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Abstract
EEG microstate sequence analysis quantifies properties of ongoing brain electrical activity which is known to exhibit com-
plex dynamics across many time scales. In this report we review recent developments in quantifying microstate sequence 
complexity, we classify these approaches with regard to different complexity concepts, and we evaluate excess entropy as a 
yet unexplored quantity in microstate research. We determined the quantities entropy rate, excess entropy, Lempel–Ziv com-
plexity (LZC), and Hurst exponents on Potts model data, a discrete statistical mechanics model with a temperature-controlled 
phase transition. We then applied the same techniques to EEG microstate sequences from wakefulness and non-REM sleep 
stages and used first-order Markov surrogate data to determine which time scales contributed to the different complexity 
measures. We demonstrate that entropy rate and LZC measure the Kolmogorov complexity (randomness) of microstate 
sequences, whereas excess entropy and Hurst exponents describe statistical complexity which attains its maximum at inter-
mediate levels of randomness. We confirmed the equivalence of entropy rate and LZC when the LZ-76 algorithm is used, a 
result previously reported for neural spike train analysis (Amigó et al., Neural Comput 16:717–736, https:// doi. org/ 10. 1162/ 
08997 66043 22860 677, 2004). Surrogate data analyses prove that entropy-based quantities and LZC focus on short-range 
temporal correlations, whereas Hurst exponents include short and long time scales. Sleep data analysis reveals that deeper 
sleep stages are accompanied by a decrease in Kolmogorov complexity and an increase in statistical complexity. Microstate 
jump sequences, where duplicate states have been removed, show higher randomness, lower statistical complexity, and 
no long-range correlations. Regarding the practical use of these methods, we suggest that LZC can be used as an efficient 
entropy rate estimator that avoids the estimation of joint entropies, whereas entropy rate estimation via joint entropies has the 
advantage of providing excess entropy as the second parameter of the same linear fit. We conclude that metrics of statistical 
complexity are a useful addition to microstate analysis and address a complexity concept that is not yet covered by existing 
microstate algorithms while being actively explored in other areas of brain research.

Keywords Electroencephalography · EEG microstates · Complexity · Entropy · Hurst exponent · Markov models

Introduction

EEG microstate analysis has become a widely used method 
to characterize spontaneous and evoked brain activity pat-
terns (Michel and Koenig 2018). Complexity is a hallmark 
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of integrated, large-scale brain activity and researchers have 
an intuition of how complexity manifests in their data, may 
that be neuronal spiking (Amigó et al. 2004; Szczepański 
et al. 2004), local field potentials (Abásolo et al. 2014), func-
tional neuroimaging (Xin et al. 2021; Nezafati et al. 2020; 
Hancock et al. 2022), electroencephalography (EEG) (Casali 
et al. 2013), or magnetencephalography (MEG) (Fernández 
et al. 2011).

Yet, there is no unique theoretical notion of what com-
plexity is or how it should be measured, and the fact that 
complexity is a multifaceted concept is reflected in the 
existence of a large number of complexity definitions in the 
literature (Shalizi 2006). Definitions of complexity have 
emerged in different scientific disciplines, and some con-
cepts have re-emerged under different names which makes 
it challenging to maintain an overview of this research area 
(Prokopenko et al. 2008; Ay et al. 2011; Crutchfield and 
Feldman 2003). The specific aims of this article will be 
stated after a brief review of complexity concepts in general, 
and those used to characterize EEG microstate sequences so 
far. We will highlight links between these measures and to 
areas other than microstate research.

Concepts of Complexity

There are at least two basic flavours of complexity, each 
founded on different intuitions about what represents 
complexity.

One concept is known as algorithmic or Kolmogorov 
complexity (Alekseev and Yakobson 1981) and initially 
defined complexity as the length of the shortest program that 
is able to reproduce the input data. This measure increases 
monotonically with the amount of ‘randomness’ in the data. 
Intuitively, the shortest algorithm reproducing a random 
sequence is a command that prints exactly that sequence 
and the length of that algorithm would be approximately the 
same as the length of the dataset. In the microstate context, 
this would correspond to a sequence of independent samples 
from the set of microstate labels, e.g., from {A,B,C,D} , pos-
sibly weighted by their relative occurrence. At the non-ran-
dom end of the spectrum, a sequence that consists of a single 
repeated label, e.g., AAA… , is reproduced by a very short 
instruction such as ’print A, n times’. As will be explained 
further below, there are more practical approaches to meas-
ure Kolmogorov complexity than trying to find the actual 
program, namely entropy rate and Lempel–Ziv complexity.

A separate family of complexity measures was devel-
oped because many researchers are uncomfortable with the 
concept of complexity being essentially the same as ran-
domness. Following the Kolmogorov complexity concept, 
randomly connected neurons are more complex than a real 
brain, and electrical white noise is more complex than actual 
brain electrical activity. The ’statistical complexity’ concept, 

on the other hand, asks how difficult it is to obtain a statis-
tical model of the data and aims to construct bell-shaped 
complexity measures when plotted against randomness 
(Huberman and Hogg 1986; Lindgren and Nordahl 1988). 
Both complexity concepts agree in that extremely ordered 
systems should be assigned a low complexity, as they are 
non-random and a compact model can often be formulated. 
An example of a highly ordered spatial system is a crystal 
structure, as is a sine wave in the world of time series. Where 
the two complexity concepts differ is in their assessment 
of highly random systems. These have high Kolmogorov 
complexity but their statistical complexity is low because 
a simple assumption (statistical independence) can already 
provide a good statistical model of the data (Grassberger 
1986; Crutchfield 1994). A similar line of reasoning led to 
the concept of Tononi–Sporns–Edelman complexity which 
has attained attention as a theory of consciousness and brain 
function in general (Tononi et al. 1994).

In Fig. 1 these concepts are illustrated with snapshots 
of the Potts model that will be formalized further below. 
The model shown attains one of four discrete states on 
each node of a regular square lattice and the dynamics 
are controlled by a parameter that corresponds to ther-
modynamic temperature. From left to right, with increas-
ing temperature, the spatial patterns become increasingly 
random and disordered. This reflects Kolmogorov com-
plexity, which increases monotonically with temperature. 
Statistical complexity, however, has its peak around the 
critical temperature of the model ( T = Tc ) where a phase 
transition occurs. Around Tc , the most extensive spatial 
and temporal correlations occur and statistical forecasting 
of the model states is most challenging.

The two complexity concepts discussed can be quanti-
fied by a range of metrics that require some disambigua-
tion of the historical terminology. Kolmogorov complex-
ity can be estimated as the randomness of a signal after 
all correlations have been taken into account (irreducible 
randomness, Prokopenko et al. 2008). This is captured 
by the entropy rate, which is derived from joint entropy 
(or block entropy) estimates of signal subsequences of 
different lengths, or via Lempel–Ziv complexity which 
measures this type of complexity by compressing the 
signal on the basis of repeated patterns (Lempel and Ziv 
1976). The more a signal can be compressed, the lower 
its algorithmic (Kolmogorov) complexity. Entropy rate 
is also known as Kolmogorov–Sinai entropy in the field 
of dynamical systems and chaos theory (Shalizi 2006).

