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Abstract
Traditional approaches to quantify components in event-related potentials (ERPs) are based on averaging EEG responses. 
However, this method ignores the trial-to-trial variability in the component’s latency, resulting in a smeared version of the 
component and underestimates of its amplitude. Different techniques to quantify ERP components in single trials have 
therefore been described in literature. In this study, two approaches based on neural networks are proposed and their perfor-
mance was compared with other techniques using simulated data and two experimental datasets. On the simulated dataset, 
the neural networks outperformed other techniques for most signal-to-noise ratios and resulted in better estimates of the 
topography and shape of the ERP component. In the first experimental dataset, the highest correlation values between the 
estimated latencies of the P300 component and the reaction times were obtained using the neural networks. In the second 
dataset, the single-trial latency estimation techniques showed an amplitude reduction of the N400 effect with age and ascer-
tained this effect could not be attributed to differences in latency variability. These results illustrate the applicability and the 
added value of neural networks for the quantification of ERP components in individual trials. A limitation, however, is that 
simulated data is needed to train the neural networks, which can be difficult when the ERP components to be found are not 
known a priori. Nevertheless, the neural networks-based approaches offer more information on the variability of the timing 
of the component and result in better estimates of the shape and topography of ERP components.
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Introduction

Event-related potentials (ERPs) are responses in the brain 
that result directly from a specific sensory, cognitive, or 
motor event and that consist of multiple peaks and troughs 
which are referred to as the ERP components (Luck 2014). 
These responses can be measured using electroencephalog-
raphy (EEG), a technique in which electrical brain activity 
is recorded by electrodes placed on the scalp. As EEG has 
a high temporal resolution, ERPs are extensively used in 
neuroscience to study the timing of neural responses.

When recording ERPs during tasks, the EEG signals cap-
ture not only the activity associated with the stimuli but also 
the ongoing spontaneous brain activity and noise. Unfortu-
nately, the amplitude of the ERP components is often small 
compared to the background EEG, making it challenging to 
extract reliable and meaningful information from the data. 
Signal processing techniques that improve the signal-to-
noise ratio (SNR) are required to characterize ERPs accu-
rately. One of the most commonly used approaches is aver-
aging the EEG signals across multiple trials. This technique 
is based on the assumptions that event-induced responses 
are consistent across different trials, and that spontaneous 
brain activity unrelated to the event is random and can thus 
be attenuated by averaging. The ERP component of interest 
is then typically quantified by measuring the amplitude and 
latency of this component in the averaged ERP. Different 
measures can be used for this quantification, such as the 
amplitude and the latency of the peak voltage, or the mean 
amplitude and fractional area latency (Luck 2014; Hansen 
and Hillyard 1980; Kiesel et al. 2008). Also other analy-
sis techniques, for instance ERP topographic analyses of 
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variance and microstate analyses (Murray et al. 2008), have 
been proven effective, but still rely on single-trial averaging 
in most cases.

The assumption that the ERP component is identical 
across trials often proves invalid in practice, since both the 
latency and the amplitude of different ERP components 
show significant variability across single trials (Handy 2005; 
Brazier 1964). This is especially the case for later compo-
nents that express more complex cognitive processing in 
the brain, such as the P300, N400 and P600 (Polich 2012). 
This variability poses difficulties for the averaging approach 
(D’Avanzo et al. 2011). First, to obtain robust estimates of 
the latency and the amplitude of the ERP component, a 
large number of trials needs to be included (Clayson et al. 
2013). This however increases the recording time, which 
may be challenging for certain patient groups. Secondly, the 
variability in latency will smear out the component in the 
averaged response, possibly reducing the amplitude of the 
component. Because of this effect, the averaging approach 
is unable to provide detailed information on the mechanisms 
underlying differences in ERP components between sub-
ject groups. An example often used in literature is that of 
schizophrenic patients, who show smaller P300 amplitudes 
compared to healthy controls (Jeon and Polich 2003). How-
ever, as schizophrenic patients also show higher variability 
in reaction times (Ford et al. 1994; Roth et al. 2007), the 
amplitude variation in the averaged ERP waveform could 
in part be caused by the variability in latency jitter (Ouyang 
et al. 2016). This variability in latency jitter has also been 
observed in other populations, such as aging populations 
(MacDonald et al. 2008) or in individuals suffering from 
brain damage (Fjell et al. 2011). Variations in the amplitude 
of an average ERP component may be due to changes in 
the amplitudes of individual trials, variability in latency, or 
a combination of both factors (Walhovd et al. 2008). Cor-
recting for this latency variability may help in better under-
standing the neural mechanisms underlying different tasks. 
For example, Murray et al. (2019) have shown the parietal 
retrieval success effect to be both variable and thresholded 
in older adults by compensating for the trial-to-trial latency 
jitter.

Many different single-trial estimation algorithms have 
been proposed in literature. One of the currently most widely 
used techniques to quantify the single-trial latency consists 
of an iterative approach based on template matching and 
was proposed by Woody (1967). The component’s latency 
is estimated using the cross-correlation between a template 
and the single trial, after which all single trials are realigned 
to the estimated latencies and averaged, resulting in a new 
template. The assumption behind this approach is that while 
the latency of the ERP component varies in different trials, 
its shape does not. This iterative scheme results in a sub-
ject-specific estimate of the shape of the ERP component, 

which has, however, proven to be sensitive to noise. Errors 
in the latency estimation can deform the shape of the new 
template, enlarging the error made in subsequent iterations 
(Möucks et al. 1988). Another drawback of this method is 
that it relies on the analysis of the EEG data in a single chan-
nel. Given that in most recording set-ups multiple electrodes 
are used and that different electrodes simultaneously capture 
the evoked response, only a fraction of the available infor-
mation is thus used. Therefore, techniques that also con-
sider the topographic information in the EEG data have been 
extensively explored. For example, the cross-correlation 
curves calculated in Woody’s method can be obtained for 
multiple electrodes and averaged, after which the peak lag 
is extracted from the averaged curve (Ouyang et al. 2017). 
A similar template-matching technique that has been used 
in literature is dynamic time warping (DTW) (Zoumpoulaki 
et al. 2015). This alignment algorithm matches the differ-
ent components of the template to the single trial through 
local compressions and extensions of the signal, making it 
possible to estimate the time points in the single trial that 
best resemble the ERP component of interest. The algo-
rithm can be extended to include topographic information 
by using a multi-dimensional generalization of the algo-
rithm as proposed in (Shokoohi-Yekta et al. 2017). Further-
more, different spatiotemporal filters have been proposed, 
including multi-channel Wiener filters (Maki et al. 2015) 
and spatiotemporal linearly constrained minimum variance 
(LCMV) beamformers (van Vliet et al. 2016). A final group 
of techniques exploiting the spatiotemporal information in 
the EEG data are decomposition techniques, such as princi-
pal component analysis (PCA) (Dien 2010) and independent 
component analysis (ICA) (De Lucia et al. 2010). While 
PCA decomposes the signal into orthogonal components 
that capture the maximum amount of variance in the data, 
ICA decomposition is based on the idea that the recorded 
signals in the different electrodes are different mixtures of 
the signals generated by several independent sources in the 
brain and that one or a combination of multiple of these 
sources corresponds to the ERP component (Bugli and Lam-
bert 2007).

It is interesting to notice that many of the methods for the 
quantification of ERP components in single trials have also 
been used in research focusing on Brain-Computer Inter-
faces (BCIs). Here, for each trial, a decision has to be made 
whether a certain ERP component is present in the data or 
not. Most recent advances in this field, however, have been 
made using deep learning techniques, such as convolutional 
neural networks (CNN) (Lawhern et al. 2018; Vařeka 2020), 
recurrent CNNs (Maddula et al. 2017) and convolutional 
long short-term memory (convLSTM) neural networks 
(Joshi et al. 2018). This research has shown that neural net-
works can learn the pattern of the ERP component from 
the data. Therefore, deep learning approaches might also 
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be able to improve the quantification of ERP components 
in single trials.

