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Abstract
Borderline personality disorder (BPD) is a debilitating psychiatric condition characterized by emotional dysregulation, 
unstable sense of self, and impulsive, potentially self-harming behavior. In order to provide new neurophysiological insights 
on BPD, we complemented resting-state EEG frequency spectrum analysis with EEG microstates (MS) analysis to capture 
the spatiotemporal dynamics of large-scale neural networks. High-density EEG was recorded at rest in 16 BPD patients and 
16 age-matched neurotypical controls. The relative power spectrum and broadband MS spatiotemporal parameters were 
compared between groups and their inter-correlations were examined. Compared to controls, BPD patients showed similar 
global spectral power, but exploratory univariate analyses on single channels indicated reduced relative alpha power and 
enhanced relative delta power at parietal electrodes. In terms of EEG MS, BPD patients displayed similar MS topographies 
as controls, indicating comparable neural generators. However, the MS temporal dynamics were significantly altered in BPD 
patients, who demonstrated opposite prevalence of MS C (lower than controls) and MS E (higher than controls). Interestingly, 
MS C prevalence correlated positively with global alpha power and negatively with global delta power, while MS E did not 
correlate with any measures of spectral power. Taken together, these observations suggest that BPD patients exhibit a state 
of cortical hyperactivation, represented by decreased posterior alpha power, together with an elevated presence of MS E, 
consistent with symptoms of elevated arousal and/or vigilance. This is the first study to investigate resting-state MS patterns 
in BPD, with findings of elevated MS E and the suggestion of reduced posterior alpha power indicating a disorder-specific 
neurophysiological signature previously unreported in a psychiatric population.
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Introduction

Borderline personality disorder (BPD) is a mental disorder 
with a prevalence of around 1.6% in the general population 
(Kulacaoglu and Kose 2018). It is characterized by marked 
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psychological dysregulation in several domains, including 
affect, sense of self, interpersonal relationships, as well as 
enhanced hostility, impulsivity and risk taking (Gunderson 
et al. 2018; Kulacaoglu and Kose 2018; Lieb et al. 2004). 
BPD patients often present with several comorbidities, and 
the disorder represents a severe personal and societal burden. 
One of the ways to gain a better understanding of its underly-
ing pathophysiology is to identify brain biomarkers of the 
disorder. The characterization of specific neurophysiological 
patterns associated with BPD could potentially assist the 
diagnosis and guide therapeutic intervention. While numer-
ous fMRI studies have focused on brain activation differ-
ences during domain-sensitive tasks (Krause-Utz et  al. 
2014 for review), recent studies have started to examine 
brain activity during rest, by analyzing spontaneous neural 
activity and functional connectivity (Visintin et al. 2016 for 
review). In this context, fMRI signals have a relatively low 
temporal resolution of several seconds, and spontaneous 
brain networks can be better explored on sub-second tem-
poral scales with EEG (Varela et al. 2001 for review). Recent 
EEG studies in BPD have reported increased prevalence of 
intermittent delta and theta oscillatory activities which are 
supportive of medical care consisting of anticonvulsive treat-
ment (Tebartz van Elst et al., 2016). On the contrary, frontal 
alpha asymmetry, a functional biomarker of emotion and 
motivation processing (Smith et al. 2017), was not signifi-
cantly different in BPD compared to controls, but the scores 
of alexithymia were negatively associated with right-frontal 
alpha activity (Flasbeck et al. 2017). There is some debate 
concerning brain arousal in BPD patients, where its dysregu-
lation has been associated with higher levels of emotional 
instability (Hegerl and Hensch 2014). While lowered-EEG 
vigilance was initially reported (Hegerl et al. 2008), more 
recent evidence based on a computer-based scoring algo-
rithm (VIGALL2.0, Sander et al. 2015) suggests elevated 
resting-state EEG vigilance in BPD patients (Kramer et al. 
2019).