Statistical complexity can be assessed by different 
measures. One of these measures was called statistical 
complexity in Crutchfield and Young (1989), but had 
already appeared as true measure complexity in Grass-
berger (1986). This quantity is based on a graph model 
of the underlying process that needs to be reconstructed 



298 Brain Topography (2024) 37:296–311

1 3

from empirical data. As model reconstruction is not 
trivial, approximations can be studied instead (Grass-
berger 1986; Prokopenko et al. 2008). A lower bound to 
the true measure complexity was named effective meas-
ure entropy in Grassberger (1986) and excess entropy in 
Crutchfield and Feldman (1997). We will use the latter 
term as it is used in the recent literature and expresses 
Grassberger’s initial observation that finite estimates of 
the entropy rate converge slowly towards the asymptotic 
value. Excess entropy can be expressed as the surplus of 
entropy across all finite entropy rate estimates (Grass-
berger 1986; Crutchfield and Feldman 2003). The same 
quantity appeared as predictive information in Bialek 
et al. (2001) and the name refers to the interpretation 
that statistical complexity measures the predictability of a 
time series. This idea is also expressed by its information-
theoretic definition as the shared information between 
the past and the future of a signal, relative to an arbitrary 
observation time point. The concept of statistical com-
plexity has therefore also been named forecasting com-
plexity (Zambella and Grassberger 1988).

Complexity and Microstate Research

In the area of EEG microstate research, entropy rate, Lem-
pel–Ziv complexity (LZC), and Hurst exponents have been 
explored as complexity measures in recent years. Hurst 
exponents were first used for microstate analysis by Van de 
Ville et al. (2010). Although the aim of the authors was to 
address self-similarity and fractality rather than explicitly 
measuring complexity, the relationship between Hurst expo-
nents and complex system properties is present throughout 

the article. We evaluated this approach in relation to Markov 
models of microstate sequences in von Wegner et al. (2016) 
and applied it to cognitive load assessment in Jia et al. 
(2021).

Entropy rate estimation for microstate sequence analysis 
was introduced in von Wegner et al. (2018a), and we evalu-
ated its changes during different types of cognitive effort 
in Jia et al. (2021), and for NREM sleep stages in Wiem-
ers et al. (2023). We interpreted entropy rate in terms of 
sequence predictability in von Wegner et al. (2018a) and 
Jia et al. (2021), and as a complexity measure in Wiemers 
et al. (2023).

Next, Lempel–Ziv complexity analysis of microstate 
sequences was introduced in Tait et al. (2020), where a loss 
of complexity in the EEG of Alzheimer disease patients was 
demonstrated by applying a quantity called Omega complex-
ity to the raw EEG signal (Wackermann 1996) and LZC to 
microstate sequences. A more recent variant of the Lem-
pel–Ziv algorithm was used subsequently in Artoni et al. 
(2022) where concentration-dependent effects of propofol on 
microstate LZC were investigated. An intermediate approach 
can be found in Irisawa et al. (2006), where EEG topogra-
phies were classified with Omega complexity, and the results 
were compared to microstate duration, however, complexity 
analysis was not applied to microstate sequences.

Aims and Outline

The specific aims of this article are (1) to evaluate an explicit 
measure of statistical complexity (excess entropy) on micro-
state data, as the existing microstate complexity studies have 

Fig. 1  Two complexity concepts illustrated with snapshots of a 2D 
Potts lattice model ( Q = 4 , 128 × 128 nodes) at different temperatures 
T. Left: the Potts model at low temperature ( 0.8 × Tc , Tc is the criti-
cal temperature) has low Kolmogorov complexity and low statistical 
complexity. Center: The most extensive spatial and temporal correla-

tions occur close to the phase transition ( T = Tc ), related to interme-
diate Kolmogorov complexity and maximum statistical complexity. 
Right: Above the critical temperature ( 3.0 × Tc ), spatial features are 
apparently random (low order) and result in large Kolmogorov com-
plexity (randomness) and low statistical complexity
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focused on Kolmogorov complexity, (2) to test the theoreti-
cal equivalence between entropy rate and LZC that is valid 
for stationary stochastic processes (Ziv 1978), (3) to com-
pare the aforementioned measures to Hurst exponents, and 
(4) to test the influence of first-order Markovian correlations 
on these complexity measures.

As the ground truth about brain states is unknown 
in empirical data, we first evaluate the selected metrics 
(entropy rate, excess entropy, Lempel–Ziv Complexity, and 
Hurst exponents) on a well-understood numerical model 
from statistical physics, the discrete Potts model (Wu 1982).

The Potts model offers some advantages in this context. 
First, the model produces time series over a discrete state 
space with an arbitrary number of states, similar to EEG 
microstate sequences. The number of states is often denoted 
Q for the Potts model, and K in microstate research, related 
to the initial K-means clustering of EEG data. The second 
advantage of the Potts model is that there is a single control 
parameter (temperature) that controls the appearance of a 
phase transition. The common elements between the Potts 
model and EEG microstates are (a) entropy, which is closely 
linked to temperature in statistical physics, but also has an 
interpretation in terms of time series predictability, and (b) 
phase transitions have been discussed as an important feature 
of resting-state brain activity and are often quantified by 
complexity metrics such the Hurst exponent, for example 
in EEG research (Linkenkaer-Hansen et al. 2001; Kantel-
hardt et al. 2015; von Wegner et al. 2018b), EEG microstate 
research (Van de Ville et al. 2010; Jia et al. 2021), and fMRI 
studies (Bullmore et al. 2009; Tagliazucchi et al. 2013).

In the second part of the results section, we evaluate the 
four metrics on EEG microstate sequences in wakefulness 
and non-REM (NREM) sleep, a dataset we have previously 
analyzed with other microstate analysis tools (Brodbeck 
et al. 2012; Wiemers et al. 2023). We analyze full micro-
state sequences as well as reduced sequences from which 
all duplicate labels have been removed (jump sequences). 
In an attempt to identify which time series features the dif-
ferent complexity metrics actually ’see’, we use first-order 
Markov surrogate data to represent exactly that amount of 
information that is captured by the transition probability 
matrix, an approach that is often used to report microstate 
data (Lehmann et al. 2005).

Methods

Computational Model

In microstate research, K-means clustering is commonly per-
formed for K = 4 or K = 5 clusters. Hence, we implemented 
the Potts model with Q states for Q = 4, 5 as reviewed in Wu 
(1982) on a two-dimensional (2D) discrete lattice geometry. 

Other topologies could be employed but the 2D model is 
well studied and the critical temperatures are known analyti-
cally (Wu 1982; Brown et al. 2022). Two different energy 
(Hamilton) functions have been presented for the Potts 
model, the standard model and the vector (clock) model. 
We chose the standard model for which the type of phase 
transition is known (Wu 1982).

The Potts model uses discrete variables that can be visual-
ized as 2D unit vectors (spins), uniformly distributed around 
the complex unit circle. Their energy difference is defined 
by the phase difference. Formally, the spin values are given 
by S = {exp (2�iq∕Q), q = 0,… ,Q − 1} with phase 2�q∕Q . 
For our purpose, it is sufficient to store the integer values 
q = 0,… ,Q − 1 as the discrete model states. In the standard 
Potts model, a lattice site (k, l) with phase �kl has energy:

using the Kronecker delta function ( � ) and nearest-neigh-
bour coupling, i.e. the neighbours of spin �kl at lattice site 
(k, l) are Nkl = {(k − 1, l), (k + 1, l), (k, l − 1), (k, l + 1)} . We 
exclusively considered ferromagnetic coupling ( J = +1 ) 
which favours neighbouring spins to align, as the lowest 
energies are produced when their phase values are identi-
cal. In a neuronal context, this can be interpreted as neuronal 
ensembles which tend to align the phase of their voltage 
oscillations (Breakspear et al. 2010).

