of PMA on MS dura-
tion, occurrence and coverage. The dataset consisted of 
repeated measurements of the neonates at different PMAs. 
However, not all the data in each age group comes from 
the same patients, as this is a retrospective study and EEGs 
were not always obtained in all age groups. To account for 
such missing data within a repeated measures dataset, a 
mixed effect model was applied. Here, fixed effects were 
PMA age group, sleep state, MS and their interactions. The 
patient-dependence was accounted for by adding a random 
intercept as a random effect to the model. The results of the 
mixed effect model (using SPSS) are reported along with 
the estimated marginal means.

Patterns in the MS sequence obtained with the group-
level maps (MS syntax) were analysed in two ways. First, 
we performed a randomized chi-square test with 5000 rep-
etitions to test the hypothesis that the syntax is random 
as described by Lehmann et al. (Lehmann et al. 2005). 
Second, the hypothesis that the observed transition prob-
abilities between any two MS is due to chance was tested 
within each group by means of a paired t-test between the 
observed and expected transition probabilities for each pos-
sible transition (normality assumption was fulfilled). More 
concretely, for each group and each possible MS transition, 
we tested whether the difference between the expected and 
observed transition probability was different from zero. The 
expected and observed transition probabilities are computed 
as in Lehmann et al. (Lehmann et al. 2005). To account for 
multiple testing, we corrected the p-values using the False-
Discovery-Rate (FDR) controlling procedure.

Besides a group-level analysis using the group-level 
maps, we did an individual analysis using the individual 
maps. In this final analysis, we tested how age is related 
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of microstates. Figure 8 visualizes the transitions among the 
microstates. In this figure, the transitions that occur signifi-
cantly less or more frequently than expected at random are 
drawn. The transition patterns remain fairly stable across 
age groups, especially for the three youngest groups. For 
instance, frequent transitions into M3 from several micro-
states is a recurring pattern in both QS and NQS. An oppo-
site recurring effect regards M2, for which we observe less 
frequent transitions. The largest change in transition patterns 
is seen when comparing the two oldest age groups. Here, 
some of the patterns that were stable for the three young-
est groups change, such as the transitions between M4->M2 
and M4->M3 during both QS and NQS.

Individual map metrics and PMA

Due to differences in group-level maps, the oldest age group 
was excluded from the group-level analysis of the MS met-
rics (Table  1). To evidence effects of age on microstate 
metrics including also the group of the oldest neonates, we 
applied a mixed effects model to individual map metrics 
obtained from individual MS maps (mean duration, mean 
occurrence and Hurst exponent). The results are presented 
in Table  3. For duration, we found a significant effect of 
PMA [F(1, 249.907) = 293.846, p < 0.001], but not signifi-
cant effect of sleep state (p > 0.1) or PMA x sleep state inter-
action (p > 0.1). The negative coefficient (-0.010) indicates 
that the mean duration significantly decreased with age. 
This is also visible in Fig. 9, which shows how the average 

from Fig. 7. Trends for coverage are less obvious in Fig. 7. 
However, the mixed effects model summary in Table  1 
indicates a significant interaction term for age group and 
microstate.

MS syntax

To test whether the sequence of microstates – the MS syntax 
– is random or not, a chi-square test was performed, and its 
results are presented in Table 2. The p-values in this table 
are all less or equal to 0.0006, indicating that the MS syntax 
is not random and that there is a structure in the sequence 

Fig. 5  Global explained variance (GEV) per group using the group-
level MS maps

 

Fig. 4  The four MS maps (M1, M2, M3, M4) for each age group and sleep state. Left: quiet sleep (QS); right: non-quiet sleep (NQS)

 

1 3

467



Brain Topography (2024) 37:461–474

duration of a microstate decreases with PMA, with a cor-
relation of -0.70 and − 0.71 for QS and NQS, respectively.