In addition to spectral power measures, the spatio-tem-
poral dynamics of large-scale neural networks can be cap-
tured using EEG microstate analysis (Michel and Koenig 
2018; Pascual-Marqui et al. 1995; Van de Ville et al. 2010). 
Frequently applied to spontaneous (i.e. resting-state) EEG, 
this analysis models the sequential occurrence of transient 
topographical patterns of electrical activity that are referred 
as “microstates” (MS). While historical analyses described 
4 canonical MS topographies dominating resting-state activ-
ity (A, B, C, D, Britz et al. 2010; Michel and Koenig 2018), 
recent work has identified up to 7 main MS patterns within 
resting EEG (A, B, C, D, E, F, G, Brechet et al. 2019; Custo 
et al. 2017; Damborska et al. 2019b). A growing body of 
research indicates significant MS alterations in a variety 
of neuropsychiatric disorders, such as schizophrenia and 
depression (Khanna et al. 2015 for review). Our own group 

recently reported on abnormalities in EEG MS dynamics in 
adult attention-deficit hyperactivity disorder (ADHD), find-
ing a positive association between microstate D duration and 
sleep disturbance (Ferat et al. 2021). In the current study, 
we applied resting-state MS analysis for the first time in 
patients with BPD, in the hope of providing new neurophysi-
ological insights of this disorder and/or identifying potential 
targets for future treatments. Our objective was to examine 
both the EEG spectral power and microstate dynamics in 
parallel, in order to evaluate their respective contribution in 
characterizing the electrophysiological signature(s) of BPD. 
Using high-density EEG recordings (comprising 256 EEG-
channels), we tested for statistical differences in spectral 
power and traditional MS measures between BPD patients 
(n = 16) and age-matched healthy controls (CTL, n = 16). 
Consequently, we examined the correlations between the 
most salient metrics derived from group-analyses with both 
approaches, as they may provide complementary informa-
tion on the clinical aspects of the disorder.

Materials and Methods

Participants and Clinical Assessment

The present study analyzed a subgroup of participants 
enrolled in a larger neuroimaging study (Berchio et  al. 
2017; Murray et al. 2022). Sixteen BPD patients (15 female, 
mean age: 25.1 ± 5.6) diagnosed with BPD were recruited 
in a specialized unit of the Department of Psychiatry of the 
University Hospitals of Geneva. The majority of women 
in our sample reflects the worldwide overrepresentation of 
women diagnosed with BPD in specialized units (Sansone 
and Sansone 2011; Skodol and Bender 2003). A group of 
16 age-matched healthy controls (10 female, mean age: 
29.6 ± 13.5) were recruited in parallel through announce-
ments in the population. There was no significant difference 
in gender between the two experimental groups (Table 1). 
Each participant filled their informed consent prior to the 
study, which was approved by the Research Ethic Commit-
tee of the Republic and Canton of Geneva (CER 13–081).

BPD diagnosis was assessed by the French version of 
the Structured Clinical Interview for DSM-IV Axis II Dis-
orders BPD part (BPD severity index: M: 7.4, SD = 1.84). 
Depression was evaluated using the Montgomery-Åsberg 
Depression Rating Scale (MADRS, Montgomery and 
Åsberg 1979). In addition, participants completed several 
self-report questionnaires: the State-Trait Anger Expres-
sion Inventory (STAXI, Spielberger 2010), the State-Trait 
Anxiety Inventory (STAI, Spielberger et al. 1983), the 
Cognitive Emotion Regulation Questionnaire (CERQ, 
Jermann et al. 2006), the Affective Lability Scale (ALS, 
Harvey et al. 1989), the Ruminative Response Scale (RRS, 
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Treynor et al. 2004), the Impulsive Behavior Scale (UPPS, 
Whiteside et al. 2005), and the Adult Self-Report Scale for 
ADHD (ASRS, Kessler et al. 2005). We computed sub-
scores where relevant: adaptive and maladaptive emo-
tion regulation strategies with the CERQ, rumination and 
reflection with the RRS, and 4 subscales of the UPPS. The 
groups differed in: anger and anxiety scores, cognitive non 
adaptative regulation, affective lability, rumination (except 
for reflection), impulsive behavior (except sensation seek-
ing), inattention and impulsivity as assessed using ASRS 
(Table 1). Affective disorders, schizophrenia, and other 
comorbid conditions in BPD and CTL were assessed using 
the French version of the Diagnostic Interview for Genetic 
Studies (DIGS) (Preisig et al. 1999). In BPD patients, cur-
rent comorbidities included: eating disorders (n = 1), post-
traumatic stress disorder (n = 6), anxiety disorder (n = 3), 
attention-deficit-hyperactivity disorder (n = 2), and sub-
stance abuse (n = 5). Comorbidity information was miss-
ing for 3 patients. One patient was receiving psychotropic 
medication (quetiapine). Healthy control subjects had no 
history of psychiatric illness as assessed with the DIGS, 
and had no taken medication or substance by their own 
report.

