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Abstract
Seamlessly extracting emotional information from voices is crucial for efficient interpersonal communication. However, it 
remains unclear how the brain categorizes vocal expressions of emotion beyond the processing of their acoustic features. In 
our study, we developed a new approach combining electroencephalographic recordings (EEG) in humans with a frequency-
tagging paradigm to ‘tag’ automatic neural responses to specific categories of emotion expressions. Participants were pre-
sented with a periodic stream of heterogeneous non-verbal emotional vocalizations belonging to five emotion categories: 
anger, disgust, fear, happiness and sadness at 2.5 Hz (stimuli length of 350 ms with a 50 ms silent gap between stimuli). 
Importantly, unknown to the participant, a specific emotion category appeared at a target presentation rate of 0.83 Hz that 
would elicit an additional response in the EEG spectrum only if the brain discriminates the target emotion category from other 
emotion categories and generalizes across heterogeneous exemplars of the target emotion category. Stimuli were matched 
across emotion categories for harmonicity-to-noise ratio, spectral center of gravity and pitch. Additionally, participants were 
presented with a scrambled version of the stimuli with identical spectral content and periodicity but disrupted intelligibility. 
Both types of sequences had comparable envelopes and early auditory peripheral processing computed via the simulation of 
the cochlear response. We observed that in addition to the responses at the general presentation frequency (2.5 Hz) in both 
intact and scrambled sequences, a greater peak in the EEG spectrum at the target emotion presentation rate (0.83 Hz) and 
its harmonics emerged in the intact sequence in comparison to the scrambled sequence. The greater response at the target 
frequency in the intact sequence, together with our stimuli matching procedure, suggest that the categorical brain response 
elicited by a specific emotion is at least partially independent from the low-level acoustic features of the sounds. Moreover, 
responses at the fearful and happy vocalizations presentation rates elicited different topographies and different temporal 
dynamics, suggesting that different discrete emotions are represented differently in the brain. Our paradigm revealed the 
brain’s ability to automatically categorize non-verbal vocal emotion expressions objectively (at a predefined frequency of 
interest), behavior-free, rapidly (in few minutes of recording time) and robustly (with a high signal-to-noise ratio), making it 
a useful tool to study vocal emotion processing and auditory categorization in general and in populations where behavioral 
assessments are more challenging.
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Introduction

In humans and other animals, efficient categorization of 
emotion expressions is crucial for effective social inter-
actions and survival. In Darwin’s milestone book “The 

Expression of the Emotions in Man and Animals” published 
in 1872, attention was mostly focused on the face as the car-
rier of emotion expressions. Since then, research on facial 
emotion expressions has led to the suggestion that at least six 
basic emotions- anger, disgust, fear, happiness, surprise and 
sadness (Ekman 1993) can be expressed using specific facial 
movements as coded by the Facial Acting Coding System 
(FACS, Ekman & Friesen 1978; Waller et al. 2020). These 
emotion categories are expressed similarly across different 
cultures (Elfenbein & Ambady 2002), arise very early in 
development (Flom & Bahrick 2007; Poncet et al. 2022), and 
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can be found in our evolutionary ancestors (Darwin 1872; 
Waller & Micheletta 2013).

Although Darwin mentioned the importance of vocaliza-
tions as a carrier of affective signals (Darwin 1872), it was 
suggested that voice was yet to be proven an effective source 
for detecting discrete emotion categories (Ekman 2009). 
However, mounting evidence shows that discrete emotion 
expressions can be delivered and decoded through vocal 
expressions with a high accuracy in humans (Cornew et al. 
2010; Falagiarda and Collignon 2019; Pell and Kotz 2011). 
In fact, the same discrete emotion categories as those found 
for faces (Ekman 1993) also express similarly through voices 
across cultures (Juslin and Laukka 2003; Sauter et al. 2010; 
Sauter and Eimer 2010; Scherer et al. 2001) and emotion 
detection from the voice also develops early in infancy (Izard 
et al. 1980; Mehler et al. 1978; Zhao et al. 2021).

It is well known that the distinct acoustic features that 
characterize different discrete categories of vocal emotions 
activate different patches in the core region of the auditory 
cortex that is known to be tonotopically organized (Tala-
vage et al. 2004). However, functional magnetic resonance 
imaging (fMRI) studies revealed that some temporal regions 
show distinct activations for diverse affective vocalizations 
(Frühholz and Grandjean 2013b; Ethofer et al. 2012), par-
tially independent of acoustic amplitude and frequency cues 
(Giordano et al. 2021; Grandjean et al. 2005). In addition to 
auditory cortices, other brain regions are commonly acti-
vated across a wide range of auditory emotion categories, 
such as the amygdala (Fecteau et al. 2007; Wiethoff et al. 
2009) and the medial prefrontal cortex (Etkin et al. 2011; 
Kober et al. 2008). Despite the existence of these regions 
involved in the processing of various emotion expressions, 
it is still debated whether discrete emotions may recruit 
separate brain areas (Calder et al. 2001; Ethofer et al. 2009; 
Frühholz and Grandjean 2013a; Johnstone et al. 2006; Kober 
et al. 2008; Kotz et al. 2013; Mauchand & Zhang 2022; Phan 
et al. 2002; Phillips et al. 1998; Vytal and Hamann 2010).