This work aims to investigate the applicability of neural 
networks to the quantification of ERP components in single 
trials. Therefore, two existing neural networks described in 
literature for BCIs, namely EEGNet, a compact convolu-
tional neural network introduced by Lawhern et al. (2018), 
and the convolutional LSTM neural network proposed by 
Joshi et al. (2018) will be adapted. These neural networks 
will be compared to other single-trial latency estimation 
techniques described in literature, such as iterative and 
non-iterative template matching using cross-correlation and 
DTW, an iterative and a non-iterative spatiotemporal LCMV 
beamformer and a decomposition-based approach using 
ICA. Furthermore, the different single-trial latency estima-
tion techniques will be compared to the traditional averag-
ing approach to assess the added value of single-trial ERP 
quantification by evaluating the topography and morphology 
of the obtained ERP components, using both simulated and 
experimental data. While the focus in this work lies on the 
P300 and N400 components, the proposed methods could 
easily be adapted for other ERP components.

Material and Methods

In this section a short explanation is given on the different 
datasets used in this study, followed by more information on 
the different methods that are used for the ERP quantifica-
tion in the data. These methods are split into three different 
groups, namely methods for ERP quantification in averaged 
trials, methods for single-trial ERP component quantifica-
tion based on template matching and, finally, methods for 
single-trial ERP component quantification using neural net-
works. Then, an overview of the experimental pipeline is 
given. First, more details about the data simulation approach 
are given, after which the evaluation criteria for the ERP 
quantification that were used both on the simulated data and 
on the experimental datasets are presented.

Experimental Data

In this study, two different experimental datasets were used. 
For the first dataset, an attentive oddball task was used in 
which two types of phonemes were presented to the subjects, 
while the second dataset consisted of a semantic sentence 
congruity task. The collection of both datasets in this study 
were carried out in accordance with the Declaration of Hel-
sinki and were approved by the Ethical Committee of the 
Ghent University Hospital (BC-11771). All participants gave 
written informed consent.

Dataset 1: Oddball Task Eliciting a P300 Component

The normative dataset for phonological input collected 
by Aerts et al. (2013), consisting of 71 healthy subjects 
between 21 and 83 years old, was used in this work both as 
the experimental dataset and to generate the simulated trials. 
In the experiment, an attentive oddball paradigm for auditory 
phoneme discrimination was presented to the participants, 
who had to discriminate the deviant phoneme [g] from the 
standard phoneme [b]. In total, 150 stimuli of 250 ms were 
presented to the participants with an interstimulus interval 
of 2000 ms and a deviant/standard ratio of 1/4. Participants 
were asked to press a button each time a deviant stimulus 
was presented, allowing the measurement of the reaction 
times to the stimuli. The data was recorded using 20 elec-
trodes at the following positions according to the interna-
tional 10-20 system: Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T3, 
C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and Oz, at a sampling 
rate of 500 Hz. Additional details about the data and the 
recording procedure can be found in Aerts et al. (2013).

Dataset 2: Semantic Sentence Congruity Task Eliciting 
an N400 Component

For the second experimental dataset involving the N400 
component elicited using a semantic sentence congruity task 
(SSCT), the dataset recorded by Cocquyt et al. (2023) was 
used. Briefly, 120 sentences, half of which were semanti-
cally correct while the other half contained a semantic viola-
tion at the end, were visually presented to 110 individuals. 
After the final word of each sentence, the Dutch word ‘Druk’ 
(‘press’) appeared on the screen, asking participants to press 
the green (correct sentences) or red (incorrect sentences) 
button. In this experiment, the participant’s response was 
delayed to avoid an influence of the button press on the ERPs 
of experimental interest. The subjects were all between 21 
and 84 years old, and were divided among three age groups, 
i.e. the young (20-39 years, n=40), middle-aged (40-59 
years, n=40) and elderly ( ≥ 60 years, n=30), to investigate 
the effect of aging. More details about the complete experi-
ment can be found in Cocquyt et al. (2023).

Data Preprocessing

The data was preprocessed offline using the MNE-Python 
library (Gramfort et al. 2013). Bad electrode channels 
were automatically detected and removed, after which 
the data was band-pass filtered between 0.3 and 30 Hz 
(half-amplitude cut-off, 12 dB/octave roll-off), as well as 
notch-filtered at 50 Hz. Independent component analysis 
was performed to remove eye blinks and eye movements, 
and the data was re-referenced to an average common ref-
erence. For the oddball paradigm, the data was segmented 
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into 1100 ms long epochs, starting from 100 ms before the 
stimulus onset to 1000 ms post-onset, while for the SSCT 
dataset, the data was segmented into epochs of 1500 ms, 
from 300 ms pre- to 1200 ms post-presentation of the 
critical words. Baseline correction was performed using 
the pre-stimulus window for both paradigms. Finally, 
automatic artefact rejection was applied, rejecting epochs 
where the signal exceeded ±100 μV , the peak-to-peak sig-
nal amplitude exceeded 150 μV or the peak-to-peak signal 
amplitude was less than 0.5 μV . The averaged responses 
to the standard and deviant conditions (P300 component) 
and to the correct and incorrect conditions (N400 compo-
nent) across all trials and all subjects are shown in Fig. 1. 
Also the difference between the conditions is depicted for 
both datasets.

Methods for ERP Component Quantification

The methods used for the quantification of the ERP com-
ponents can be split into two groups. The first group of 
methods follows the traditional approach where the indi-
vidual trials for each subject are averaged before quan-
tifying the latency, the topography and the shape of the 
ERP component using the average waveform. The second 
group are methods that first estimate the latency of the 
ERP component in single trials. Based on these estimates, 
the different trials are realigned for each subject before 
averaging, after which the obtained waveform is used to 
quantify the topography and shape of the ERP component.

Averaged Trial ERP Component Quantification

Two different techniques were used to quantify the ERP 
component’s latency after averaging, namely the peak 
latency and the 50%-area latency. For the P300 compo-
nent, the signal at the Pz electrode between 250 and 650 ms 

post-stimulus was used, while for the N400 component the 
focus was on the Cz electrode using the 200–600 ms time 
window. More details about both methods (M1 and M2) can 
be found in Appendix A.1.

Single‑trial ERP Component Quantification Based 
on Template Matching

Seven different approaches were selected for the single-trial 
latency estimation based on template matching: non-iterative 
and iterative template matching using cross-correlation, non-
iterative and iterative template matching using DTW, a non-
iterative and an iterative spatiotemporal LCMV beamformer 
and template matching after ICA decomposition using both 
a single component and multiple components. The details 
about how the latency of the ERP component is estimated 
in single trials using each of these approaches (M3 to M10) 
can be found in Appendix A.2.

Single‑trial ERP Component Quantification Using Neural 
Networks

Finally, two deep learning approaches, namely the EEGNet 
network and a convLSTM neural network, were used for the 
quantification of the ERP components in single trials.

M11: EEGNet, a Convolutional Neural Network 
EEGnet is a compact convolutional neural network that was 
developed by Lawhern et al. (2018) for EEG-based BCIs. 
The network combines depthwise and separable convolu-
tions, allowing the model to combine spatial and temporal 
information present in the data. It consists of two convolu-
tional blocks, followed by a Softmax classification layer. The 
first convolutional block incorporates two sequential con-
volutional steps. First, a number of 2D convolutional filters 
are fitted to the data to capture the frequency information 
present in the data. A depthwise convolution is then used 

Fig. 1  The averaged responses to the standard and deviant conditions 
(P300, left) and to the correct and incorrect conditions (N400, right) 
across all trials and subjects, as well as the difference between the 

conditions in the experiment for both experimental datasets. For both 
datasets, also the topography at 0.400 s (cf. the dotted vertical grey 
line) after the stimulus onset is shown
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for the network to learn a spatial filter. This combination of 
convolutional layers allows the model to learn frequency-
specific spatial filters for each feature map. In the next layer, 
batch normalization is used, before applying the exponential 
linear unit (ELU) non-linearity and reducing the dimension-
ality using Average Pooling. Finally, to reduce overfitting of 
the model, a dropout layer with a dropout probability of 0.5 
is used. The second convolutional block consists of a sepa-
rable convolution, which decouples the relationship between 
feature maps and reduces the number of parameters. This 
convolutional layer is again followed by batch normalization, 
ELU activation, Average Pooling and dropout, after which 
the features are passed to the classification block (Alvarado-
Gonzalez et al. 2021).
In this work, the two convolutional blocks were similar to 
the original model, but the classification block was adapted 
to allow the estimation of the P300 latency by flattening the 
data and using a dense layer with linear activation instead 
of the Softmax classification layer. To reduce the number of 
parameters in the model, the EEG data was downsampled 
to 250 Hz. The model was fitted using the Adam optimizer 
(Kingma and Ba 2014), with the default parameters available 
in the Keras API (Chollet et al. 2015), to minimize the mean 

squared error loss function. Table 1 gives an overview of the 
final architecture of the model and the chosen parameters.