EEG Acquisition

EEG data were acquired with a 256-channel Electrical Geo-
desic Inc. system (Eugene, OR), with a sampling rate of 
1000 Hz, and Cz as reference electrode. Electrode imped-
ances were kept below 30 kOhms. Three minutes of resting-
state with eyes closed were acquired at the beginning of an 
experimental procedure on face and gaze processing (Ber-
chio et al. 2017).

EEG Analysis

Pre‑processing

Data were processed in MATLAB version 2021a with 
EEGLAB version 14 (The MathWorks, Inc.) (Delorme and 
Makeig 2004). Offline EEG data was firstly down-sampled 
to 250 Hz. Then, the following sequence of steps were per-
formed in order to remove artifactual (i.e. non-cerebral) 
sources of electrical activity that may contaminate EEG 
recordings (Bailey et al. 2022). Firstly, EEG data was band-
pass filtered at 1–80 Hz. Next, the Zapline method was used 
to remove the top 6 components around the 50 Hz main 
line frequency (de Cheveigne 2020). Then, we removed bad 

Table 1   Demographics and 
self-report questionnaire 
scores of the two groups, 
mean (standard deviation). 
MADRS Montgomery-
Åsberg Depression Rating 
Scale; STAXI State Anger 
Expression Inventory; 
CERQ Cognitive Emotion 
Regulation Questionnaire; 
AdaptReg adaptative regulation; 
NonAdaptReg non adaptative 
regulation; ALS Affective 
Lability Scale; RRS Ruminative 
Response Scale; 
UPPS Impulsive Behavior 
Scale; ASRS Adult Self Report 
Scale for ADHD; STAI State-
Trait Anxiety Inventory. t 
value T-test for independent 
samples (gaussian data); MW 
U Non parametric Mann 
Whitney U test (non gaussian 
data)

NS : non significant
a Psychotropic medication only

Demographics, scores BPD
(n = 16)

Controls
(n = 16)

t value
MW U

p value

Age 25.06 (5.57) 29.56 (13.50) 125.5 0.926 NS

Gender : female, n 15 10 88.0 0.138 NS

Medicateda (n) 1 0
Education (years) 14.5 (2.83) 14.9 (3.18) 113.5 0.800 NS

MADRS 9.85 (5.70) 1.20 (1.57) 1 < 0.001
STAXI-state 22.13 (7.65) 12.85 (2.67) 19.5 < 0.001
STAXI-trait 26.33 (6.58) 17.75 (4.58) 3.94 < 0.001
CERQ_AdaptReg 57.73 (14.78) 57.71 (10.99) 0.004 0.997 NS

CERQ_NonAdaptReg 47.87 (11.49) 35.71 (8.00) 3.28 0.003
ALS total 1.83 (0.53) 0.34 (0.29) 1 < 0.001
RRS_short 26.43 (3.76) 20.14 (4.77) 3.87 0.001
RRS reflection 11.36 (1.91) 10.86 (2.82) 0.55 0.588 NS

RRS brooding 15.07 (2.99) 9.29 (2.89) 5.19 < 0.001
UPPS urgency 37.43 (4.72) 23.86 (5.74) 6.84 < 0.001
UPPS lack premeditation 29.36 (5.00) 20.49 (4.94) 4.72 < 0.001
UPPS lack perseverance 25.14 (4.67) 16.71 (4.66) 4.78 < 0.001
UPPS sensation seeking 34.21 (6.86) 30.93 (8.86) 1.10 0.283 NS

ASRS inattention 24.6 (6.27) 10.00 (4.85) 6.98 < 0.001
ASRS impulsivity 19.93 (6.68) 9.57 (5.77) 4.45 < 0.001
STAI-state 53.82 (13.26) 28.24 (4.64) 4.50 < 0.001
STAI-trait 58.45 (7.56) 33.93 (8.13) 8.27 < 0.001