For occurrence, the most significant effect was age [F(1, 
252.949) = 315.645, p < 0.001]. Here, age x sleep state 
interaction was also significant [F(1, 220.619) = 6.159, 
p = 0.014], and sleep state was almost significant [F(1, 
220.619) = 3.748, p = 0.054]. Mean occurrence signifi-
cantly increased with age, and occurrence in QS was higher 
than in NQS (Fig. 9). Moreover, the correlation values of 
occurrence vs. PMA were 0.74 and 0.71 for QS and NQS, 
respectively.

The Hurst exponent was significantly related with age, 
sleep state and their interaction (p < 0.001), see Table 3. Fig-
ure 9 shows that the Hurst exponent was > 0.5, indicating 
long-term correlations in the MS sequence. With age, these 
long-term correlations decreased significantly, especially 
in QS (r=-0.69). For NQS, the Hurst exponent reduced to 
a lesser extent and was less strongly correlated with age, 
though still significantly (r=-0.28, p < 0.001).

We further checked whether adding GA or sex were con-
founding factors. Correlations between GA and the indi-
vidual map metrics were not significant. Furthermore, we 
did not find any significant differences for male vs. female. 
Additionally, a multiple linear regression analysis per-
formed on the QS data with PMA, GA and sex as indepen-
dent variables showed that only the PMA coefficient was 
significant for predicting mean duration, occurrence and 
Hurst exponent.

Table 1  Results of the mixed effect models for MS metrics (duration, 
occurrence and coverage). Here, the oldest age group is excluded 
because its MS maps differ from the MS maps of the other groups

df F p
Duration
  Age group 2, 827.49 118.83 < 0.001
  Sleep state 1, 794.10 27.10 < 0.001
  Microstate 3, 794.10 244.94 < 0.001
  Age group x Microstate 6, 794.10 2.26 0.036
  Sleep state x Microstate 3, 794.10 29.97 < 0.001
  Age group x Sleep state 2, 794.10 0.12 0.887
  Interaction1 6, 794.10 1.65 0.132
Occurrence
  Age group 2, 835.16 180.27 < 0.001
  Sleep state 1, 794.21 60.89 < 0.001
  Microstate 3, 794.21 73.97 < 0.001
  Age group x Microstate 6, 794.21 2.41 0.026
  Sleep state x Microstate 3, 794.21 8.61 < 0.001
  Age group x Sleep state 2, 794.21 1.68 0.187
  Interaction1 6, 794.21 1.28 0.263
Coverage
  Age group NA NA NA
  Sleep state NA NA NA
  Microstate 3, 840 276.14 < 0.001
  Age group x Microstate 6, 840 2.71 0.013
  Sleep state x Microstate 3, 840 28.06 < 0.001
  Age group x Sleep state NA NA NA
  Interaction1 6, 840 0.451 0.845
NA: computation for group effect is not applicable since the total cov-
erage is 100%
1Interaction of all three terms: Age group x Sleep state x Microstate

Fig. 6  Spatial correlation between map topographies of different age 
groups (1: <=31 weeks, 2: 32–33 weeks, 3: 34–36 weeks, 4: >=37 
weeks). High values indicate similar maps, while low values indi-
cate dissimilar maps. *p < 0.05 (TANOVA permutation test), i.e., the 
maps significantly correlate (spatially). For clarity, significance is only 

tested between the same microstates (i.e., only TANOVA tests were 
carried to compare a specific MS (MS1, MS2, MS3, or MS4) between 
age groups). Because the matrix is symmetric, significance is only 
indicated in entries above the diagonal
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brain development that have been described in the litera-
ture, which suggest that the second half of gestation (i.e., 
20 to 40 weeks) and the early postnatal period are critical 
for the formation of functional neural networks (Kinney and 
Volpe 2012; Kostović and Jovanov-Milošević 2006; Tau 
and Peterson 2010).