We simulated the Potts model on a square lattice of 
25 × 25 nodes. Model data were generated by Monte–Carlo 
simulation with Metropolis sampling, i.e., a randomly cho-
sen q → q′ transition was accepted with probability 
p = min(1, exp

(
−

ΔE

T

)
) which depended on the energy dif-

ference ΔE before and after the proposed transition. In 
words, transitions that reduced the lattice energy were 
always accepted whereas transitions increasing the total sys-
tem energy were only accepted if they could jump across the 
energy barrier ΔE , which was tested stochastically by com-
parison with a uniformly distributed pseudo-random num-
ber. The critical temperature of the two-dimensional Potts 

model is Tc =
�
log(1 +

√
Q)

�−1

 (Brown et al. 2022).
Individual simulations were run for t = 30000 iterations, 

preceded by a warm-up of 2500 iterations to allow relaxa-
tion from the initial random state. We simulated the system 
across a range of temperatures which will be written relative 
to the critical temperature Tc . We used relative temperatures 
T∕Tc of 0.2, 0.4, 0.6, 0.8, 0.9, 1.0, 1.1, 1.2, 1.4, 1.6, 1.8, 
2.0, 2.2, 2.4, 2.6, 2.8, 3.0. For each temperature, we ran 
the model 50 times and selected a subset of n = 25 random 
lattice nodes for complexity analysis. We chose a length of 
30,000 samples to match the length of our EEG segments 
(2 min of EEG acquired at 250 Hz).

(1)Ekl = −
∑

m,n∈Nkl

J�(�kl,�mn).
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The results for Q = 4 are presented in the main text, those 
for Q = 5 in the supplementary data.

Experimental Data and EEG Pre‑Processing

We analyzed EEG recordings from n = 19 healthy sub-
jects. The EEG dataset is a subset of the dataset analyzed 
in Brodbeck et al. (2012) and Wiemers et al. (2023) and 
only includes those subjects for whom sleep stage N3 data 
was available. Briefly, EEG data from simultaneous EEG-
fMRI recordings were corrected for scanner and cardiob-
allistic artefacts and downsampled to 250 Hz as described in 
Brodbeck et al. (2012). Sleep stages were scored manually, 
according to international standards. The data were band-
pass filtered to 1–30 Hz with a digital Butterworth filter of 
order six.

Microstate Algorithm

Subject-wise microstates were computed with the modified 
K-means algorithm (Pascual-Marqui et al. 1995) imple-
mented in Python 3 (von Wegner and Laufs 2018). Group-
wise microstate maps were computed for each sleep stage 
with a full permutation procedure over the subject-wise 
maps (Koenig et al. 1999), repeated 20 times with random 
initial conditions. Group maps were defined as the result that 
maximized the global explained variance across the sub-
jects. Microstate sequences were obtained by competitive 
back-fitting at each time step and ignoring map polarity. No 
further smoothing methods were applied.

Following two different approaches found in the litera-
ture, we evaluated two types of microstate sequences, (a) full 
sequences as obtained from back-fitting, and (b) sequences 
without duplicate labels, transforming a sequence like 
ACC CAA DBBA into ACADBA, for example. The latter 
approach ignores microstate duration and is rooted in the 
idea that the transition between non-identical brain states, as 
measured by EEG microstates, conveys essential information 
about brain activity (Michel and Koenig 2018). The latter 
approach is also commonly used in Markov chain analysis 
where these sequences are called jump sequences, a name 
that will also be used here (Gillespie 1992). Microstate 
maps and further properties of the EEG dataset used here 
are detailed in Wiemers et al. (2023).

Surrogate Data

Surrogate data for the Potts model and EEG microstate 
sequences were synthesized as first-order Markov processes, 
based on the empirical transition probability matrix of each 
time series as explained in von Wegner et al. (2016) and 
von Wegner and Laufs (2018). The Markov structure of 

microstate sequences was quantified with partial autoinfor-
mation coefficients as described in von Wegner (2018).

Complexity Metrics

Entropy Rate and Excess Entropy

Entropy rate and excess entropy were computed as described 
in von Wegner (2018) and published in our 2017 Python 
microstate package (githu b repos itory) (von Wegner and 
Laufs 2018). Briefly, the frequency distribution of microstate 
sequence blocks (‘microstate words’) X(k)

n
=
(
Xn,… ,Xn+k−1

)
 

for each block length k = 1,… , 6 was estimated from the 
data, and the joint entropy H

(
X

(k)
)
 of each distribution 

P
(
X

(k)
)
 was computed. The parameters entropy rate ( hX ) 

and excess entropy ( E ) were obtained as the slope and y-axis 
intercept of a linear fit of H

(
X

(k)
)
 vs. k, respectively. This 

approach is visualized in Fig. 2 for three different situations 
of the Potts model. This estimate of the entropy rate hX is 
based on the following definition in terms of infinitely long 
observations:

which, for stationary stochastic processes, is equivalent to 
the conditional entropy form:

The second form (3) can be read in terms of time series 
predictability; hX expresses the uncertainty (entropy) in pre-
dicting the next state of the sequence ( Xn+1 ) when the last k 
states ( X(k)

n
 ) are known.

In a similar approach, excess entropy can be expressed as 
the mutual information between the past Xpast =

(
… ,Xn−1,Xn

)
 

and the future Xfuture =
(
Xn+1,Xn+2,…

)
 of the process:

The concept can be made more intuitive by re-writing 
mutual information between the random variables X, Y as 
I(X;Y) = H(X) − H(X|Y) , i.e., the reduction in uncertainty 
about X by knowing Y. In this sense, excess entropy encodes 
to what extent predictions about the future improve, or 
entropy decreases, by including knowledge about the past 
of the process:

(2)hX = lim
n→∞

1

n
H(X(k)

n
),

(3)h�
X
= lim

n→∞
H(Xn+1|X(k)

n
).

(4)E = I(Xfuture;Xpast).

(5)E = H(Xfuture) − H(Xfuture|Xpast).

http://github.com/Frederic-vW/eeg_microstates
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Lempel–Ziv Complexity (LZC)

The 1976 implementation of the Lempel–Ziv algorithm 
(LZ-76, Lempel and Ziv 1976) was written and compiled 
in Cython 0.29.3 to produce faster Python 3.6.9 code. Our 
implementation is identical to the algorithm used in Tait 
et al. (2020) which is publicly available.