400	 Brain Topography (2024) 37:397–409

1 3

channels using EEGLAB’s PREP plugin (Bigdely-Shamlo 
et al. 2015) with default settings and spherically interpolated 
the rejected channels. After which, Infomax ICA was per-
formed using the runica() function. We then rejected specific 
ICA components related to (i) eye blinks/movements using 
the EyeCatch algorithm default settings (Bigdely-Shamlo 
et al. 2013), and (ii) muscle artifacts flagged by ICLabel 
at > 50% probability (Pion-Tonachini et al. 2019). We then 
automatically removed additional low-frequency artifacts 
using wavelet ICA at threshold = 10 and wavelet level = 10 
(Castellanos and Makarov 2006). Finally, remaining EEG 
artifacts were removed epoch-wise with a z-score based 
method using the FASTER plug-in (Nolan et al. 2010), 
rejecting 1-second epochs deviating by more than two stand-
ard deviations. Cleaned EEG data were visually inspected 
before and after automatic processing to verify the quality 
of deartifacting performed. All subjects’ clean EEG data 
exceeded 120 s. After deartifacting, the data were bandpass 
filtered between 1 and 30 Hz and re-referenced to a common 
average reference.

Power Spectrum Analysis

Absolute power spectral density was computed for frequen-
cies ranging from 1 to 30 Hz using the Welch method, with a 
2 s window effective size and no overlap. To obtain a relative 
metric usable for between-subject comparisons, all values 
were divided by the sum of the full spectrum (1–30 Hz). 
For further analysis, the obtained values were then added 
up within each studied frequency band: delta (2–4 Hz), theta 
(4–8 Hz), alpha (8–12 Hz), and beta (13–30 Hz).

Microstate Analysis

Estimation of Microstate Maps  The pipeline for estimating 
the MS topographies has been described elsewhere (Ferat 
et  al. 2021). MS topographies were estimated separately 
for the BPD and control groups using Thomas Koenig’s 
Microstate toolbox v1 for EEGLAB. For each subject’s 
resting-state recording, 2000 global field power peaks were 
randomly selected and subjected to modified k-means clus-
tering (polarity-independent) with 100 repetitions. MS maps 
(i.e., cluster centroids) were estimated for cluster numbers 
from k = 4 to k = 7, first at the subject level and then opti-
mally reordered between subjects by minimizing the aver-
age spatial correlation across maps. Finally, the respective 
MS maps were averaged across all subjects within each 
group to obtain the aggregate map for each cluster. Based on 
the mean spatial correlation of each subject’s map with the 
group’s aggregate, we found that k = 5 provided the highest 
map reliability across subjects.

Backfitting  Thomas Koenig’s Microstate toolbox v1 for 
EEGLAB was used to backfit on the whole data the k = 5 
global dominant topographies back to the original EEGs. 
The time points were assigned to cluster labels, or MS topog-
raphies, based on their highest absolute spatial correlation. 
Time points with a spatial correlation below the correla-
tion threshold of r = 0.5 were labeled as non-assigned. To 
ensure temporal continuity, a smoothing window of seven 
samples (56.0 ms) was applied, and label sequences that did 
not reach a duration of 3 samples (24.0 ms) were split into 
two parts and relabeled based on the highest spatial corre-
lation with their neighboring segment. Non-assigned time 
points being removed, none of the participants had z ≥ 3 for 
unlabeled time points and they were all included in further 
analysis. A label sequence was derived for each individual 
recording, and three spatiotemporal metrics were computed: 
occurrence (counts/second), mean duration (milliseconds), 
and time coverage (%), representing the number of times 
a microstate class recurred per second, the mean temporal 
duration without interruption, and the proportion of time 
during which a label was present in the recording, respec-
tively.

Statistical Analysis

EEG Spectral Power

Statistical analysis of EEG spectral power was carried out at 
the electrode level in the four frequency bands (as defined 
above: delta, theta, alpha, beta) using the Neurophysiologi-
cal Biomarker Toolbox version 1 (NBT, http://​www.​nbtwi​ki.​
net/) in Matlab version 2021a (MathWorks Inc.). In absence 
of pre-established hypothesis, the two-sided test was used. 
P-values were estimated by simulated random sampling with 
5000 replications. For univariate analyses at the single-chan-
nel level, no correction was applied for multiple compari-
sons, such that results remained exploratory in nature.