M12: Convolutional LSTM Neural Network (Con-
vLSTM) ConvLSTM is a specific type of recurrent neural 
network used for spatiotemporal predictions and was first 
introduced in precipitation nowcasting (Shi et al. 2015). The 
model can learn both spatial and temporal features at the 
same time. Furthermore, as convolution operations share 
parameters, the number of parameters in a convLSTM is 
reduced compared to the traditional LSTM approach. As 
mentioned in the introduction, the model was recently used 
by Joshi et al. (2018) in the area of BCIs to determine the 
presence of the P300 component in single trials. In this 
work, the proposed architecture was adapted to allow esti-
mation of the latency of the ERP components.

As convLSTM networks perform better on shorter 
sequences, the trials were again downsampled to 250 Hz. 
To preserve the spatial information present in the data, the 
electrodes were mapped to a 5 × 5 2D map as shown in 
Fig. 2. This was done for each time sample, converting each 
trial to a (number of time samples × 5 × 5) 3D matrix that 
was used as input for the neural network. The first layer of 
the network was a convLSTM layer in which the sequence 

Table 1  Full details of the EEGNet architecture: The network starts 
in the first block with a temporal convolution (Conv2D) to learn the 
frequency filters, after which the depthwise convolutions (Depthwise-
Conv2D) are used to learn frequency-specific spatial filters. The sec-

ond block initially learns a temporal summary for each feature map 
individually (SeperableConv2D), and finally learns to mix the feature 
maps together. More details about the network architecture can be 
found in the work of Lawhern et al. (2018)

Block Layer No. filters Size No. params Output Activation 
function

Options

1 Input 1 × 20 × 101
Conv2D 8 1 × 64 512 (8, 20, 101) Linear padding = same, use_bias = False
BatchNorm 32 (8, 20, 101)
DepthwiseConv2D 20 × 1 320 (16, 1, 101) Linear use_bias = False, number of depth-

wise convolution output channels 
= 2, max norm constraint function 
= 1

BatchNorm 64 (16, 1, 101)
Activation (16, 1, 101) ELU
AveragePool2D 1 × 4 (16, 1, 25)
Dropout (16, 1, 25) p = 0.5

2 SeperableConv2D 16 1 × 16 512 (16, 1, 25) Linear padding = same, use_bias = False
BatchNorm 64 (16, 1, 25)
Activation (16, 1, 25) ELU
AveragePool2D 1 × 8 (16, 1, 3)
Dropout (16, 1, 3) p = 0.5
Flatten (48)

Latency Dense 1 49 (1) Linear
estimation
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of 2D input maps was passed through the recurrent convolu-
tions of 6 filters with size 2 × 2. Here, the tanh-function was 
used as the activation function. A dropout of 0.2 was applied 
together with a recurrent dropout of 0.1 to reduce overfitting. 
In the second layer, the data was batch normalized with the 
batch size set to 128 samples. The convLSTM and the batch 
normalization layers were repeated in the third and fourth 
layers of this network. For each time index, the maximum 
value obtained across the different filters is selected, after 
which the data is flattened into a 1D array of size (number of 
time samples). The final layer of the model was a dense layer 
that outputs the estimate of the P300 latency. The model was 
again fitted using the Adam optimizer to minimize the mean 
squared error loss function (Kingma and Ba 2014), with the 
default parameters available in the Keras API (Chollet et al. 
2015). A summary of the network architecture is given in 
Table 2 and visualized in Fig. 2.

Experimental Pipeline

Data Simulation

In this work, simulated data was needed (1) to train the neu-
ral networks and (2) to quantify the performance of the dif-
ferent methods. The general approach that was used is to 
add an ERP waveform at a known latency to background 
EEG data. A visual overview of the process described here is 
shown in Fig. 3. To create the simulated ERP waveform, the 
average response over trials and participants for both condi-
tions was calculated separately, i.e. for both the standard 
and deviant stimuli in the oddball paradigm (P300 dataset) 
and the correct and incorrect stimuli in the SSCT (N400 
dataset). The difference between both conditions was then 
calculated to obtain the topography of the ERP waveform 

that would be used. The shape of the ERP component was 
simulated as a half-cycle sinusoidal wave. As the goal was 
to generate a dataset that resembles the experimental data, 
the epochs recorded while presenting the standard phoneme 
(P300 dataset) and the correct sentences (N400 dataset) were 
used as background EEG data.

Table 2  Full details of the 
ConvLSTM architecture. The 
network consists of two 
consecutive convolutional 
LSTM layers followed by a 
pooling layer and a linear dense 
layer to estimate the latency of 
the ERP component

Layer No. filters Size No. params Output Activation function Options

Input 101 × 1 
× 5 × 5

ConvLSTM2D 6 2 × 2 696 (101, 6, 4, 4) hyperbolic tangent dropout = 
0.2, recur-
rent_drop-
out = 0.1

BatchNorm 16 (101, 6, 4, 4)
ConvLSTM2D 6 2 × 2 1176 (101, 6, 3, 3) hyperbolic tangent dropout = 

0.2, recur-
rent_drop-
out = 0.1

BatchNorm 12 (101, 6, 3, 3)
MaxPooling3D 6 × 3 × 3 (101, 1, 1, 1)
Flatten (101)
Dense 1 102 (1) Linear

Dense

3D max Pooling and Flatten

Conv
LSTM

3

3

6

Conv
LSTM

Conv
LSTM

Conv
LSTM

4

4

6

Conv
LSTM

Conv
LSTM

t_0 t_1 t_N

INPUT

First ConvLSTM
layer

Second ConvLSTM
layer

Time

ESTIMATED LATENCY

...

N

1

Fig. 2  Overall visualization of the ConvLSTM network. Full details 
of the architecture can be found in Table 2. The network consists of 
two consecutive ConvLSTM layers followed by a pooling layer and 
a linear dense layer to estimate the latency of the ERP component. 
In this type of recurrent neural network, the model can hold and use 
information obtained from previous time points it has seen to make 
decisions
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Simulated epochs were then generated using the EEG 
data of all participants in the experimental dataset. For each 
simulated subject, the EEG data of only one participant was 
used as background EEG data. To introduce inter-subject 
variability, the frequency of the sinusoidal waves used for 
the ERP component was uniformly drawn to obtain a signal 
length between 100 ms and 300 ms. Furthermore, different 
uniform latency distributions were simulated for each par-
ticipant by sampling a mean latency between 350 ms and 
550 ms and a standard deviation between 40 ms and 80 ms. 
For the mean latency, the shape of the grand-average of the 
experimental data within this time window was used as the 
sampling distribution, while a uniform distribution was used 
for the standard deviation. After randomly selecting half of 
the standard/correct trials, the ERP component was added 
to the data using latencies sampled from the previously cre-
ated distribution. To keep the latency of the ERP compo-
nent within the expected range for healthy controls, trials for 
which the generated latency was outside the time window of 
300 ms to 600 ms were excluded from the dataset. Finally, 

to increase the amount of generated data, this process was 
repeated 30 times for each subject.

Pipeline for the Performance Evaluation on Simulated Data

The performance of each of the different ERP quantifica-
tion methods was evaluated on the simulated dataset using 
different SNRs. The simulated data was based on the P300 
experimental dataset, following the method described 
before. This approach allows generating data with different 
SNRs by scaling the amplitude of the ERP component that is 
added to the data. Here, the SNR of the original dataset was 
determined as the ratio of the power at the peak of the grand-
average deviant waveform and the power of the standard tri-
als. Five different SNRs were simulated. For each SNR, the 
topography of the added ERP component was scaled so that 
the ratio of the power at the peak of a waveform obtained 
after averaging the same amount of trials as in the original 
dataset, and the power of the standard trials was respectively 
− 6dB smaller, − 3dB smaller, equal, +3dB larger, or +6dB 
larger compared to the SNR of the original dataset.