Affective vocalizations have been extensively studied 
using event related potentials (ERPs). Components as 
early as ~ 100 ms which usually reflect acoustic process-
ing were found to be modulated by emotional non-speech 
utterances compared to neutral vocalizations (Jessen et al. 
2012) This may suggest that the difference in early ERPs 
are driven by acoustic features (Salvia et al. 2014). In addi-
tion, there is also evidence of enhancement of later ERP 
components such as the early posterior negativity (EPN: 
200–350 ms) and late positive potential (LPP: ~ 400 ms) 
when emotional utterances are contrasted with neutral 
vocalizations (Frühholz et  al. 2011; Jessen and Kotz 
2011). These later differences are thought to index the 
mechanism of affective categorization (Schirmer and Kotz 
2006) that may be partially independent from acoustic dif-
ferences. However in most electrophysiological studies, 

the responses to emotional vocalizations are compared to 
neutral vocalizations rather than to different emotions, thus 
leaving unanswered whether the observed differences are 
due to acoustic differences (Banse and Scherer 1996; but 
see Bostanov and Kotchoubey 2004; Pell et al. 2015) or 
change in valence or arousal rather than the categorisation 
of discrete emotion expressions.

In this study, we aimed to develop a novel approach com-
bining electroencephalographic recordings (EEG) in humans 
with a frequency-tagging paradigm to provide an objec-
tive measure of automatic categorization of vocal emotion 
expressions beyond the processing of acoustic features. The 
frequency-tagging approach (Regan 1989) relies on the fact 
that under external stimulation of periodic stimuli, the brain 
regions that encode the stimuli synchronize at the exact same 
frequency (Norcia et al. 2015). We adapted the Fast Peri-
odic Auditory Stimulation paradigm (FPAS, Barbero et al. 
2021) to present different exemplars of discrete auditory 
emotion categories. The stimuli were presented periodically 
at 2.5 Hz (e.g. the stimulus length is 350 ms with a 50 ms 
silence/gap). Importantly, within the sequence of affective 
vocalizations, there is also embedded another periodically 
occurring target emotion category (e.g. different exemplars 
of Fear presented at every third position at 0.83 Hz). Thus, 
the brain will elicit a response at the general rate of sound 
presentation and its harmonics (2.5 Hz, 5 Hz, 7.5 Hz etc.) 
if it can segregate different affective sounds. Crucially, we 
will be able to observe a response at the target frequency 
and its harmonics (0.83 Hz, 1.66 Hz, 3.32 Hz etc.) only if 
the participants’ brain can discriminate the vocalization of 
the target category from sounds of other frequent non-target 
categories as well as generalize all target vocalizations to 
one common emotion category (see Barbero et al. 2021).

From a fundamental point of view, our study aimed to 
investigate whether the human brain categorizes discrete 
auditory emotion expressions partially independently from 
their acoustic properties. This was implemented by the 
careful selection of non-verbal vocalizations with similar 
acoustic properties (spectral center of gravity, harmonicity-
to-noise ratio, pitch) and introducing a second control stimu-
lation sequence of frequency-scrambled sounds with similar 
spectro-temporal profile (frequency content, sound’s enve-
lope) to the intact sounds and identical periodic constraints 
but disrupted intelligibility (Barbero et al. 2021; Dormal 
et al. 2018). In addition to the frequency domain analysis, 
we conducted time-locked analyses to investigate the time 
course of the response underlying emotion categorization. 
Finally, our study also aimed to provide a powerful tool to 
investigate the brain’s ability to categorize auditory emo-
tion expressions objectively (the response lies at predefined 
frequencies of interest), robustly (with a high signal-to-noise 
ratio), and automatically (does not need an explicit request 
to process affective vocalizations).
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Materials and Methods

EEG Experiment

Participants

Twenty-four participants (12 females, mean age: 22.29, 
S.D.: 2.33, range: 19–28 years) participated in the study. 
All participants reported no history of neurological or 
audiological disorders and were right-handed. Auditory 
deficits were self-reported by the participants since there 
are strong associations of self-reported and audiometric 
hearing loss, especially within the age range of our sample 
set (Gomez et al. 2001; Hannula et al. 2011; Kiely et al. 
2012). The experiment was approved by the local ethical 
committee of the Catholic University of Louvain (UCLou-
vain, project 2016–25). All participants provided written 
informed consent and received financial compensation for 
their participation.