Hurst Exponents

Hurst exponents were calculated by detrended fluctuation 
analysis (DFA) as described in Van de Ville et al. (2010) 
and von Wegner et al. (2016), using 50 logarithmically 
spaced time scales over the range of 50–2500 samples (200 
ms—10 s for EEG data). Hurst exponents were determined 
as the slope parameter of the linear fit to the detrended fluc-
tuation function. DFA was applied to random walks that 
were constructed by partitioning the discrete variables (Potts 
model states, EEG microstate classes) into two subsets, and 
substituting these categorical discrete variables with the 
values ±1 , respectively (Van de Ville et al. 2010). There are 
three different (2, 2)-partitions for datasets with four states 
(Potts model for Q = 4 , EEG microstates) and ten (2, 3)-par-
titions for five states (Potts model for Q = 5 ). For each time 
series, Hurst exponents were computed for each partition 
and the average across all partitions was used for statistical 
analysis.

Convergence

To analyze numerical differences between the entropy rate 
estimator hX and Lempel–Ziv complexity values for dif-
ferent sequence lengths, we quantified their convergence 
rate towards theoretically expected entropy rates using 

Markovian test sequences. Details of this procedure are 
explained in the supplementary material.

Code Availability

Sample Potts model data and analysis scripts to reproduce a 
simplified version of Fig. 3 is available online (githu b repos 
itory).

Results

Potts Model

Entropy Rate and Excess Entropy

Results for the Potts model ( Q = 4 ) are shown in Fig. 3. 
The top panel shows entropy rate (black) and excess entropy 
(blue) plotted against relative temperature ( T∕Tc ). The criti-
cal temperature is defined by T∕Tc = 1 on the x-axis. With 
increasing temperature the entropy rate rises sigmoidally 
and the steepest slope occurs at the critical point. At low 
temperatures ( T∕Tc = 0.2 ), the time courses at most lattice 
sites are constant, or have very few state changes. As there is 
no randomness in the data, there is no prediction uncertainty 
and the entropy rate is close to zero. The maximum entropy 
rate for a Q-state process is log2(Q) bits/sample, i.e., 2 bits/
sample for Q = 4 . The Potts model tends towards the maxi-
mum entropy rate value, indicating that high temperature 
dynamics are largely random. Excess entropy peaks at the 
critical point and decays to lower, but non-zero values, away 
from the critical temperature ( T < Tc and T > Tc ). Although 
asymmetric around the critical temperature, the shape of 

Fig. 2  Entropy rate and excess 
entropy estimation. On the left 
(A–C) time series at random 
lattice nodes of the Potts model 
( Q = 4 ) are illustrated as raster 
images, grey values correspond 
to the four Potts model states. 
Time runs from left to right, 
starting at the top row. Time 
series are shown at a sub-criti-
cal temperature (A 0.8 Tc ), close 
to criticality (B T ∼ Tc ), and 
at a high temperatures (C 3.0 
Tc ). D Kolmogorov complexity 
and statistical complexity of the 
time series shown in A–C as 
measured by the slope (entropy 
rate, hX ) and y-axis intercept 
(excess entropy, E ) of the linear 
fit to the joint entropies H

(
X

(k)
)
 , 

respectively

http://github.com/Frederic-vW/potts-complexity
http://github.com/Frederic-vW/potts-complexity
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the excess entropy curve reflects the concept of statistical 
complexity whereas entropy rate reflects the Kolmogorov 
complexity concept. Above the critical temperature, the 
variability of both metrics is so small that the error bars 
(standard deviation) are not visible. For both metrics, the 
Markov surrogate datasets (grey triangles) show only minor 
deviations from the actual model data results. Error bars for 
surrogate data are equally small but are omitted from the 
graph to improve visibility. Analogous results were obtained 
for the five-state Potts model ( Q = 5 ) and are presented in 
the supplementary data, Fig. S1.

Lempel–Ziv Complexity (LZC)

LZC analysis of Potts model data is shown in the center 
panel of Fig.  3. LZC values, when scaled to bits/sam-
ple, are numerically very close to entropy rate estimates. 
Again, the steepest increase is found at the critical tem-
perature and first-order Markov surrogates (grey triangles) 
are almost indistinguishable from Potts model data. Minor 

deviations are observed around the critical temperature 
( T∕Tc = 1.0, 1.1, 1.2 ) where surrogate data LZC is slightly 
larger than model data complexity. Error bars (standard 
deviation) are hardly visible due to extremely low LZC vari-
ability. Variability across the 1250 surrogate time series was 
also very low, and error bars are omitted. Results for Q = 5 
are shown in Fig. S1.

Hurst Exponents

Hurst exponents computed by DFA are shown in Fig. 3 (bot-
tom panel). For the Potts models, Hurst exponents peak at 
the critical temperature and decay towards H = 0.5 at high 
temperatures, the theoretical value for random processes. 
Hurst exponent variability in the low temperature range was 
large and only the upper half of the error bars is shown. 
At low temperatures, many lattice sites experienced very 
few state changes which appear as large jumps in the ran-
dom walk embedding. These jumps appear as significant 
fluctuations at long time scales, leading to steep fluctuation 

Fig. 3  Complexity metrics 
for the Potts model ( Q = 4 , 
black or blue lines/circles) and 
first-order Markov surrogates 
(grey triangles) plotted against 
relative temperature T∕Tc (criti-
cal temperature Tc ). Error bars 
in all panels represent standard 
deviations. Error bars are omit-
ted for surrogate statistics to 
simplify the visual presentation. 
Top: Entropy rate ( hX , black) 
and excess entropy ( E , blue) 
from joint entropy estimates. 
Center: Lempel–Ziv complexity 
(LZC, black) computed with the 
LZ-76 algorithm. Bottom: Hurst 
exponents ( H

DFA
 ) measured by 

detrended fluctuation analysis 
(DFA). Due to large variability 
at low temperatures, only the 
upper half of error bars are 
shown. The legend applies to all 
three panels
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functions and large Hurst exponents. Results for Q = 5 are 
shown in Fig. S1.

EEG Microstate Sequences in Wake and Sleep

Entropy Rate and Excess Entropy

Figure 4 summarizes the results of entropy rate (A) and 
excess entropy (B) statistics for EEG microstate sequences 
in wake and sleep. While wakefulness and N1 sleep have a 
similar distribution of entropy rate (A) and excess entropy 
(B) values, entropy rate values decrease with deepening 
sleep (N2, N3) and excess entropy increases. Results for 
EEG data (dark grey) and first-order Markov surrogates 
(light grey) are similar. Two-way ANOVA analysis did not 
reveal any significant differences between EEG and surro-
gate data for entropy rate (p = 0.828) and excess entropy 
(p = 0.696). One-way ANOVA and post-hoc analysis over 
microstate sequence statistics revealed significant differ-
ences ( pFWE < 0.05 ) between all vigilance states except W 
vs. N1. This significance pattern was found for both metrics, 
entropy rate and excess entropy.

Lempel–Ziv Complexity (LZC)

Lempel–Ziv complexity analysis of EEG microstate 
sequences in wake and sleep is shown in Fig. 4C. The 
numerical LZC values were re-scaled to bits/sample and are 
numerically very close to the entropy rate estimates in A. 
LZC values for Markov surrogates (light grey) were statisti-
cally not different from original data LZC values (two-way 

ANOVA, p = 0.881). When microstate sequence LZC val-
ues were analyzed separately, post-hoc comparisons showed 
significant differences ( pFWE < 0.05 ) between all vigilance 
states except for the W-N1 comparison.