Microstate Measures

Group comparisons were conducted on the three MS spa-
tiotemporal metrics using unpaired permutation test for 
equality of means (Ferat et al. 2021). In absence of pre-
established hypothesis, the two-sided test was used. P-values 
were estimated by simulated random sampling with 5000 
replications. Statistical results were corrected for multiple 
comparisons using False Discovery Rate (FDR), as proposed 
by Benjamini-Hochberg (Benjamini and Hochberg 1995). 
The significance threshold for all comparisons was set to 
alpha = 0.05. Cohen’s d (d) was used to report effect sizes 
as standardized difference of means.

http://www.nbtwiki.net/
http://www.nbtwiki.net/
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Correlation Analyses

We additionally conducted exploratory Spearman correla-
tion analyses (Spearman’s Rho) between spectral power and 
MS spatiotemporal metrics on the pooled BPD and control 
datasets in order to evaluate if these two categories of EEG 
features may target similar or distinct aspects of the disorder 
(Gordillo et al. 2023).

Furthermore, we explored the potential correlations of 
the affective lability score (ALS) with MS C and E measures 
from the pooled BPD and control group data (Spearman’s 
Rho). We selected the ALS as it is a specific hallmark of 
emotional dysregulation in BPD (Koenigsberg et al. 2002) 
validated in the French language and commonly used for 
case control clinical studies (Marwaha et al. 2018).

Results

Spectral Power Analysis

The EEG relative power spectrum is displayed in Fig. 1, 
showing reduced amplitude in the 8–12 Hz alpha frequency 
band and elevated amplitude in the 2–4 Hz delta frequency 
band in BPD compared to CTL.

Here, no significant differences were detected between 
groups in global relative power (i.e. average of all 
channels) in any frequency bands. As shown in Fig. 2, 

univariate analyses on the single-channel level (p < 0.05 
uncorrected) revealed significantly increased delta power 
(cluster maximum at O2 electrode: d = 0.93, p < 0.05 
uncorrected) and decreased alpha power (cluster mini-
mum at POz electrode: d = − 0.82, p < 0.05 uncorrected) 
in the posterior-midline region in BPD as compared to 
CTL (Fig. 2).

MS Topographies

As shown in Fig. 3A, BPD and CTL groups both exhibited 
the 5 canonical MS topographies A, B, C, D, E (Michel 
and Koenig 2018), i.e., group maps with a right-left diago-
nal orientation (A), a left-right diagonal orientation (B), an 
antero-posterior orientation (C), a fronto-central maximum 
(D), and a parieto-central maximum (E). Spatial correla-
tion analysis showed minor differences of MS maps between 
groups (minimum absolute correlation ≥ 0.86) (Fig. 3B). As 
the results from a k-means clustering on concatenated BPD 
and CTL data did not produce different MS topographies, we 
used the vector average between group maps for back-fitting 
and individual estimation of MS dynamics.

MS Segmentation

Figure 4 shows the plots of the three MS spatiotemporal 
measures across groups. In the BPD compared to CTL 
group, MS C showed reduced occurrence (d = − 0.89, 
p = 0.010 FDR corrected), time coverage (d  =  −  0.91, 
p = 0.017 FDR corrected) and mean duration (d = − 0.90, 
p = 0.013 FDR corrected). An opposite effect was observed 
for MS E, which showed increased occurrence (d = 1.08, 
p = 0.003 FDR corrected) and time coverage (d = 1.02, 
p = 0.007 FDR corrected) in BPD compared to CTL.

Exploratory Correlations Between Microstate 
Parameters and Spectral Power

Here we explored the potential relationship between spectral 
power and the MS temporal measures that differed between 
the BPD and CTL groups (cf. Sect. MS segmentation). 
Pooling all participants, an exploratory correlation analysis 
(Spearman’s Rho) was performed between global relative 
alpha or delta power and MS C occurrence, time coverage, 
and mean duration, as well as MS E occurrence and time 
coverage. We found that global relative alpha power was 
positively correlated with MS C occurrence (Rho = 0.610, 
p < 0.001), time coverage (Rho = 0.770, p < 0.001), and 
mean duration (Rho = 0.804, p < 0.001). Global relative 
delta power was negatively correlated with MS C occurrence 
(Rho = − 0.546, p < 0.001), time coverage (Rho = − 0.699, 

Fig. 1   EEG relative power spectrum during eyes closed resting-state 
in BPD patients (orange) and control subjects (CTL, blue). Solid 
lines: mean relative power averaged over 256 electrodes. Shaded 
areas: 95% confidence interval
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p < 0.001), and mean duration (Rho = − 0.739, p < 0.001). 
Interestingly, no significant correlations were found for MS 
E measures. Figure 5 illustrates the correlations between 
MS C and E time coverage and global relative alpha and 
delta power.