Fig. 3  Visual overview of the approach used to generate simulated 
data. The images used in this overview figure are generated using the 
P300 dataset, however, the same approach can be used to simulate 
data based on other datasets and other ERP components. The general 
approach that is used here is to add an ERP waveform at a known 
latency to background EEG data. A To do this, the original data is 
first preprocessed and the epochs are extracted for both conditions. B 
The topography of the ERP waveform is then generated by calculat-
ing the average response over trials and participants for both condi-

tions separately, after which the difference between both conditions is 
calculated. The topography at the time of the peak in this difference 
waveform is then used for the ERP waveform. C Finally, the simu-
lated trials are generated by first scaling the amplitude of the ERP 
waveform according to the SNR and the width. The ERP waveform is 
then shifted to the correct latency, after which it is added to the data 
of a standard trial, serving as background EEG data, to construct the 
deviant trials
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As each of the proposed latency estimation techniques 
needs to train or learn from the data (i.e. defining the tem-
plate or learning the model parameters), the performance of 
the different ERP quantification techniques was evaluated 
using a seven-fold cross-validation approach. The simulated 
data was split into seven different groups so that all data 
generated using the original data from a particular subject 
was included within the same split. This approach guaran-
tees independence between the train and test sets. For each 
fold, the (initial) template used by the template matching 
methods was created using only the data in the training set 
by calculating the difference between the grand averages of 
the deviant and standard trials between 300 ms and 600 ms 
and applying a 5 Hz low-pass filter. The obtained template 
was then used to estimate the latency of the ERP component 
in the trials of the test set. Similarly, the EEGNet network 
and the convLSTM network were trained using the data in 
the training set after which the model was used to estimate 
the ERP latencies in the test set.

Different evaluation criteria were used to evaluate the 
performance of the methods on the simulated trials. First, 
to assess the latency estimation in the single trials, the mean 
absolute error between the true and the estimated latencies 
was calculated for the different SNRs. This was done by cal-
culating the absolute error for each trial separately and then 
averaging the errors over all trials and all subjects. The dif-
ferent methods were also evaluated at the level of individual 
subjects. After estimating the latencies in the single trials, 
the mean latency was calculated per subject. This approach 
allows to compare the latencies obtained using the averag-
ing-based methods with those obtained using the single-trial 
estimation methods. Here, the mean absolute error between 
the true mean latency and the estimated mean latency was 
calculated for each subject and each SNR. Also the topog-
raphy and the shape of the ERP obtained component for the 
different methods were evaluated. First, the correct topogra-
phy and shape of the ERP component were calculated by rea-
ligning all trials of a specific subject according to the correct 
latencies. For the averaging-based methods, no realignment 
was done, and the average waveform was used to quantify 
the topography and shape of the ERP component. For the 
single-trial estimation methods, on the other hand, the differ-
ent trials were realigned according to the estimated latencies 
before averaging and quantifying the topography and shape 
of the component. The topographies obtained by the differ-
ent methods were then compared with the true topography 
using the mean absolute error. The obtained P300 shapes 
were compared over the specified time window by calculat-
ing the mean absolute error between the true realignment 
and the realignment based on the estimated latencies. As 
the SNR of the dataset influences the obtained metrics, the 
measures were normalized by the absolute amplitude and 
the area of the true P300 component, respectively, resulting 

in the relative mean absolute error (RMAE). This approach 
allows comparing the methods over the different datasets 
in the simulated data. A visual overview of this pipeline is 
shown in Fig. 4. The process was repeated for each of the 
different train-test splits, making it possible to also evaluate 
if the results are biased by the specific selection of samples 
within each fold.

Finally, the (realigned) average waveforms of all subjects 
were realigned to the estimated mean latencies before aver-
aging to obtain the realigned grand-average waveform for 
each method. Then, the relative absolute error between the 
true and the estimated grand-average for each of the differ-
ent methods was calculated to evaluate the obtained shape 
of the P300 component.

Pipeline for the Performance Evaluation on Experimental 
Data

The different proposed methods for single-trial latency esti-
mation were also applied to both experimental datasets. In 
these datasets, the true latency of the ERP component in the 
individual trials is unknown, making it impossible to use this 
data to train the parameters in the convLSTM network or to 
use error-based metrics to evaluate the performance of the 
different methods. Figure 5 gives a visual overview of the 
pipeline used in this scenario. For the template matching-
based methods, the (original) template is created by calcu-
lating the difference between averages of the deviant and 
standard trials across all subjects, after which a 5 Hz low-
pass filter is applied to smoothen the template. For the neural 
network-based approaches, simulated data is created to train 
the parameters in the networks using the approach described 
before. The latencies of the ERP component in the experi-
mental trials are then calculated using the trained networks.

Dataset 1: Oddball Paradigm Eliciting a P300 Com-
ponent To evaluate the performance of the methods on 
the P300 dataset, the approach proposed by Ouyang et al. 
(2017) was used. Here, the correlation between the estimated 
latency and the reaction time of the subject was calculated 
and used to evaluate each of the different methods. This 
approach is based on the knowledge that, under particu-
lar conditions, the neurocognitive processing stream that 
underlies the stimulus evaluation affects the response time 
of subjects (Da Pelo et al. 2018). Furthermore, to evaluate 
the ability of the different methods to estimate the shape of 
the P300 component on the experimental dataset, all trials 
were realigned according to the estimated latencies and aver-
aged across all subjects, after which the obtained waveforms 
were visually compared.
Since the first description of the P300 component in 1965 
(Sutton et al. 1965), many researchers have studied the com-
ponent. An important finding is that the P300 latency is 
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sensitive to neural changes in both development and aging. 
Different studies have shown that while the P300 latency 
decreases with age during childhood and adolescence (Polich 
et al. 1990; Sangal et al. 1998; van Dinteren et al. 2014), it 
starts increasing again in early adulthood (Rossini et al. 2007; 
Walhovd et al. 2008; van Dinteren et al. 2014; Brown et al. 
1983; Hirayasu et al. 2000). The mean latencies estimated on 
the experimental data by each of the different methods were 
used to model the effect of age on the latency of the P300 

component and to see which approach results in the best fit of 
the model. For each method, a linear regression line was fit-
ted to the data and the slope of the curve was then observed to 
evaluate whether an increase in latency with age was found. 
The goodness of fit of the regression lines was also evaluated 
using the root mean squared error (RMSE).

Dataset 2: SSCT Paradigm Eliciting an N400 Com-
ponent As the button press response was delayed in the 

Fig. 4  Visual overview of the approach used to evaluate the perfor-
mance of the different single-trial latency estimation methods using 
simulated data. In the first step, the simulated data is split into seven 
different folds. To guarantee the independence between the train and 
test sets, this was done in a way so that all data generated using the 
original data from a particular subject was included within the same 
split. For each fold, the (initial) template are created and the neural 

networks are trained using only the data in the training set. In the next 
step, these templates and networks are then used to estimate the laten-
cies of the individual trials in the test set. Finally, the performance 
of each of the different latency estimation techniques is evaluated. 
By repeating this process for each of the different folds, the variance 
across folds can be assessed
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SSCT task, it is not possible to use the reaction times as 
a measure to evaluate the single-trial latency estimation 
methods. Therefore, the effect of age on the latency and 
the amplitude of the N400 component was investigated 
using the different single-trial latency estimation methods.