Hurst Exponents

Hurst exponent analysis of EEG microstate sequences in 
wake and sleep is illustrated in Fig. 4D. The difference 
between Hurst exponents from microstate sequences and 
surrogate sequences was significant (two-way ANOVA, 
p = 0.001 ). One-way ANOVA of Hurst exponents for 
microstate sequences was significant ( p < 0.05 ), and pair-
wise post-hoc analysis revealed significant differences 
between all vigilance states except for the W-N2 contrast. 
The mean Hurst exponent in wakefulness was slightly larger 
than in N1 (difference: −0.034), while N2 and N3 showed 
larger Hurst exponents than wakefulness although the dif-
ferences between the means were small (N2-W: 0.014, 
N3-W: 0.062).

(Non‑)Markov Structure of Microstate Sequences

To explain why complexity values for EEG data and first-
order Markov surrogates were almost identical in Fig. 4, we 
analyzed the (non-)Markovian structure of EEG microstate 
sequences quantitatively. Figure 5 shows the partial autoin-
formation (PAI) coefficients of EEG microstate sequences 
in wakefulness and NREM sleep. As per construction of 
the surrogate data, PAI coefficients at time lags 0 and 1 
were identical between data and surrogates. Higher-order 

Fig. 4  Complexity metrics 
for EEG microstate sequences 
( K = 4 ) in wakefulness and 
NREM sleep. Results for EEG 
microstate sequences are shown 
in dark grey (label ‘EEG’), 
Markov process surrogates 
in light grey (label ‘surr’). A 
Entropy rate ( hX ), B excess 
entropy ( E ), C Lempel–Ziv 
complexity (LZC), D Hurst 
exponents from DFA ( H

DFA
 ). 

Differences between micro-
state sequence results were 
tested with one-way ANOVA 
(significance level � = 0.05 ), 
and post-hoc Tukey tests. 
Significant pairwise differences 
( p

FWE
< 0.05 ) are indicated by 

brackets
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coefficients (lags ≥ 2) had very small magnitude and are 
hardly visible in the main panels. Insets in Fig. 5 are re-
scaled to make these non-Markovian components visible. 
Although differences between microstate and surrogate 
sequences exist in all states (W-N3), the relative contribution 
of higher-order coefficients to the overall sequence structure 
is very small.

Microstate Jump Sequences

Microstate jump sequences, i.e. sequences from which all 
duplicate labels have been removed, are shown in Fig. 6. 
Compared to full microstate sequences, jump sequences 
displayed more variable entropy rates and excess entropies 
in wakefulness (Fig. 6A, B). The entropy rate distribution 

Fig. 5  Partial autoinformation 
coefficients of EEG microstate 
sequences (‘EEG’, dark grey) 
and corresponding Markov 
surrogates (‘surr’, light grey) in 
wakefulness (W) and NREM 
sleep stages N1–N3. First-order 
Markov process properties are 
encoded in the coefficients for 
time lags 0 and 1. Insets focus 
on the higher-order coefficients 
(time lag 3–5 samples)

Fig. 6  Complexity measures for 
EEG microstate jump sequences 
( K = 4 ) in wakefulness and 
NREM sleep. Results for EEG 
microstate jump sequences 
are shown in dark grey (label 
‘EEG’), Markov process surro-
gates in light grey (label ‘surr’). 
A Entropy rate ( hX ), B excess 
entropy ( E ), C Lempel–Ziv 
complexity (LZC), D Hurst 
exponents from DFA ( H

DFA
 ). 

Differences between micro-
state sequence results were 
tested with one-way ANOVA 
(significance level � = 0.05 ), 
and post-hoc Tukey tests. 
Significant pairwise differences 
( p

FWE
< 0.05 ) are indicated by 

brackets
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was skewed towards lower values and excess entropy 
towards higher values. NREM sleep stage data had lower 
variability and we found statistically significant differ-
ences between W-N1 and W-N2. In contrast to the full 
sequences, mean entropy rates were slightly higher in 
sleep but the absolute differences were very small (N1-
W: 0.0493 bits/sample, N2-W: 0.0499 bits/sample). Mean 
excess entropy values in light sleep were slightly lower 
than in wakefulness (W-N1: 0.0653 bits, W-N2: 0.0613 
bits), but higher in N3 compared to light sleep (N3–N1: 
0.0601 bits, N3–N2: 0.0561 bits). These differences should 
be interpreted with caution due to the highly skewed distri-
butions in wakefulness, and due to biases of the estimation 
algorithms for short sequences, as will be explained below.

LZC values for microstate jump sequences also showed 
a high variability in wakefulness with a distribution 
skewed towards lower values. Significant differences were 
found between wakefulness and all three NREM sleep 
stages, with slightly larger mean values in sleep (mean 
differences N1-W: 0.053 bits/sample, N2-W: 0.0623 bits/
sample, N3-W: 0.0568 bits/sample). In contrast to full 
microstate sequences, the numerical values of entropy 
rates and LZC values were different, with systematically 
larger LZC values.

Convergence of Entropy Rate and LZC

To investigate the difference between entropy rates and 
LZC values further, we analyzed the convergence rate of 
joint entropy ( hX ) and LZC entropy rate estimators for 
Markov processes with a known entropy rate. To this end, 
we computed the cumulative transition probability matrix 
from all wakefulness microstate sequences and, based on 
this matrix, synthesized 50 first-order Markov surrogate 
sequences with length n = 105 samples. We computed hX and 
LZC for sequences of different lengths, and Fig. S2 shows 
both metrics as a function of sequence length (mean and 
standard deviation). LZC converged towards the theoretical 
entropy rate ( htheo = 1.287 bits/sample) from above, while 
hX approached htheo from below. The difference between 
hX and LZC for jump sequences in wakefulness was 0.073 
bits/sample ( hX : 1.501 bits/sample, LZC: 1.574 bits/sam-
ple), and the lengths of jump sequences was in the range 
of 6923–10,287 samples. The observed difference between 
these two complexity metrics for microstate jump sequences 
( hX in Fig. 6A and LZC in Fig. 6C) matched the difference 
found for Markov processes of the same length and with 
known entropy rate (Fig. S2, grey area). The mean of hX 
for full microstate sequences in wakefulness was 1.245 bits/
sample (Fig. 4A), and the mean LZC was 1.278 bits/sample 
(Fig. 4C). The convergence plot (Fig. S2) at n = 30,000 
(lengths of full sequences) shows a difference of LZC-hX

=0.03 bits/sample, again showing close agreement with the 
difference observed for EEG microstate sequences.

The effects of deleting repeated microstate labels on Hurst 
exponents is quantified in Fig. 6D. Hurst exponents were 
estimated for microstate jump sequences and their first-order 
Markov surrogates. Both microstate sequences and Markov 
surrogates had Hurst exponents distributed around H = 0.5 , 
the expected value for processes without long-range correla-
tions. Pairwise differences were not statistically significant. 
Thus, removal of duplicate symbols erased long-range cor-
relations observed in full microstate sequences (Fig. 4D).

Discussion

The main results of this report can be summarized as 
follows:

• Kolmogorov complexity and statistical complexity are 
two fundamentally different concepts of complexity 
and the existing EEG microstate studies have focused 
on the former concept (randomness).

• We evaluated excess entropy for microstate sequence 
analysis and found that it (i) correctly identifies the criti-
cal point in the Potts model and (ii) increases with deep-
ening NREM sleep stage in EEG microstate sequences.