The changes observed in the MS topography after 37 
weeks PMA are reflected in the GEV. In fact, using four 
(group-level) MS maps, we could describe approximately 
70% of the preterm EEG data in our dataset. This GEV is 
similar to the reported GEV in adult studies and in a previ-
ous study with term neonates (Khazaei et al. 2021). When 
looking at the difference of GEV between the groups, we 
noticed that the GEV remained around 70% for the three 
youngest age groups. In the oldest age group, the GEV 
dropped to around 67%, which indicates that the EEG in the 
older age group is less-well represented by four MS maps, 
although four maps were preferred according to the KL-
criterion. It is interesting to observe that the PMA of our 
older age group is close to the PMA of the full-term neo-
nates investigated by Khazaei et al. (Khazaei et al. 2021), 
who found that the optimal number of microstates was 7 
and that the associated GEV was about 70% in both QS and 
NQS groups. Therefore, assessing the dependence of the 
optimal number of microstates able to properly describe the 
brain dynamics in preterm and term neonates on PMA could 
be an interesting topic to focus on in future studies. More-
over, additional approaches besides the KL-criterion could 
be explored to determine the optimal number of microstates. 
For example, Custo et al. 2017 combined eleven different 
criteria into a meta-criterion to increase the confidence in 
the selected number of clusters. This could prevent any bias 
in the analysis resulting from using too few maps to model 
all relevant dynamics, which may reduce the discrepancy 
between groups maps.

Consistently with our observation that the different MS 
topographies observed for the group of oldest neonates 
might be related to functional reorganization or structural/
functional development of the neonatal brain, our results 
show that MS duration and occurrence are related to PMA, 
where duration decreases, and occurrence increases with 
age. Even when extracting microstates at individual level 
and obtaining recording-specific MS maps, the mean overall 
MS duration and occurrence have the same strong relation-
ship with PMA as described before. This implies that the 
duration of quasi-stable electrical potentials shortens with 
age, regardless of the topography associated with that elec-
trical potential distribution. This might indicate the progress 
of discontinuous brain electrical activity into more com-
plex, faster changing continuous EEG as the brain matures 
(Pavlidis et al. 2017). The average MS duration of both QS 
and NQS states in our cohort of preterm neonates decreases 

Discussion

We explored the use of MS analysis to study the functional 
brain development (otherwise called brain maturation) in 
preterm neonates. We found that the dynamics of the brain 
activity in preterm neonates, as recorded in the EEG, can 
be modelled with similar MS topographies in both QS 
and NQS from the 31st to the 36th week PMA. Changes 
in the MS topography occurred after 37 weeks PMA, as 
well as changes in the pattern of transitions between micro-
states. These changes might reflect functional reorganiza-
tion or structural/functional development of novel cortical 
networks when the preterm neonate approaches the PMA 
typical of term birth. This observation aligns with trends in 

Table 2  P-values for randomized chi-square test to test if the MS syn-
tax is random for each sleep state and age group

<=31 32–33 34–36 >=37
QS p = 0.0006 p < 0.0002 p < 0.0002 p < 0.0002
NQS p < 0.0002 p < 0.0002 p < 0.0002 p < 0.0002

Fig. 7  Estimated marginal means for mean microstate duration, occur-
rence and coverage for quiet sleep (QS) and non-quiet sleep (NQS). 
The boxes represent the upper and lower (95%) confidence limit for 
the marginal means. Here, the oldest age group is excluded because its 
MS maps differ from the MS maps of the other groups
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decrease in the degree of persistence or long-term memory 
of the signal. Therefore, the EEG exhibits weaker long-term 
correlations as the brain maturates. This effect is stronger 
in QS compared to NQS (Fig. 9). It is known that the EEG 
patterns during QS change significantly with neonatal age. 
More specifically, the EEG during QS evolves from a dis-
continuous burst-suppression pattern (tracé alternant) to a 
more continuous pattern (high voltage slow-waves) as the 
brain matures (Dereymaeker et al. 2017b). The decreas-
ing Hurst exponent may reflect this typical evolution of the 
EEG signal during QS, as the discontinuous burst-suppres-
sion pattern is likely to exhibit more long-term correlations 
than the continuous pattern. On the other hand, the EEG pat-
terns during NQS change less compared to QS, which could 
explain why the Hurst exponent is affected to a lesser extent.