In the paper of Cocquyt et  al. (2023), the authors 
found that the latency of the N400 effect, i.e. the differ-
ence between the incorrect and correct evoked responses 
between 0.3 s and 0.5 s after stimulus onset, was signifi-
cantly delayed in elderly subjects (ages ≥60) compared to 

Fig. 5  Visual overview of the approach used to estimate the laten-
cies of the individual trials on experimental data. Starting from the 
pre-processed data, the templates used by the template matching 
methods are created by calculating the average response over trials 
and participants for both conditions separately, after which the dif-
ference between both conditions is calculated. This difference wave-
form is then filtered to remove noise and cropped to the time window 

of interest. For the neural networks, first simulated trials are created 
following the approach described before, after which the networks 
are trained using this simulated dataset with known latencies. The 
obtained templates and trained networks are then used to estimate the 
latencies of the deviant trials, after which the performance of the dif-
ferent methods is evaluated using different methods depending on the 
dataset that is used
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both young (ages 20–39) and middle-aged subjects (ages 
40–59). Furtermore, also the amplitude of the N400 effect 
was significantly smaller in elderly subjects compared to 
young subjects. No significant differences in amplitude 
were however found between middle-aged and elderly sub-
jects, while this more continuous effect of age on the N400 
amplitude was reported by Gunter et al. (1992). In this 
study, the goal was to replicate these findings and inves-
tigate if the changes in amplitude across age groups are 
caused by changes in the amplitudes of individual trials, 
changes in the variability in latency, or a combination of 
both factors. To do this, the latency of the N400 effect was 
estimated using both the averaging-based methods and the 
single-trial latency estimation methods. As in this experi-
ment the N400 effect is investigated, the averaged response 
to the correct trials was subtracted from the incorrect ones 
for each subject before estimating the latency of the N400 
effect. The amplitude of the N400 effect was then calcu-
lated as the mean amplitude of the difference in evoked 
responses between the incorrect and correct conditions 
within the 0.3 s–0.5 s time window at the Cz electrode for 
the averaging-based methods. For the single-trial latency 
estimation techniques, the averaged response to the cor-
rect trials was subtracted from the incorrect trials before 
realignment. The amplitude of the N400 effect was then 
again calculated as the mean amplitude of this realigned 
waveform within the 0.3 s–0.5 s time window at the Cz 
electrode. For each method, the effect of aging on both the 
latency and the amplitude of the N400 effect was be inves-
tigated using a univariate analysis of variance (ANOVA) 
approach with the age group as an independent variable. 
Significant main effects were investigated by post hoc mul-
tiple comparisons with a Bonferroni correction.

Results

In this section, the results obtained on the different datasets 
are discussed. The section starts by giving an overview of 
the results on the simulated data, where a distinction is made 
between the performance at the level of the single trials and 
the performance at the subject level. In the following part, 
the results obtained on the experimental datasets are dis-
cussed. For the oddball task eliciting a P300 component, 
the performance of the different methods was evaluated by 
looking at the correlation between the single-trial latencies 
and the corresponding reaction times of the subjects, by 
visual inspection of the realigned averaged waveforms, and 
by investigating the relationship between the mean estimated 
latency of the component and the age of the subject using 
regression analysis. For the second experimental dataset, the 
visual overview of the realigned averaged waveform is again 
presented, as well as the results of the statistical analyses 
investigating the effect of age on the latency and the ampli-
tude of the N400 effect.

Simulated Data

Performance at Single‑Trial Level

In Fig. 6, the mean absolute error between the true and the 
estimated latencies is shown for each single-trial latency 
estimation method as a function of the SNR level of the 
trials averaged across the different folds. Also the stand-
ard deviation of the mean absolute errors over the different 
folds is shown. The figure indicates that for the lower SNRs, 
the neural network-based approaches and single-component 
ICA outperform all other methods. For higher SNRs, simi-
lar performance is also achieved by the cross-correlation 
based techniques. As expected, in general the estimated 
latencies improve for higher SNRs. However, only limited 

Fig. 6  Comparison of the dif-
ferent methods regarding the 
mean absolute error between the 
estimated latencies and the true 
latencies in single trials for each 
SNR in the simulated data



778 Brain Topography (2023) 36:767–790

1 3

improvement is obtained using single-component ICA and 
even a small decrease in performance is found using DTW-
based template matching. Furthermore, the DTW-based 
approach leads to large errors in the latency estimation for 
all SNRs, with the method performing only slightly better or 
even worse than randomly guessing the single-trial latency.

Comparing the template-matching techniques with their 
iterative variants, the results indicate that the performance of 
the DTW technique is improved by iteratively updating the 
template, especially for larger SNRs. Likely, the amplitude 
difference between the template and the single-trial P300 
component becomes smaller, as fewer trials are taken into 
account when updating the template per subject, improving 
the performance of the DTW algorithm for the P300 latency 
estimation. The beamformer, on the other hand, performs 
worse by updating the template for each subject. Finally, the 
correlation method and its iterative variant perform similar.

Performance at Subject Level

The different latency estimation approaches were also com-
pared at the level of individual subjects. In Fig. 7A, B and 
C, respectively, the mean absolute error in mean latency, 
the relative absolute error in the topography and the rela-
tive absolute error between the shapes of the estimated and 
correct realignments are shown for the different SNR lev-
els of the trials. Looking at the error in the mean latency, 
the figure shows that the EEGNet network, the convLSTM 
network and the single-component ICA-based approach all 
outperform the averaging-based methods. The results also 
indicate that the peak method results in larger errors in the 
estimated mean latency and more variability across the 

different cross-validation folds compared to all other meth-
ods, especially for small SNRs.

Figure 7B and C indicates that both the topography and 
the shape of the estimated P300 component after realign-
ment improve with increasing SNR for all methods except 
the DTW-based approach. As for the latency estimations, 
the best results regarding the estimation of topography 
and shape of the component are obtained using the neural 
network approaches and the single-component ICA-based 
method. Furthermore, Fig. 7C indicates that the shape of the 
P300 component is better approximated using these methods 
compared to the averaging approach, even for low SNRs. 
Estimating the latency of the P300 component at the level 
of single trials thus not only offers more information on the 
variability of the timing of the P300 component within a 
subject, but also results in a better estimate of the shape and 
the topography of the component.

Finally, in Fig. 8, the realignment of the single trials aver-
aged across all subjects with SNR +0dB is shown for each 
of the different methods, along with the topography at the 
time of the peak. Also the non-realigned grand-average and a 
random realignment are plotted as a reference. The realigned 
grand-averages are compared with the correct realignment 
to check how well the shape of the P300 component is esti-
mated by each of the different methods by calculating the 
mean relative absolute error (MRAE). The figures show that 
the realignment based on the convLSTM network gives the 
best results. While the topographies at the peak are very 
similar across all methods, apart from a scaling factor due to 
smearing, the shape of the obtained P300 component varies. 
In the iterative cross-correlation, the (iterative) beamformer 
and the multiple-component ICA approaches, artefacts are 

(a) (b) (c)

Fig. 7  Comparison of the P300 quantification results of the different 
methods on the simulated datasets on subject level. A Mean absolute 
error between the estimated mean latencies and the true mean laten-
cies for each method and each dataset. B Relative absolute error in 

topography between the estimated topography and the true topogra-
phy for each method and each dataset. C Relative absolute error in 
shape between the estimated shape of the P300 component and the 
true shape of the P300 component for each method and each dataset
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being introduced into the shape of the component due to 
errors in latency estimations. The figures for the other SNRs 
are added in appendix C.

Experimental Data

Dataset 1: Oddball Task Eliciting a P300 Component

The performance of each of the different methods on the 
experimental data was first evaluated by looking at the cor-
relation between single-trial latencies and the correspond-
ing reaction times (Table 3). The highest correlations were 
found for the neural network approaches, followed by the 

iterative cross-correlation and the beamformer techniques. 
Comparing the template matching techniques with their 
iterative variants, the results indicate that iteratively updat-
ing the template improves the correlation value for the 
cross-correlation method and DTW, which is in line with 
the results obtained using the simulated data. While the 
performance of the neural networks and that of the single-
component ICA-based approach were similar on the simu-
lated data, the correlation between the latencies estimated 
by single-component ICA and the reaction times is very 
low in the experimental dataset. Furthermore, while the 
performance of single-component ICA was better than the 

Fig. 8  Realignment of the single trials averaged across all subjects 
with SNR +0dB for each of the different methods. Grey lines repre-
sent the different channels, with Pz being marked in black. Also the 
topography of the realignment at 0.420 s (cf. the dotted vertical grey 
line) after the stimulus onset is shown. The realigned waveforms are 

compared to the correct realignment to evaluate how well the shape 
of the simulated P300 component is estimated. For each method, the 
mean relative absolute error between the true and the estimated rea-
ligned waveforms across all subjects is reported
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multiple-component approach on the simulated data, the 
opposite is found for this experimental dataset.