Exploratory Correlations Between Microstate 
Parameters and Clinical Score of Affective Lability

Pooling all participants, the exploratory correlation analysis 
(Spearman’s Rho) was performed between the ALS and the 

Fig. 2   Topographic plots of relative delta, theta, alpha and beta power 
at eyes-closed rest for the CTL (first row) and BPD (second row) 
groups, and their mean difference (third row). The fourth row indi-

cates significant channel-wise p-values following permutation tests 
(uncorrected, p < 0.05)

Fig. 3   A The five EEG microstate topographies in adults with Borderline Personality Disorder (BPD, n = 16), control subjects (CTL, n = 16) and 
both groups averaged (ALL). B Spatial correlation coefficients of the five resting-state topographies between BPD and CTL
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MS temporal measures that differed between the BPD and 
CTL groups (cf. Sect. MS segmentation). The ALS was neg-
atively correlated with MS C occurrence (Rho = − 0.551, 
p < 0.01), time coverage (Rho = − 0.625, p < 0.001), and 
mean duration (Rho = − 0.606, p < 0.001). It was positively 
correlated with MS E occurrence (Rho = 0.528, p < 0.01) and 
time coverage (Rho = 0.469, p < 0.05). These correlations are 
illustrated in Fig. 6.

Discussion

In the present study we examined two neurophysiological 
aspects of the resting-state EEG in BPD. Firstly, although 
the global relative spectral power of BPD does not differ 
from neurotypical subjects, exploratory univariate analy-
ses on single channels indicated greater relative delta and 
lower relative alpha power in posterior regions. Secondly, 
we demonstrate that BPD patients share spatially equiva-
lent MS topographies compared to neurotypical subjects—
implying similar anatomical generators of EEG activity—
but that their temporal dynamics are significantly altered. 
Compared to controls, BPD patients showed significantly 
reduced prevalence of MS C (for time coverage, occurrence 
and mean duration), together with increased prevalence of 
MS E (for time coverage and occurrence). Interestingly, 
exploratory correlation analyses revealed that increased 

prevalence of MS C correlated positively with global relative 
alpha and negatively with global relative delta power, while 
MS E alterations were uncoupled to changes in narrow-band 
spectral power.

Power Spectrum

The global spectral power was not significantly different 
between the two groups in any frequency bands, indicating 
that global EEG power does not carry a representative hall-
mark of BPD. Furthermore, we did not detect alpha power 
asymmetry in the frontal regions, which has been suggested 
to be related to both motivation and emotion constructs and 
discussed as a potential marker of pathophysiology in BPD 
(Flasbeck et al. 2017). These negative findings could be the 
result of the limited sample size of our cohort, and therefore 
are to be interpreted with caution. In contrast, when running 
exploratory analyses on single EEG channels, we observed a 
reduction of posterior-midline alpha power in BPD as com-
pared to controls. Although interpretation is limited by the 
risk of false positive results (i.e. absence of correction for 
multiple comparisons), the reduced parietal alpha power in 
BPD patients may suggest a state of increased cortical excit-
ability (Mathewson et al. 2011; Romei et al. 2008), which 
has previously been associated with behavioral hyperarousal 
and/or anxiety (Barry et al. 2007; Dadashi et al. 2015). Mod-
ulation of excitability within the parietal or visual cortex 

Fig. 4   Between-group comparisons of the three temporal measures for each of the five microstates. *p < 0.05, **p < 0.01 based on permutation 
tests for mean difference, FDR corrected for multiple comparisons
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is largely determined by posterior alpha activity, which 
mainly originates from thalamo-cortical inputs (Lorincz 
et al. 2008). Since the alpha band is a dominant frequency 
band in the generation of the MS C topography (Ferat et al. 
2022), this could explain the positive relationship between 
MS C parameters and alpha relative power (Krylova et al. 
2021; Milz et al. 2016). Conversely, the results in the delta 
band showed enhanced posterior-midline power in BPD. 
Being inversely correlated with alpha power (Newson and 
Thiagarajan 2019), the delta power increase also correlated 
negatively with MS C parameters. Overall, the lack of sta-
tistical power does not allow a firm conclusion to be made 
on the spectral power results, and further studies includ-
ing a larger sample size will be necessary to confirm these 
exploratory observations.