• Re-scaled Lempel–Ziv complexity and entropy rate 
are equivalent metrics of microstate complexity if the 
LZ-76 implementation is used and if sequences have 
sufficient length. Both metrics represent the Kolmogo-
rov complexity concept.

• Entropy-related measures including LZC are determined 
by first-order dependencies of EEG microstate sequences, 
whereas Hurst exponents integrate information from 
longer time scales. Limitations of Hurst exponent analy-
sis were observed for the low-temperature Potts model.

• Microstate jump sequences display more randomness 
than full sequences and do not preserve long-range cor-
relations.

The Potts Model and EEG Microstate Sequences

We decided to evaluate the selected complexity metrics on 
Potts model data before studying EEG data. The Potts model 
is a widely studied system in statistical physics with a dis-
crete state space and a well-defined phase transition (Wu 
1982). The rationale for this approach was that it allowed 
us to gauge the behaviour of complexity metrics at defined 
system states whereas the ground truth complexity of a brain 
state measured in an experiment is unknown. We used the 
Potts model variants with Q = 4 and Q = 5 discrete states, 
respectively, for two reasons. First, most EEG microstate 
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analyses use either four or five microstate classes (Michel 
and Koenig 2018). The second reason was that the 2D Potts 
model for Q = 4 undergoes a second-order phase transition 
and a first-order phase transition for Q = 5 . Although there 
is evidence that resting-state brain activity shares phase-
transition like features with physical models (Chialvo 2010; 
Tagliazucchi et al. 2012), the type of phase transition occur-
ring in the brain is unknown in general. Overall, all tested 
metrics showed the same characteristics for Q = 4, 5 , except 
for the anticipated differences in absolute entropy values 
which depend on Q. We therefore conclude that the tested 
metrics do not depend on the type of phase transition.

Entropy Rate and Excess Entropy

We have found entropy rate and excess entropy to reflect 
the concepts of Kolmogorov complexity and statistical 
complexity, respectively. Their difference can be expressed 
in terms of forecasting (Grassberger 1986). Kolmogorov 
complexity describes how hard it is to predict a signal 
correctly, and statistical complexity measures how hard it 
is to find the best predictor. The difference between these 
two approaches becomes evident when applied to purely 
random patterns. They are impossible to predict precisely 
(high entropy rate and LZC), but the best predictor can be 
found easily. A microstate sequence without any temporal 
order, for example, is hard to predict but the best estimator 
is a simple bet on the relative probabilities of occurrence 
of each microstate, e.g. 1/4 each if uniformly distributed. 
Statistically complex patterns, however, can be easier to 
predict, but the best predictor can be impossible to find as 
it might need to capture the full non-linear dynamics of 
the underlying system.

One of the aims of this article was to explore excess 
entropy as a potentially useful addition to EEG microstate 
analysis. This raises the question whether excess entropy can 
contribute anything to the information already gained from 
other metrics. The answer is that excess entropy reflects the 
concept of statistical complexity which is not captured by 
either entropy rate or Lempel–Ziv complexity, and that its 
value cannot be predicted from these other metrics. The lat-
ter point is illustrated by the Potts model results which show 
that excess entropy and entropy rate can covary either posi-
tively or negatively. For sub-critical temperatures ( T∕Tc < 1 
in Fig. 3), both metrics increase with temperature. At low 
temperatures, future states are not difficult to predict as there 
are few state switches and conditioning on the past hardly 
improves the prediction. Approaching the critical tempera-
ture, future states become increasingly difficult to predict 
(higher entropy rate) but at the same time knowledge of the 
past significantly improves the prediction (higher excess 
entropy). Improved predictability is explained by expand-
ing autocorrelations near the phase transition which can be 

exploited to make predictions less uncertain. In information-
theoretic terms, we find more shared information between 
the past and the future states of the sequence near the critical 
point. Above the critical temperature, randomness (entropy 
rate) increases further but dependencies on past states fade 
as sequences approach the uncorrelated noise level.

Another metric called sample entropy, a measure related 
to entropy rate, was evaluated in Murphy et  al. (2020) 
where an almost random pattern of microstates in psycho-
sis patients was observed. It must be noted, however, that 
(Murphy et al. 2020) analyzed microstate jump sequences. 
Our analyses show that these sequences, due to the removal 
of duplicate labels and microstate duration statistics, display 
higher levels of randomness and cannot capture long-range 
dependent sequence features, as further discussed below.

Lempel–Ziv Complexity

A collection of data compression algorithms developed in 
the 1970s are associated with the names of Lempel and Ziv, 
notably the LZ-76, LZ-77, and LZ-78 algorithms (Lem-
pel and Ziv 1976, 1977; Ziv and Lempel 1978). Despite 
their similar names, only the LZ-76 algorithm has a close 
relationship to theoretical quantities like the entropy rate, 
whereas later versions were optimized for practical data 
compression tasks.

The main results were derived in Ziv (1978) where it 
was shown that LZC (LZ-76 algorithm) provided an exact 
estimate of entropy rate if the underlying stochastic process 
is stationary. Stationarity cannot be tacitly assumed for EEG 
signals in general (von Wegner et al. 2017), but the theo-
retical link provided a starting point for the analyses in this 
article. A similar hypothesis was put to test for neural spike 
train data in Amigó et al. (2004) where the earlier LZ-76 
algorithm proved to be numerically equivalent to the entropy 
rate of binarized spike trains, whereas LZ-78 contained a 
marked bias relative to the true entropy rate.

In EEG microstate research, Lempel–Ziv complexity 
(LZC) was first used by Tait et al. (2020), and subsequently 
by Artoni et al. (2022). The former article uses the authors’ 
LZ-76 implementation (plus- micro state  toolb ox) whereas 
the latter used the dictionary-based LZMA2 algorithm from 
the popular 7zip software (7zip). In analogy to (Amigó et al. 
2004), we found that normalized LZC output from the LZ-76 
algorithm provided excellent numerical agreement with the 
entropy rates computed from joint probability distributions 
as evident from comparison between the top and center pan-
els of Fig. 3.

On the other hand, we also observed that this numerical 
agreement relies on sample size and discrepancies are more 
pronounced for shorter sequences as explained by the con-
vergence behaviour of the two metrics.

http://github.com/plus-microstate/toolbox
http://7-zip.org/7z.html
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Entropy rate and LZC have so far been discussed sepa-
rately in the microstate literature (von Wegner et al. 2018a; 
Jia et al. 2021; Tait et al. 2020; Artoni et al. 2022; Wiemers 
et al. 2023). The equivalence of both metrics means that 
LZC values as those given in Tait et al. (2020) and entropy 
values we published in different contexts (von Wegner and 
Laufs 2018; Jia et al. 2021; Wiemers et al. 2023) can be re-
scaled and compared directly. Unfortunately, this is not pos-
sible for LZC values computed by more recent versions of 
the LZ algorithm, for example the complexity values given 
in Artoni et al. (2022). Complexity metrics computed from 
the LZ-77 and LZ-78 algorithms are likely to yield simi-
larly shaped curves to entropy rate and LZ-76 plots in Fig. 3, 
but the LZ-76 implementation has the advantage of being a 
direct numerical estimator of the theoretically meaningful 
entropy rate.