Figure 9 shows the realigned averaged waveforms across 
all subjects, using the estimates of the different methods. 
Inspection of the figures shows that most single-trial meth-
ods result in a more narrow P300 component with a topogra-
phy similar to that obtained without realignment of the trials. 
While the realigned waveforms using the averaging-based 
methods are slightly narrower than the waveform without 
realignment, the effect is clearer for the single-trial methods, 
indicating that there is within-subject variability of the P300 
latency. The figures also show that the realignments using 
the DTW- and single-component ICA-based approaches 
result in a more smeared-out version of the P300 compo-
nent, resembling the waveform obtained using random laten-
cies in the simulated dataset. This suggests that the latencies 
obtained using these methods might be incorrect. On the 
other hand, realigning the epochs using the iterative cross-
correlation, the iterative beamformer or the peak methods 
results in peaks in the realignment, which are similar to the 
shapes obtained with these methods on the simulated data, 
indicating that these might be artefacts introduced due to 
errors in the latency estimation.

Finally, the relationship between the mean estimated 
P300 latency and the age of the subjects for each of the 
different methods is shown in Fig. 10. For each method, a 
linear regression line was fitted to the data. The goodness-
of-fit of the regression is evaluated using the RMSE, and 
the slope of the curve is used to evaluate the relationship 
between the mean estimated P300 latency and the subject’s 
age. As expected based on literature (van Dinteren et al. 
2014), most methods show an increase in estimated P300 
latency with age. However, this is not the case for single-
component ICA and iterative DTW, where even a decrease is 
found. The effect is also limited for the multiple-component 

ICA approach. The strongest increases in latency with age 
are found for the averaging-based methods and the cross-
correlation techniques. Comparing the results of the peak 
and the 50%-area latency estimation method, a better fit is 
found for the 50%-area method, as the RMSE is smaller. 
While these methods result in the largest slope, the best fits 
to the regression line are found using the neural networks 
and the ICA-based approaches.

Dataset 2: Semantic Sentence Congruity Task Eliciting 
an N400 Component

Also for the SSCT dataset, the realigned averaged wave-
forms across all subjects are visually compared to evalu-
ate the performance of the different methods. This result is 
shown in Fig. 11. More narrow ERP components are found 
when realigning according to the single-trial latency esti-
mates for the neural network-based approaches, as well as 
for the (iterative) cross-correlation and (iterative) DTW-
based template matching methods. The figure also indicates 
that realignments using the ICA-based techniques result in 
smeared-out versions of the N400 effect, again resembling 
the waveform obtained using random latencies in the simu-
lated dataset.

Furthermore, the effect of age on the latency and the 
amplitude of the N400 effect was investigated. The results 
obtained using single-trial latency estimation techniques 
were compared to the traditional averaging approach. To do 
this, the mean and the standard deviation of the estimated 
latency were calculated for each subject and the obtained 
results were compared over the three different age catego-
ries: young (ages 20–39), middle-aged (ages 40–59) and 
elderly (age ≥60). The results are shown in Table 4. The 
original paper by Cocquyt et al. 2023 reported a significant 
effect of age group on the latency of the N400 effect, with 
post hoc pairwise comparisons using Bonferroni correction 
revealing a significant delay in elderly compared to both 
young and middle-aged subjects. These results are replicated 
in this study using the 50%-area approach, as was done in 
the original paper, and similar results are also found using 
the EEGNet and the convLSTM networks. While significant 
effects of age are also found using the DTW and iterative 
beamformer approaches, post-hoc analyses only reported 
significant delays between elderly and young subjects. 
Looking at the standard deviation over the estimated laten-
cies per subject, significant effects of age are found using 
the cross-correlation, beamformer and multiple-compo-
nent ICA approaches, as well as for the neural networks. 
Post-hoc analyses reveal increased variations in latency in 
young subjects compared to middle-aged subjects (EEGNet 
and convLSTM) as well as compared to elderly subjects 
(cross-correlation, multiple-component ICA, EEGNet and 
convLSTM).

Table 3  The correlation between the reaction times and the latencies 
estimated by the different methods for single-trial ERP quantification 
in the P300 experimental dataset

Method Correlation with 
RT

convLSTM 0.30
EEGNet 0.29
Cross-correlation (iterative) 0.26
Beamformer 0.25
Beamformer (iterative) 0.23
Cross-correlation 0.20
ICA (multiple components) 0.17
DTW (iterative) 0.14
ICA (single component) 0.10
DTW 0.08
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Finally, the effect of age on the amplitude of the N400 
effect was compared using both the averaging approach 
and using the estimated latencies to realign the single trials 
before calculating the amplitude. Here, a significant effect of 
age was found for the classical averaging approach, as well 
as after realignment using the (iterative) cross-correlation 
techniques, the iterative DTW and both neural networks. As 
in the original paper, post-hoc analyses showed that young 
subjects had a significantly larger N400 effect compared to 
elderly subjects (all methods with significant effect of age). 
However, using the (iterative) cross-correlation methods and 
the neural networks, also significant differences are found 
between young and middle-aged subjects, with young sub-
jects having a larger N400 effect.

Discussion

Different methods for the quantification of ERP components 
were evaluated both on simulated data and on experimental 
data. The proposed deep learning-based methods, namely 
the EEGNet approach and the convLSTM network, per-
formed very well on all datasets, proving the applicability 
of these neural networks to quantify ERP components in 
single trials. For low SNRs in the simulated dataset, the sin-
gle-component ICA approach worked slightly better than 
the neural networks. Nevertheless, only limited differences 
were found between the estimated latencies, the topogra-
phies and the shapes of the ERP components obtained using 
these approaches.

Fig. 9  Realignment of the single trials averaged across all subjects in 
the P300 experimental dataset, obtained with the different methods. 
Grey lines represent the different channels, with Pz being marked in 

black. Also the topography of the realignment at 0.420 s (cf. the dot-
ted vertical grey line) after the stimulus onset is shown
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As expected, in general the estimated latencies 
improved for higher SNRs in the simulated data. However, 
a small decrease in performance was found using DTW-
based template matching, and only limited improvement 
was found using single-component ICA. The DTW-based 
approach led to large errors in the latency estimation for 
all SNRs, with the method performing only slightly better 
or even worse than randomly estimating the single-trial 

latency. This is likely caused by the difference in ampli-
tude of the template and the P300 component in single tri-
als. The template was created by calculating the difference 
wave between the grand-averages of the deviant and stand-
ard trials within a time window and therefore represents 
a smeared version of the P300 component. As the DTW 
algorithm calculates the Euclidean distance between the 
template and the time series to obtain the optimal warping 

Fig. 10  Scatterplot and regression lines of the relationship between the mean estimated latency of the P300 component and the age of the subject 
for each of the different methods
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path, this difference in amplitude strongly influences the 
obtained latency estimates.

For the single-component ICA approach, the only limited 
improvement for higher SNRs might be caused by the nature 
of the simulated data, as these simulations were created by 
adding an independent ERP component with varying ampli-
tude onto background noise. The results suggest that the 
decomposition algorithm might be able to isolate this ERP 
component from the data even for very low SNRs, making it 
probable that a good fit between this component and the tem-
plate was found. For the multiple-component ICA approach, 
the performance on the simulated dataset did improve with 
increasing SNR, but large differences in performance are 

found compared to the single-component ICA approach. 
It is likely that by selecting multiple components to create 
the ERP ICA subspace, also non-ERP-related activity and 
noise were included, disrupting the time series that were 
subsequently used to correlate with the template. Further-
more, while single-component ICA gave excellent results 
on the simulated dataset for all SNRs, the performance of 
this method is much lower on the experimental data, where 
the data is more complex. There is more variability in the 
topography of the ERP component, resulting in a mismatch 
between the template and the selected ICA component con-
taining the ERP. This is further confirmed by the differences 
in performance between the single- and multiple-component 

Fig. 11  Realignment of the single trials averaged across all subjects 
in the N400 experimental dataset obtained with the different methods. 
Grey lines represent the different channels, with Cz being marked in 
black. Also the topography of the realignment at 0.400 s (cf. the dot-

ted vertical grey line) after the stimulus onset is shown. The realigned 
waveforms are compared to the correct realignment to check how 
well the shape of the N400 component is estimated
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ICA approaches, as the multiple-component ICA approach 
performed better than the single-component approach on the 
experimental data.