Another important result of our study is that the MS 
syntax is not random. This means that the co-activation 
of specific brain regions in the preterm brain, resulting in 
a specific topographic map, facilitates the subsequent co-
activation of another group of brain regions in a sequential 

from about 250–300 ms at 30 weeks PMA to 150–200 ms 
after 37 weeks PMA. Khazaei et al. (Khazaei et al. 2021) 
reported that the MS duration of full-term neonates was 
about 110–150 ms. On one hand these values are shorter 
than the average MS duration that we found for the older 
preterm neonates, and on the other hand they are much lon-
ger than average MS duration found in adults during dif-
ferent sleep states (40–100 ms) (Brodbeck et al. 2012), or 
in children of 6–7 years (about 94 ms) and adults (about 
80 ms) in awake state (Koenig et al. 2002; Tomescu et al. 
2018). Taken together, these data confirm the tendency of 
MS duration to decrease during brain maturation in a con-
tinuum from early stages to term-birth, childhood and ado-
lescence. Our results, confirmed at individual level, may 
serve as a reference for future research, providing normal 
values for MS metrics for a range of different PMA groups, 
opening the way to the assessment of MS duration as a reli-
able biomarker of brain maturation.

Furthermore, we observed that the Hurst exponent of 
the MS sequence decreases with age, which indicates a 

Table 3  Results of the mixed effect models for individual map metrics (mean duration, mean occurrence and Hurst exponent), obtained with indi-
vidual MS maps. Values for Lower and Upper 95% define the 95% confidence interval

df F p Coefficient Lower 95% Upper 
95%

Mean duration (s)
  Age (PMA) 1, 249.907 293.846 < 0.001 -0.010 -0.011 -0.008
  Sleep state (NQS) 1, 220.173 0.021 0.884 -0.005 -0.076 0.066
  Age*Sleep state 1, 220.173 0.428 0.514 0.001 -0.001 0.003
Mean occurrence (Hz)
  Age (PMA) 1, 252.949 315.645 < 0.001 0.215 0.185 0.244
  Sleep state (NQS) 1, 220.619 3.748 0.054 1.379 -0.025 2.782
  Age*Sleep state 1, 220.619 6.159 0.014 -0.051 -0.092 -0.011
Hurst exponent (-)
  Age (PMA) 1, 259.942 97.359 < 0.001 -0.012 -0.015 -0.010
  Sleep state (NQS) 1, 222.410 23.846 < 0.001 -0.282 -0.396 -0.168
  Age*Sleep state 1, 222.410 22.258 < 0.001 0.008 0.005 0.011

Fig. 8  Significant transitions 
between microstates for each age 
group and sleep state. Top: quiet 
sleep (QS), bottom: non-quiet 
sleep (NQS). Arrow heads indi-
cate more observed transitions 
than expected and square arrow 
heads indicate less observed 
transitions than expected. Grey 
and black arrows indicate p < 0.1 
and p < 0.05, respectively
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both obtained different MS metrics for QS and NQS states. 
Although these differences between QS and NQS do not 
seem to be related to age (see Figure A3 in the Appendix), 
this finding can support the notion that a different functional 
organization underpins different sleep states. Khazaei et al. 
reported longer mean MS duration and reduced MS occur-
rence during QS when compared to active sleep (AS). In 
adults, longer MS duration was observed in non-REM sleep 
(QS) compared to awake (NQS) (Brodbeck et al. 2012). 
However, our results suggest that the differences between 
QS and NQS are much smaller and tend to be in the opposite 
direction (shorter MS duration in QS compared to NQS). 
Khazaei et al. related a longer MS duration in QS to a higher 
delta power (0.5–4 Hz) in QS compared to AS, since they 
observed a dependence between MS duration and occur-
rence and the frequency content. We also observed higher 
delta power in QS compared to NQS (see Figure A2 in the 
Appendix), but we noticed an opposite effect when study-
ing the relative amount of the power below 0.5  Hz. This 
finding might mean that, in our data, the slowest waves 
(< 0.5 Hz) were more dominant in NQS than in QS, which 
could explain why MS duration tends to be longer in NQS 
(see Figures A1 and A2 in the Appendix). Whereas we used 
broadband EEG, future work could study the age effect in 
MS analysis performed in narrow-band EEG to potentially 
identify frequency bands that are less or even more sensitive 
to age effects. It is also worth noting that an important differ-
ence between our study and previous studies is that the sleep 
states were identified automatically. Especially the NQS 
epochs identified by the automated sleep stage algorithm 
(a QS identifier) may differ from the AS epochs selected 
by clinical experts in the study by Khazaei et al. Another 
important difference with this study that may explain our 
divergent results is that our dataset consisted of 9-channel 
EEG, whereas Khazaei et al. worked with 19-channel EEG.