Hurst Exponents

Fractal dimension and Hurst exponent analysis are based 
on a different theoretical framework than entropy-based 
methods, and they can be found as complexity measures in 
functional MRI studies (Bullmore et al. 2009; Tagliazucchi 
et al. 2013; Dong et al. 2018), EEG studies (Linkenkaer-
Hansen et al. 2001; Raghavendra et al. 2009; Sabeti et al. 
2009; Holloway et al. 2014), but also outside brain research 
(Raubitzek and Neubauer 2021).

Applied to Potts model data, Hurst exponents represent 
statistical complexity in a similar way to excess entropy. In 
contrast to the entropy-related metrics including LZC, Hurst 
exponents for Markov surrogates had markedly lower Hurst 
exponents. This could be observed for Potts model data 
(Fig. 3) as well as for EEG microstate sequences (Fig. 4). 
This demonstrates that the inclusion of larger time scales up 
to 10 s in the DFA parameters identified time series prop-
erties that were not visible to the entropy-based methods. 
This observation may appear obvious because entropy rate/
excess entropy calculations were based on a finite history 
length of only k = 6 samples. Lempel–Ziv analysis, however, 
does not contain an explicit time window and progressively 
scans the whole time series and keeps track of previously 
seen patterns. Yet, LZC values were identical to entropy 
rate values which shows that there was no additional infor-
mation on larger time scales through the Lempel–Ziv lens. 
In contrast to Lempel–Ziv analysis, DFA does not search 
for actual repetitions of exact patterns but accepts anything 
that contributes variance at a given time scale. Although 
DFA quantifies self-similarity in signals that exhibit this 
property, it is not a generic detector of self-similarity in the 
strict sense. From the Hurst exponents observed in Figs. 3 
and 4 that Potts model data and EEG microstate sequences 
in deeper sleep stages display slow fluctuations that are not 
explained by exact repetitions of signal segments.

Potts model data analysis also demonstrated an important 
pitfall of DFA and Hurst exponent analysis. The large vari-
ability of Hurst exponents observed for the cold Potts model 
in Fig. 3 is caused by time series with a very small number 
of state changes. These cause isolated step-like jumps when 
the signal is transformed into a random walk according to 
the technique proposed for microstate sequences (Van de 
Ville et al. 2010). Jumps in turn lead to large fluctuations at 
long time time scales and empirically result in large Hurst 
exponents H > 1.5 although the signal is constant most 
of the time. When zero state changes occur, however, the 
expected value of H = 0.5 was obtained. This leads to the 
undesired result that near-constant time series that differ 
only in a small fraction of values result in massively different 
Hurst exponents. Again, this is related to the DFA algorithm 
being a variance analyzer. Non-stationarities such as steps 
in the signal add variance over a range of time scales that 
could be misinterpreted as a mono-fractal signature from the 
value of the Hurst exponent alone. It should also be noted 
that we have not encountered near-constant time courses 
over hundreds or thousands of samples for EEG microstate 
sequences, and we believe that the problem discussed for the 
cold Potts model is not an issue for EEG microstate analysis 
if the sequence length is at least a few hundred samples.

We conclude that the Hurst exponent of a microstate 
sequence can (i) be interpreted as a marker of statistical rather 
than algorithmic complexity, and (ii) provides a perspective 
on short and long time scales whereas the entropy-related 
measures we evaluated reflect short-range dependencies.

Microstate Sequence Complexity in Wake and Sleep

In this study, we have applied excess entropy, LZC, and DFA 
as novel methods to characterize the complexity of micro-
state sequences from wakefulness and NREM sleep. Entropy 
rate analysis was presented in Wiemers et al. (2023) but is 
shown again here with additional Markov surrogate com-
parisons. Our main findings are that deepening sleep stages 
were accompanied by decreasing entropy rate and LZC, 
increased excess entropy, and increasing Hurst exponents.

Microstate jump sequences did not show long-range cor-
relations and overall less pronounced differences between 
sleep stages.

The reduced entropy rate and LZC values are probably 
related to the progressive slowing of EEG rhythms in sleep. 
Longer microstate duration (Wiemers et al. 2023) improves 
the predictability of microstate sequences in sleep stages N2 
and N3 and reduce their apparent randomness. This result 
is similar to the findings of Tait et al. who found EEG slow-
ing and reduced LZC values in Alzheimer disease patients 
although they corrected their microstate analysis for back-
ground EEG slowing effects (Tait et al. 2020; Dauwels et al. 
2011).
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From the discussion of the Potts model it is clear that the 
observation of entropy rate changes cannot predict changes 
in excess entropy. We found increased excess entropy values 
in N2 and N3, which corresponds to the Potts model situa-
tion above the critical temperature. Within this analogy, the 
transition to deeper sleep stages corresponds to a shift from 
higher temperatures towards the critical point. This is intui-
tively correct as deep sleep is accompanied by EEG signals 
with longer, delta rhythm-related autocorrelations which 
translate into increased shared information between past and 
future microstates. This explanation is further substantiated 
by our recent finding that microstate oscillations in the delta 
frequency range occur in N3 (Wiemers et al. 2023), and by 
the larger Hurst exponents in N2 and N3 (Fig. 4D). The 
straightforward conclusion from this analogy would be to 
classify deeper sleep stages as being closer to a critical sys-
tem state. This, however, at least partially contradicts earlier 
studies using EEG and other imaging modalities.

Weiss et al. found larger Hurst exponents in deep sleep 
stages using the DFA-related R/S statistic on raw EEG data 
from humans (Weiss et al. 2009). In rats, local field potential 
measurements revealed a similar trend, i.e. a lower complex-
ity (LZC) in NREM vs. wakefulness (Abásolo et al. 2014). 
Another measure called Omega complexity, based on the 
eigenvalue spectrum of the spatial principal component 
analysis of an EEG data set, is known to decrease in deeper 
NREM sleep stages as well (Wackermann 1996). Not all 
analyses point in the same direction however. Kantelhardt 
et al. performed an extensive analysis of Hurst exponents 
across sleep stages and frequency bands and found differ-
ent trends for different frequency bands. In the alpha band, 
the main contributor to microstate topographies (Milz et al. 
2017), the authors found lower Hurst exponents in deeper 
sleep, contradicting our results for microstate sequences. 
The opposite trend, however, was reported for other fre-
quency bands (Kantelhardt et al. 2015). Different outcomes 
might also be due to the pre-processing of the input signals. 
Frequency band analyses often use the power (envelope) of 
narrow frequency band oscillations and not the oscillatory 
signal itself (Linkenkaer-Hansen et al. 2001; Kantelhardt 
et al. 2015), whereas microstate analysis starts with broad-
band EEG oscillations and does not use the envelope signal. 
When a different recording modality is used, the results can 
change once again. In the past we have observed smaller 
Hurst exponents during sleep in regional BOLD (blood oxy-
gen level dependent) signals from functional MRI data, and 
interpreted those as a departure from criticality, concluding 
that wakefulness was the state closest to criticality (Taglia-
zucchi et al. 2013). The methodological differences and the 
nature of the physiological signal used might explain why 
electrophysiological and imaging data are unable to give a 
unique answer to the question how close the brain is to a 
critical state in a defined condition.