Microstate C

In a previous study using EEG source localization (Custo 
et al. 2017), MS C has been reported to be generated by 

the precuneus, the posterior cingulate cortex (PCC), and 
the left angular gyrus, all areas implicated in the default-
mode network (DMN). Elsewhere, MS C presence has 
been associated with increases in interoceptive and self-
focused thoughts (Brechet et al. 2019) and decreases in 
mental arithmetic tasks (Kim et al. 2021; Seitzman et al. 
2017), which are also related to the activity of the “task-
negative” DMN (Brechet et al. 2019; Custo et al. 2017; 
Michel and Koenig 2018). Hence, the reduced MS C 
prevalence in BPD patients suggests a reduction of task-
negative brain states associated with self-processing, 
compatible with decreased alpha power (Chavan et al. 
2013) and increased behavioral alertness (Kramer et al. 
2019). Regarding other psychiatric conditions, contribu-
tion of MS C has been reported significantly reduced in 
eyes-closed resting EEG of adolescent ADHD (Luo et al. 
2022), and unchanged in eyes-opened resting EEG of adult 
ADHD (Ferat et al. 2021), as compared to age-matched 
controls. Mirroring our findings in patients with BPD, a 
reduction of MS C occurrence has also been observed in a 

Fig. 5   Correlations between relative alpha and delta power and MS C and E time coverage (%) in pooled CTL and BPD groups. Left column: 
Microstate C; right column: Microstate E. Upper row: Alpha band, lower row: Delta band. Rho: Spearman’s Rho; ns: non-significant
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group of patients with major depressive disorder (MDD) 
who did not achieve remission after 8 weeks of SSRI treat-
ment, compared to patients that achieved remission (Lei 
et al. 2022). Furthermore, the reduced presence of MS C 

was associated with poor therapeutic outcomes after treat-
ment (Lei et al. 2022). Elsewhere, reduced MS C was also 
observed in mood and anxiety disorder, although this did 
not reach statistical significance (Al Zoubi et al. 2019).

Fig. 6   Correlations between affective lability score (ALS) and measures of MS C and E in pooled CTL and BPD groups. Left column: Micro-
state C, right column: Microstate E. Upper row: Occurrence, middle row: Time Coverage, lower row: Mean Duration. Rho: Spearman’s Rho
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Microstate E

The 4 canonical classes A, B, C, D were recently comple-
mented by the identification of 2 to 3 additional topogra-
phies, among them MS E (sometimes referred to as MS F) 
characterized by a topography with a posterior maximum. 
The anatomical generators of MS E have been related to 
the dorsal anterior cingulate, superior/middle frontal gyri, 
and insula (Brechet et al. 2019; Custo et al. 2017; Dambor-
ska et al. 2019b), which are part of the cingulo-opercular 
or “salience” network (CON). Damborska and colleagues 
(Damborska et al. 2019b) have reported on a positive cor-
relation of MS E occurrence with intake of antidepres-
sants, antipsychotics and mood stabilizers. They discussed 
a putative link between MS E and the “task-positive” CON, 
which plays a central role in sustaining alertness/perceptual 
readiness (Coste and Kleinschmidt 2016; Sadaghiani and 
D’Esposito 2015), and whose disrupted connectivity was 
observed in depression (Wu et al. 2016). A complementary 
view relates the CON with the integration of autonomic 
processes, by which it is engaged in assessing the salience 
of internal and external stimuli (Seeley 2019; Seeley et al. 
2007). Increased prevalence of MS E in BPD patients is thus 
compatible with both a higher sustained alertness and an 
exacerbated response of the CON in relation with salience 
processing (Sadaghiani and D’Esposito 2015). Moreover, 
the CON partly overlaps with the fronto-limbic emotion 
regulation network, whose impairment might mediate emo-
tional dysregulation in BPD (Krause-Utz et al. 2014; O’Neill 
and Frodl 2012). Recent findings from our own group have 
identified a positive link between BOLD signal variability 
in the fronto-limbic network and the severity of emotional 
dysregulation in BPD (Kebets et al. 2021), that could explain 
the association between the observed abnormalities in MS E 
and emotional instability in BPD. In contradistinction to our 
results in BPD patients, reduced presence of MS E has been 
found in post-traumatic stress disorder (PTSD) (Terpou et al. 
2022) as well as in MDD, where it also negatively correlated 
with depression inventory scores (Qin et al. 2022). Hence 
increased prevalence of MS E may correspond to a unique 
neuromarker of BPD, that is independent from microstate 
signatures of patients with PTSD or MDD.