Several studies have reported on the relationship between 
EEG dynamics and PMA in preterm infants. For instance, 
Dereymaeker et al. found a negative correlation between 
suppression characteristics of preterm EEG and PMA, indi-
cating that as the brain matures, the EEG transits from a 
burst-suppression pattern to a more continuous pattern 
(Dereymaeker et al. 2016). In the context of functional 
connectivity, Lavanga et al. observed a negative correla-
tion between PMA and imaginary coherence indices, which 
measure lagged interactions between channels (Lavanga et 
al. 2018). Furthermore, De Wel et al. found that the com-
plexity of the EEG signal increases with age and reported 
significant correlations between complexity indices and 
PMA (De Wel et al. 2017). Notably, the latter two studies 
reported correlation values with similar magnitudes to those 
observed in our analysis of MS metrics and PMA. All these 
different approaches to analysing the neonatal EEG expose 

way that is compatible with time-parcelled MS sequences 
and that can be described by MS transition probabilities. We 
demonstrated that this process was specific of different ages, 
with most relevant changes of the transition probability pat-
terns for the oldest age group ( > = 37 weeks). Similarly to 
the changes in the MS topography occurring after 37 weeks 
PMA, the differences observed for the transition probabil-
ity patterns of the older PMA groups could be explained in 
terms of the functional reorganization of the MS dynamics 
during these last weeks of brain maturation before the neo-
nate reaches the PMA typical of term birth. In a prior study 
on full-term neonates, Khazaei et al. also found non-casual 
directional transition sequences and preferred transitional 
loops in the MS sequences describing the dynamics of the 
full-term neonatal brain (Khazaei et al. 2021).

Like us, Khazaei et al. also studied microstates in rela-
tion to different sleep states (Khazaei et al. 2021) and, 
despite the different study population (term babies in the 
study by Khazaei et al. vs. preterm babies in our study), we 

Fig. 9  Relationships between individual map metrics and PMA. r: 
Pearson correlation coefficient
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– complicated the analysis and the interpretation of the 
results, and led to the exclusion of the oldest age group in the 
mixed model analysis (Table 1; Fig. 7). To accommodate for 
this limitation, we performed an individual analysis, where 
we did not group by age and analysed individual map met-
rics obtained with individual maps. Studying individual map 
metrics obtained with individual maps allows for variations 
in MS topographies between recordings. Moreover, since 
we did not use group-level maps, we could drop the arbi-
trary age-categorisation and study the relationship between 
MS metrics and age as a continuous variable, also revealing 
significant relationships. In clinical applications, where the 
assessment of brain maturation through MS metrics might 
be helpful, an approach using individual maps and not cat-
egorising into age groups might be preferred, as this allows 
for variations in MS topographies between recordings, solv-
ing the limitation of group-level analysis which requires 
that the EEG is modelled by the same dominant MS maps 
for all groups. An alternative future direction could focus 
on identifying a set of global MS maps that can be used to 
model all data across all ages, requiring a different, non-
traditional approach to find these global maps. For example, 
these global maps could be found by pooling all recordings 
from all ages and finding the dominant topographies in the 
pooled data set. In such an approach, the optimal number 
of maps could be chosen such that all (or most) recordings 
have an acceptable GEV. We already showed that the domi-
nant maps change with age, therefore, it is expected that 
more than 4 maps will be needed to model all pooled data 
adequately. In other words, we expect that different subsets 
of the global MS maps may be dominant for different ages. 
In such an approach, the change of dominant topographies 
with age could be studied by looking at the evolution of the 
map coverages with age.