The performance of the single-trial latency estimation 
techniques was also compared to that of averaging-based 
approaches in terms of the estimated latencies, and the 
topography and shape of the obtained ERP component after 
realignment. The results on both the experimental datasets 
and the simulated data showed that the neural network-based 
approaches typically performed better than the averaging 
approaches. Single-trial latency estimation approaches thus do 
not only offer more information on the variability of the tim-
ing of the component, but also result in better estimates of the 
shape and topography of ERP components. The results also 
clearly indicated that when using averaging-based approaches, 
the 50%-area based approach should be preferred over the 
peak-based method. The drawback of this averaging approach, 
however, is still that it is unable to capture the correct shape 
of the ERP component and that it does not provide informa-
tion on the variability of the latency of the ERP component.

The added value and the usability of single-trial latency 
estimation using the neural networks was further proven on 
the SSCT dataset, where a larger N400 effect was found 
in young subjects compared to both middle-aged and 
elderly subjects, while only significant differences between 
young and elderly subjects were found using the averag-
ing approach in both the original study by Cocquyt et al. 
Cocquyt et al. (2023) and this work. This amplitude reduc-
tion of the N400 effect with age from middle-age on, was 
previously shown by Gunter et al. (1992), and Cocquyt et al. 
(2023) attributed the discrepancy in the results to differences 
in the age range under investigation. However, the current 
results using the neural networks show that the effect of age 
on the amplitude of the N400 effect is indeed present in the 

data from the middle-age on. Furthermore, by including the 
information from the standard deviation of the estimated 
latencies in the single trials, which was found to be larger 
in younger subjects compared to both the middle-aged and 
elderly subjects, the results were able to confirm that the 
significant changes in the amplitude of the N400 effect are 
indeed due to changes in amplitude and are not caused by 
latency jitter of the N400 effect. This is also in line with 
the findings of Hoffman and Morcom (2018), who reported 
reduced activity of in some regions of the typical left-
hemisphere semantic network which have been reported as 
potential generators of the N400 effect, namely the inferior 
prefrontal, posterior temporal and inferior parietal cortex, in 
older subjects compared to the younger. These findings show 
the added value of including single-trial latency estimations 
in the analysis of the data.

In this work, different neural networks were adapted to 
quantify the ERP component in single trials and compared 
to other methods commonly used in literature using both 
simulated and experimental data. Even though the simu-
lated dataset was created as realistic as possible, certain 
assumptions, such as the topography and simplified shape 
of the ERP component, influence the obtained dataset and 
the performance of the different methods. Furthermore, 
these assumptions also affect the results obtained on the 
experimental dataset. As no information on the component 
latency is present in the experimental data, the parameters 
of the neural networks can only be learned based on simu-
lated data. This is an important limitation of deep learn-
ing approaches for single-trial ERP component quantifica-
tion. If the assumptions about the shape or the topography 
of the ERP component in the simulated data are incorrect, 
the network will not be able to perform well on the experi-
mental data. The need for the simulated data also limits the 

Table 4  Overview of the 
statistical results on the mean 
and standard deviations of the 
estimated latencies, and on the 
amplitudes of the N400 effect, 
elicited during the semantic 
sentence congruity task

*p < 0.05, **p <0.01, ***p < 0.001, ns: not significant)

Mean latency Standard deviation 
latency

Amplitude

F-values p-values F-values p-values F-values p-values

Cross-correlation 0.355 ns 7.154 *** 4.277 *
DTW 3.828 * 0.167 ns 0.257 ns
Beamformer 2.227 ns 3.284 * 2.528 ns
Cross-correlation (iterative) 1.386 ns 2.024 ns 4.295 *
DTW (iterative) 0.564 ns 1.052 ns 3.831 *
Beamformer (iterative) 3.759 * 1.733 ns 2.060 ns
ICA (single component) 0.872 ns 2.321 ns 1.892 ns
ICA (multiple components) 2.636 ns 4.566 * 1.992 ns
EEGNet 9.355 *** 4.581 * 6.585 **
convLSTM 7.308 *** 12.360 *** 7.230 ***
Peak 1.149 ns NA NA 5.501 **
50%-area 6.095 ** NA NA 5.501 **
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applicability of the networks on datasets where the ERP 
components of interest are not known a-priori. In this case, 
data-driven approaches, such as topographic analyses of 
variance and microstate analyses, have a clear advantage, 
as they allow estimating the ERPs without being limited 
to one peak selected beforehand. Another remark that can 
be made is that the same ERP component may have dif-
ferent characteristics in different populations. In this case, 
however, it would be possible to train different networks 
for the different populations, or to include characteristics 
of the different populations under investigation in the simu-
lated data, thereby creating a more robust neural network. 
Also more advanced methods to generate the simulated data 
could be used, for example using ICA to extract one or more 
subcomponents of the ERP component from the original 
data and using them as ERP waveform that is added to the 
background EEG data that is used to train the network. A 
final limitation of the neural networks is that they work as a 
so-called black box, returning an estimate of the latency of 
the ERP component without giving insight into what the net-
work’s decision is based upon. This makes the deep learning 
approaches less interpretable compared to other methods, 
such as the (iterative) cross-correlation method. Lastly, it is 
important to note that each method always returns an esti-
mate of the component latency even when no ERP compo-
nent is present in the data. Therefore, it could be useful in 
future work to combine the ERP component classifiers used 
in BCIs with these latency estimation techniques.

Conclusion

Two deep learning approaches were proposed for single-
trial latency estimation of ERP components. Application 
of these methods on both simulated and experimental 
data has shown that the neural networks outperform other 
single-trial latency estimation methods, suggesting that 
deep learning techniques can be used as a new approach 
to estimate the latency of ERP components in single trials. 
More specifically, the proposed methods for quantifying 
the ERP components resulted in better estimates of the 
topography and the shape of the components. On the P300 
experimental data, higher correlations were found between 
the P300 single-trial latencies and the subjects’ reaction 
times. Furthermore, using the N400 dataset, a larger N400 
effect was obtained in the young subjects compared to both 
the middle-aged and elderly subjects, while significant dif-
ferences were only found between the young and elderly 
subjects using the averaging approach. By including the 
information from the standard deviation of the estimated 
latencies in the single trials, the results showed that the 
significant changes in the amplitude of the N400 effect are 
indeed due to changes in amplitude and are not caused by 

latency jitter of the N400 effect, proving the added value 
of the neural networks for single-trial latency estimation 
compared to the averaging-based approaches. While the 
EEGNet network and the convLSTM network are more 
complex than other techniques proposed in literature, they 
allows researchers to better study the trial-to-trial latency 
variability of the ERP component, even in data with a low 
SNR. A drawback, however, is that simulated data needs 
to be created upfront to train the network, limiting the 
applicability of the proposed network to study ERP com-
ponents for which information is limited. In future work, 
the proposed neural network approach could be applied 
both to other ERP components, as well as to the data of 
other populations where the ERP components may have 
different characteristics, to further study its validity.

A Methods for ERP Component 
Quantification

A.1 Averaged Trial ERP Component Quantification

Two different techniques were used to quantify the ERP 
component’s latency after averaging, namely the peak 
latency and the 50%-area latency.

M1: Peak Latency The most commonly used technique for 
measuring the latency of ERP components is by defining a 
time window and finding the latency of the maximal value in 
this time window at a specific electrode. For the P300 com-
ponent, the signal at the Pz electrode between 250 and 650 
ms post-stimulus was used, while for the N400 component 
the focus was on the Cz electrode using the 200 to 600 ms 
time window. These measurement windows were selected 
based on visual inspection of the data averaged across sub-
jects (Luck 2014), while the Pz and Cz electrodes were 
chosen as the P300 and N400 components typically reach 
maximum values over the parietal and central electrodes, 
respectively (Polich 2012).

M2: 50%-Area Latency An alternative method for cal-
culating the component latency on the averaged waveform 
is by calculating the area under the ERP waveform over a 
specified time window and then finding the time point where 
a fraction of this area is reached (Luck 2014). In this work, 
the 50%-area was used. Similar to the calculation of the peak 
latency, the time window from 250 to 650 ms post-stimulus 
was considered for the P300, and 200 ms to 600 ms for the 
N400 components. The ERP waveform were again evaluated 
at the Pz and Cz electrodes for the P300 and N400 compo-
nents, respectively.
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A.2 Single Trial ERP Component Quantification 
Based on Template Matching

Seven different approaches were selected for the single-trial 
latency estimation based on template matching: non-iterative 
and iterative template matching using cross-correlation, non-
iterative and iterative template matching using DTW, a non-
iterative and an iterative spatiotemporal LCMV beamformer 
and template matching after ICA decomposition using both 
a single component and multiple components.