Another difference between the Potts model and EEG 
data is that the Potts model is controlled by a single param-
eter (temperature) that, when varied continuously, controls 
the extent of autocorrelations in the data. Sleep stage transi-
tions, on the other hand, involve a switching between dif-
ferent system states in which different frequency generating 
circuits are active, namely alpha generators in wakefulness 
and delta/slow wave generators in N3. Furthermore, sleep 
contains isolated events never observed in wakefulness (ver-
tex sharp waves, sleep spindles, K-complexes) (Adamanti-
dis et al. 2019). From electrophysiological studies we know 
that different neuron populations partake in these patterns 
and that their voltage responses are fundamentally different, 
e.g., spiking vs. bursting (Llinás and Steriade 2006). Similar 
heterogeneity is not modelled by the Potts system and dem-
onstrates limitations of statistical physics models of brain 
activity. A shift from alpha to delta frequency band activity, 
with corresponding repercussions on microstate patterns 
as observed in Wiemers et al. (2023) alone can probably 
explain a reduced entropy rate, increased excess entropy and 
larger Hurst exponents due to larger variance contributions 
at long time scales. The interpretations with regard to Kol-
mogorov and statistical complexity are unequivocal, yet, in 
the absence of an experimentally controllable parameter we 
would hesitate to strictly interpret this as the same system 
moving closer to a phase transition. This might be possible 
in modeling studies though, which indicate that phase transi-
tion-like mechanisms might indeed play a role in wake-sleep 
and anesthesia-induced transitions (Steyn-Ross et al. 2004, 
2005). Further discussions about the complexity of brain 
activity during sleep can be found in Olbrich et al. (2011) 
and references therein.

Another pre-processing strategy for microstate sequences 
is the deletion of duplicate symbols, a process that only 
retains the jumps between non-identical states. This 
approach is rooted in Markov chain theory where the result 
is called the jump process or jump chain (Gillespie 1992). 
In the microstate context, this has been termed the transi-
tioning sequence (Tait et al. 2020), compressed sequence 
(Murphy et al. 2020), and no-permanence sequence (Artoni 
et al. 2022, 2023). We prefer the well-established term jump 
process to emphasize the link to Markov chain theory and 
the large body of literature that can be found under that 
name. The results for jump processes derived from EEG 
microstate sequence in wakefulness and sleep were mark-
edly different from the full sequences. Entropy rate, excess 
entropy and LZC had a large variability in wakefulness and 
the skewed distributions observed in Fig. 6 are likely respon-
sible for the significant differences between wakefulness and 
sleep stages. The absolute differences were minute compared 
to full microstate sequences and we would interpret them 
with caution, given the skewed wakefulness distributions. 
Another reason to treat these results with reserve is that 
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jump sequences become shorter with deepening sleep stage 
(W: 6923–10,286, N1: 6129-,10,264, N2: 4903–7474, N3: 
2248–6513 samples). This effect is due to longer microstate 
duration in sleep (Wiemers et al. 2023). As shown in Fig. S2, 
entropy rate estimators have a significant bias for shorter 
sequences and comparisons between sleep stages are likely 
to yield false positive results due to estimator biases. This 
was not a problem for full sequences which all had 30,000 
samples. Nevertheless, the overall differences between full 
and jump sequences included higher entropy rates/LZC val-
ues and lower excess entropies for jump sequences. This 
effect can be readily explained. Removal of duplicate micro-
state labels from a sequence increases its apparent random-
ness. The transition probability matrices of full sequences 
have their largest entries along the diagonal, i.e., A-to-A 
transitions are far more likely than any other A-to-X transi-
tion, and similarly for other states. Concrete values were 
given in von Wegner et al. (2017), for instance. Thus, any 
occurrence of label A in a full sequence increases the pre-
dictability over the next few time steps, and this reduces the 
entropy rate/LZC values compared to the jump sequences in 
which repetitions never occur.

Another feature of jump sequences is that the informa-
tion about microstate lifetimes is lost. Yet, non-exponential 
lifetime distributions are a well-understood mechanism 
underlying long-range correlations (Clegg and Dodson 
2005). It is therefore not surprising to find Hurst expo-
nents indistinguishable from 0.5 for all jump sequences and 
their Markov surrogates (Fig. 6D). Analogous results were 
already reported in the original study investigating LRD in 
random-walk embedded microstate sequences (Van de Ville 
et al. 2010). These results demonstrate that researchers inter-
ested in long-range phenomena must focus on full microstate 
sequences as these features are removed when passing to the 
jump sequence representation.

Practical Considerations and Limitations

The results presented above can be rephrased as a list of 
practical suggestions and considerations for complexity 
analyses of EEG microstate sequences. 

(i) The LZ-76 algorithm is fast and computationally less 
expensive than joint entropy estimations and is there-
fore an appealing practical alternative to computing 
entropy rates. The approach has potential applica-
tions for statistical comparisons of EEG microstate 
sequences with non-trivial surrogate data. By trivial, 
we refer to surrogates devoid of temporal correlations, 
as those obtained by simple shuffling of microstate 
sequences. The null hypothesis of zero autocorrelations 
is tested with Lehmann’s syntax analysis (Lehmann 

et al. 2005). A minimum layer of complexity is added 
by modeling first-order autocorrelations between states 
at time t and t + 1 . These are captured by first-order 
Markov surrogates as used in (von Wegner et al. 2016, 
2017). The theoretically plausible and now empiri-
cally confirmed (near-)equivalence between entropy 
rates and LZC values for microstate sequences allows 
the prediction of LZ complexity under a Markov null 
hypothesis. Practically, the analytical entropy rate 
under a Markov null hypothesis can be calculated from 
the empirical microstate transition matrix, thereby 
avoiding the cost of synthesizing large numbers of sur-
rogate sequences.

(ii) A practical argument in favor of the LZ-76 algorithm 
is that there are no free parameters that need to be set 
by the researcher and that will affect the numerical 
complexity values returned by the algorithm. The free 
parameters of the LZMA2 algorithm (compression 
level, dictionary size, number of fast bytes, filter and 
match-finder options, Artoni et al. 2022) are useful to 
achieve a maximum compression level for different data 
types but they have no evident theoretical meaning, and 
the quantitative relationship with the actual entropy 
rate needs to be established. Nevertheless, LZMA is 
a practical method of measuring microstate sequence 
compressibility.

(iii) The joint entropy approach to entropy rate estimation 
has the advantages that (a) it returns excess entropy 
’for free’ from the same linear fit that is used to obtain 
entropy rate, and (b) the joint entropy values for micro-
state words of a given length might be of interest for 
certain research questions. For instance, a recent arti-
cle on microstate sequence syntax analysis is based on 
word entropies (Artoni et al. 2023).

(iv) All approaches are limited by finite sample size effects. 
In particular, the equivalence between entropy rate and 
LZC becomes numerically imprecise for short micro-
state sequences.

(v) Hurst exponent analysis can become unreliable when 
very few state changes occur. We have encountered this 
case for model data only.

Conclusion

The concepts of Kolmogorov and statistical complex-
ity are useful to structure future discussions about EEG 
microstate sequence complexity. The results of this study, 
namely the evaluation of excess entropy, the demonstrated 
equivalence between entropy rate and LZC, and the sys-
tematic comparison with Hurst exponent analysis are 
meant to add to the theoretical and practical framework 
of this research area.
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