A second limitation of our study regards the manual 
epoch selection. Given that EEG data obtained from long 
EEG recordings in the NICU are inevitably contaminated 
with artefacts, we opted for manually selecting artefact-free 
epochs. This approach could be improved by employing 
automated methods for artefact detection (Hermans et al. 
2023; Tamburro et al. 2022; Webb et al. 2021). Therefore, 
future work could focus on using existing methods for auto-
mated artefact detection and thereby automating the entire 
analysis pipeline. Furthermore, adding automated artefact 
detection to the pipeline would facilitate the investigation 
of the consistency of MS analysis, because all artefact-free 
epochs within one long EEG recording could automati-
cally be identified, enabling studying the consistency of MS 
analysis.

To conclude, our results showed that the spatio-temporal 
dynamics of the EEG in preterm neonates can be modelled 
as a non-casual sequence of few microstates and that the 

different views on brain development that converge to the 
idea that neonatal brain maturation implies an increasing 
complexity in the brain functional dynamics. Our results 
are consistent with these findings and demonstrate that MS 
analysis is a valuable tool to describe brain maturation from 
another perspective. Given that all these methods were used 
to analyse EEG recordings of preterm babies with normal 
developmental outcome, it would be very interesting to 
verify whether the converging views of these approaches 
on brain maturation would eventually diverge in case the 
EEG of preterm neonates with abnormal developmen-
tal outcome would be analysed, and whether MS analysis 
could be proposed as a biomarker of adverse brain matura-
tion and long-term neurodevelopmental outcome. All these 
different approaches can ultimately be combined to reach 
a comprehensive view on the activity and dynamics of the 
neonatal brain. Additionally, combining features from sev-
eral approaches could be used to develop accurate models 
to monitor brain development, such as the brain age predic-
tion models that use a collection of features from different 
domains to build an accurate PMA estimator (Pillay et al. 
2020; Stevenson et al. 2020). Given that each MS map is 
the result of the co-activation of distinct brain areas and that 
brain functions can be described by MS metrics and syn-
tax, an interesting question regards the relationship between 
functional connectivity features or complexity indices and 
EEG microstates during maturation in preterm infants. 
Future studies should address this point and investigate 
whether a relationship exists between specific MS features 
and patterns of functional connectivity or brain complexity.

Microstates have been extensively studied in adults, and 
the MS maps typically found in adults have been associated 
with specific brain functions, such as vision, attention and 
cognitive control (Michel and Koenig 2018). In neonates, 
however, we cannot assume that any of these associations 
applies because the neonatal brain is still under development 
and its dynamics is different from that of the adult brain. It 
is worth noting that the order with which microstates are 
presented in our study is arbitrary and that the four micro-
states that we identified do not resemble the four microstates 
typically found in adults. Therefore, future research could 
also focus on how to interpret these microstates in terms of 
brain functions.

Some limitations need to be considered when interpreting 
our results. First, the categorisation into age groups is arbi-
trary: given that we aimed at having approximately equal 
group sizes, we depended on the availability of data, which 
led to the age groups spanning different age ranges. Fur-
thermore, the fact that the microstate maps differed between 
age groups prevented us from using global maps that could 
be used across all ages: this fact – likely due to the phe-
nomenon that we wanted to observe, i.e., brain maturation 
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MS metrics can detect changes in the EEG patterns due to 
brain maturation, indicating that MS analysis can capture 
and characterize the changes occurring in the developing 
neonatal brain. Therefore, MS analysis can be proposed as 
a feasible tool for studying continuous background EEG in 
preterm neonates to assess their brain maturation. To our 
knowledge, this is the first study using MS analysis to this 
purpose: for this reason, our results could serve as a normal 
reference for future research.
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