Association of MS C and E with Emotional Instability

We further explored the potential associations between EEG 
microstate abnormalities and the ALS, a widely employed 
index of emotional dysregulation severity in BPD. To over-
come the issue of small sample size in our BPD group, we 
opted for pooling the two groups for these analyses. The 
interpretation of the results is complicated by the possibil-
ity that the data derive from separate distributions (Simp-
son’s paradox, Simpson 1951). However, if one assumes the 

pooled data come from the same sampling distribution (i.e. 
patients are on the same continuum as controls), then these 
correlations underline a potentially significant relationship 
between emotional dysregulation and microstate measures. 
MS C and MS E showed opposite behavior in their relation-
ship with ALS, consistent with their abnormality in BPD. 
MS C, significantly reduced in BPD, was negatively corre-
lated with ALS, while MS E, significantly increased in BPD, 
was positively correlated with ALS. These observations sug-
gest the relevance of the MS C and E measures as poten-
tial neuromarkers of emotional instability in BPD. Further 
investigations are needed to establish a possible mediating 
link between these spatiotemporal indices of brain activity 
and emotional impairment in BPD.

What EEG Resting‑State Analyses Tell Us About BPD 
Neurophysiology

The results based on microstates are more statistically sig-
nificant and conclusive than those based on spectral power, 
suggesting a greater sensitivity of EEG spatiotemporal 
measures in BPD. The finding of significant exploratory cor-
relations between one microstate class (i.e. MS C) and alpha 
power on the one hand, and delta on the other, indicates that 
both of these measures may be associated with an overlap-
ping aspect of the disorder. However, as this was not the 
case for microstate E, the latter could represent a valuable, 
additional neuromarker of the disorder, referring more par-
ticularly to emotional instability. The reduced posterior-mid-
line alpha power in BPD patients compared to neurotypical 
subjects suggests increased cortical hyperexcitability in this 
disorder. This finding is in line with recent EEG evidence 
that BPD patients at rest demonstrate higher stages of vigi-
lance compared to controls (Kramer et al. 2019). This could 
potentially be also linked to elevated noradrenergic activity 
in the locus coeruleus reported in BPD (Kramer et al. 2019), 
in turn responsible for various effects associated with stress, 
including elevated arousal and deficiencies in attentional and 
cognitive functions (Berridge and Spencer 2017). Further 
analyses on larger samples of patients would be necessary 
to confirm the link between microstate E and clinical scores, 
in particular emotional lability.

Limitations

The present study has some limitations. First, the sample 
size of each group is quite small, limiting statistical power. 
Second, the patient sample was almost all female, which 
could potentially be a source of bias. Even if in epidemio-
logical studies the gender ratio between male and female is 
near to 1, usually in clinical settings and thus in research 
coming from these facilities more than 75% of people diag-
nosed with BPD are women (Sansone and Sansone 2011; 
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Skodol and Bender 2003). The reasons for this significant 
overrepresentation of women are still unknown; there may 
be biological, psychosocial, cultural and psychological fac-
tors that predispose women with BPD to more often seek 
psychological/psychiatric help. Our own data simply reflect 
this worldwide overrepresentation of women in specialized 
units. Although comprising more male subjects, the gender 
of our age-matched control group did not differ significantly 
from the patient group.

Conclusions

To our knowledge, the current study is the first to analyze the 
resting-state dynamics of EEG microstates in patients with 
BPD, where we observed a reduced prevalence of MS C and 
an increased prevalence of MS E. These findings, together 
with the exploratory observations of reduced (enhanced) 
power in the alpha (delta) bands, are compatible with a sig-
nature of cortical hyperactivation in BPD patients, associ-
ated with a state of elevated cortical arousal and/or behavio-
ral vigilance. Although the present findings need replication 
in larger samples, the application of MS analysis appears to 
offer more specific neuromarker(s) of BPD pathophysiology 
and diagnosis, when compared to classical analyses using 
spectral power. This approach could also hold promise for 
developing future neuromarker-based treatments (e.g. EEG 
neurofeedback).
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