M3: Template Matching Using the Cross-Correlation 
Curve In this method, the resemblance between a template 
and the single trials was measured by calculating the cor-
relation between both at each time lag. This corresponds to 
calculating the cross-correlation curve between the template 
and the signal. To take into account the spatial information 
present in the data, the approach proposed by Ouyang et al. 
(2017) was used. Here, cross-correlation curves were cal-
culated for all electrodes, after which they were averaged. 
The optimal latency was then determined as the latency cor-
responding to the peak in this averaged cross-correlation 
curve.

M4: Template Matching Using Subsequence Dynamic 
Time Warping (DTW) A second template-matching 
approach that was used is based on DTW. Different vari-
ants of the DTW algorithm exist that differ in the posed 
constraints. In the original version, one of these constraints 
is the boundary condition, which states that the first and the 
last indices of the first sequence must be matched with the 
first and last indices of the second time series in the align-
ment (Müller 2007). However, the aim in this work is to find 
a subsequence, i.e. a template, within a longer sequence, 
namely the EEG signal. Therefore, the subsequence DTW 
variant, in which this constraint is dropped, was used as 
implemented in the tslearn library (Tavenard et al. 2020). 

The optimal alignment between the template and the single 
trial is expressed as a mapping between the time indices 
of the two signals. The latency of the ERP component was 
estimated as the time point to which the peak latency of the 
template is matched in the optimal alignment path.

M5: Spatiotemporal LCMV Beamformer The spati-
otemporal linearly constrained minimum variance (LCMV) 
beamformer is a flexible spatiotemporal filter developed by 
van Vliet et al. (2016) to estimate the amplitude of ERP 
components. In this work, their method was extended to 
allow estimation of the latency of the ERP component by 
shifting the template in time. For each time-shift, the ampli-
tude of the ERP component was estimated after which the 
time-shift with the highest amplitude was selected as the 
latency of the ERP component in the single trial.

M6, M7 and M8: Iterative Approaches The single-trial 
latency estimation algorithms M3, M4 and M5 can be extended 
by iteratively updating the template. This approach was first 
described for the cross-correlation method by Woody in 1967 
(Woody 1967) and allows the estimation of a subject-specific 
template. In each iteration, the different trials were realigned 
based on the estimated latencies to obtain a subject-specific 
estimate of the ERP component. However, incorrectly esti-
mated latencies can influence and distort the shape of the esti-
mated component. Therefore, a weighted average of the old 
template (80%) and the subject-specific component estimate 
(20%) was used as the new template in the subsequent iteration.

M9 and M10: Template Matching After Independ-
ent Component Analysis Multiple ICA decomposition 
approaches can be used for the latency quantification of 
the ERP component in single trials. The first choice to 
be made is which specific ICA algorithm to use for the 
decomposition. Algorithms typically used for EEG data 
include FastICA (Hyvarinen 1999), extended Infomax 
(Lee et al. 1999), Picard (Ablin et al. 2018) and adaptive 

Fig. 12  Comparison of the 
different ICA decomposition 
algorithms (extended Infomax, 
Picard, fastica and AMICA) 
regarding the mean absolute 
error between the estimated 
latencies and the true latencies 
in single trials for each each 
SNR in the simulated data
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Fig. 13  Realignment of the single trials averaged across all subjects 
with SNR -6dB and -3dB for each of the different methods. Grey 
lines represent the different channels, with Pz being marked in black. 
Also the topography of the realignment at 0.420 s (cf. the dotted ver-
tical grey line) after the stimulus onset is shown. The realigned wave-

forms are compared to the correct realignment to evaluate how well 
the shape of the simulated P300 component is estimated. For each 
method, the mean relative absolute error between the true and the 
estimated realigned waveforms across all subjects is reported

Fig. 14  Realignment of the single trials averaged across all subjects 
with SNR +3dB and +6dB for each of the different methods. Grey 
lines represent the different channels, with Pz being marked in black. 
Also the topography of the realignment at 0.420 s (cf. the dotted ver-
tical grey line) after the stimulus onset is shown. The realigned wave-

forms are compared to the correct realignment to evaluate how well 
the shape of the simulated P300 component is estimated. For each 
method, the mean relative absolute error between the true and the 
estimated realigned waveforms across all subjects is reported
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mixture ICA (AMICA) (Palmer et al. 2012; Delorme et al. 
2012). Secondly, the ERP component can either be con-
sidered as a single peak within the ICA decomposition, 
or as a combination of several components, each with an 
independent topography, which are mixed at the scalp 
level due to volume conduction (Onton et al. 2006). In 
the first case, the latency of the ERP component can be 
determined by selecting the ICA component with the high-
est cross-correlation with the template and choosing the 
corresponding time lag as the estimated latency. In the 
second case, several components from the ICA decomposi-
tion are combined before calculating the cross-correlation 
with the template to determine the latency of the ERP 
component. To determine which components to take into 
account, i.e. which subspace of the ICA components form 
the ERP component, two different criteria were used: the 
correlation between the IC topography after backprojec-
tion to the scalp and the template should be positive, and 
the p-value should be less than 0.01 (Ouyang et al. 2017).

The different ICA algorithms and the two latency quan-
tification approaches were evaluated using the simulated 
data. These results can be found in appendix B. Based on 
these results, the remainder of this work focusses on the 
extended Infomax ICA algorithm using both the single- 
and multiple-component based approaches.

B Template Matching Using ICA: Comparison 
of Algorithms and Methods

Multiple ICA decomposition approaches for the latency 
quantification of the ERP component in single trials were 
compared in this work using the simulated data. The ICA 
algorithms that were considered in this work included 
FastICA (Hyvarinen 1999), extended infomax (Lee et al. 
1999), Picard (Ablin et al. 2018) and adaptive mixture ICA 
(AMICA) (Palmer et al. 2012; Delorme et al. 2012). Fur-
thermore, also the effect of using only a single ICA com-
ponent for the latency estimation or using a combination of 
multiple components was compared. In Fig. 12, the mean 
absolute error between the true and the estimated latencies 
are shown in function of the SNR level of the dataset. The 
figure shows that when only a single ICA component is con-
sidered, the SNR level of the dataset has a limited influence 
on the performance of the latency estimation. This might be 
caused by the nature of the simulated data, as a single inde-
pendent P300 component was added to background noise. 
In this case, the extended Infomax algorithm performs best, 
and only small differences are found between the fastICA 
and Picard implementations. A clear trend is however found 
between the performance of the methods and the SNR of the 
data when considering multiple ICA components. Here, the 
extended Infomax, fastICA and Picard implementations gave 

almost identical results for all SNRs, with the performance 
of the AMICA algorithm being slightly worse. This trend 
is very similar to the one observed for the cross-correlation 
latency estimation method (Fig. 6). Therefore, it is probable 
that by selecting multiple ICA components, not only the 
ERP component but also noise is included in the combined 
signal, which leads to larger errors in the single-trial latency 
estimation for lower SNRs. Based on these results, the deci-
sion was made to use the extended Infomax algorithm for 
the further comparison of the different latency estimation 
methods.

C Realigned Grand‑Averages 
of the Simulated Data for Different SNRs

In Figs. 13 and 14 the realignment of the single trials aver-
aged across all subjects for each of the different SNRs are 
shown, along with the topography at the time of the peak, 
comparing the different latency estimation techniques. Also 
the non-realigned grand-average and a random realignment 
are plotted as a reference. The realigned grand-averages are 
compared with the correct realignment to check how well 
the shape of the P300 component is estimated by each of the 
different methods by calculating the mean relative absolute 
error (MRAE). The figures show that the realignment based 
on the convLSTM network gives the best results. Simi-
lar results are found across the different SNRs. While the 
topographies at the peak are very similar across all methods, 
apart from a scaling factor due to smearing, the shape of 
the obtained P300 component clearly varies. In the itera-
tive cross-correlation, the (iterative) beamformer and the 
multiple-component ICA based approaches, artefacts are 
being introduced into the shape of the ERP component due 
to errors in latency estimations.
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