Stimuli

We selected sounds of five primary emotion categories: 
anger, disgust, fear, happiness and sadness. The stimuli 
were extracted from clips in which professional actors and 
actresses performed emotion expressions in varied styles 
and intensities without any linguistic content (Belin et al. 
2008). Additionally, a few stimuli were selected from 
a database of non-verbal vocalizations depicting sev-
eral distinct varieties of emotion categories (Cowen and 
Keltner 2017). A total of 96 heterogeneous sounds were 
cropped to a length of 350 ms to allow periodic presenta-
tion. All sounds were equalized in overall energy (root 
mean square, RMS) and 10 ms ramps were applied at the 
start and at the end of the stimuli to avoid clicking. To 
make sure that the empirical EEG responses to emotion 
vocalizations are not driven by different acoustic features 
across different emotion categories, we confirmed that the 
sounds have comparable spectral center of gravity (COG; 
F = 1.1882, p = 0.3224, ηp2 = 0.0567), harmonicity-to-
noise ratio (HNR; F = 1.6930, p = 0.1599, ηp2 = 0.0789) 
and pitch (F = 1.7618, p = 0.1448, ηp2 = 0.0819) across the 
five emotion categories (Fig. 1a). The acoustic properties 
were computed using custom scripts in Praat (Boersma 
and Weenink 2001).

To select emotional stimuli eliciting a reliable recogni-
tion of the intended emotion, we conducted a behavio-
ral experiment where 10 participants (mean age = 27.7, 
S.D. = 4.6200; who did not participate in the EEG experi-
ment) categorized each sound as pertaining to one of the 
five selected emotion categories using a five-alternative 

forced choice task. 3 blocks were presented in a rand-
omized fashion where each block was composed of 96 
stimuli with 1 repetition per block (anger, disgust, sad-
ness: 14 each; fear and happiness: 27 each). Among those 
sounds, 84 sounds across 5 categories were selected 
(anger, disgust, sadness: 12 each; fear, happiness: 24 
each). All selected sounds achieved 80% or more recogni-
tion accuracy across all participants (chance level: 20%) 
and were subsequently used to build the sequences for 
the EEG session (Fig. 1b). We required double number 
of stimuli for Fear and Happiness categories to present 
an equal number of unique stimuli of each category in 
the sequence (More details in Sect. “Sequences and Pro-
cedure”). Each emotion category consisted of an equal 
number of sounds by male and female actors to incor-
porate heterogeneous spectro-temporal profiles across the 
stimuli set.

To create the control sequences, the selected stimuli were 
frequency-scrambled (as in Dormal et al. 2018) to preserve 
the overall frequency content of the original sounds while 
disrupting their harmonicity and intelligibility. Specifically, 
we extracted the sound envelope of each sound using the 
Hilbert transform and computed a Fast Fourier Transform 
(FFT) of each sound to shuffle the magnitude and phase 
of frequency bins within consecutive windows of 200 Hz. 
Then, we computed the inverse FFT and we applied the 
original sound envelope to the resultant scrambled wave-
form. This procedure led to a disruption in harmonicity and 
intelligibility of the scrambled sounds (as confirmed in a 
behavior experiment: see Sect. “Experiment 2-Behavior”), 
while keeping their spectro-temporal structure almost iden-
tical to the original/intact sounds (Fig. 1d, e). The overall 
energy (RMS) of all scrambled sounds were equalized and 
ramps of 10 ms were applied same as for the intact sounds.

Sequences and Procedure

The affective sounds were placed one after the other in a 
periodic fashion with an inter-stimulus interval (ISI) of 
50 ms to facilitate sound segregation and discrimination. 
Thus, the general rate of presentation or base rate was 2.5 Hz 
(i.e., 1/(0.350 + 0.050) s). Importantly, each third sound in 
the sequence belonged to a specific emotion category which 
was presented periodically at a target frequency of 0.833 Hz 
(2.5 Hz/ 3), while all sounds of non-target categories were 
presented non-periodically. The non-target emotion catego-
ries were presented once before being repeated. Two emotion 
conditions were created, where Fear and Happiness were 
used as the target category, respectively. Fear was chosen 
due to its salience and evolutionary function (Stanley 1984). 
Happiness was selected due to its different valence amongst 
the other chosen emotions with negative valence. For each 
emotion condition, unique sequences were constructed such 
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that the order of stimuli in each sequence was randomized to 
increase generalizability. The order of stimuli presentation 
of each frequency intact sequence was replicated in a cor-
responding frequency-scrambled sequence. As a result, each 
intact sequence had an identically ordered control scrambled 
sequence (Fig. 1c). With 24 unique targets of 1 emotion cat-
egory (Fear or Happiness) and 48 unique non-targets across 
the other 4 emotion categories in any sequence, each sound 
was presented twice in a sequence (total sounds: 144), lead-
ing to a sequence length of 57.6 s. Each sequence included 
2 s of fade-in and fade-out where the volume gradually 
increased from 0 to maximum amplitude of the sounds at 
the start and vice-versa at the end of the sequence, in order 
to avoid abrupt movements of the participants at the onset 
of each sequence which could have introduced artifacts in 
the recordings.

Therefore, four different conditions were presented: 
two different sequence conditions (intact sequence with 
conditions: Fear and Happiness as target) and to control 
for low-level acoustic confounds (scrambled frequency 

sequences), namely Fear Intact, Fear Scrambled, Happi-
ness Intact, Happiness Scrambled. Ten instances of each 
sequence group (total: 40) were created prior to the EEG 
session and presented to each participant in a pseudo-ran-
domized fashion. The speakers were placed at 1 m distance 
and all sounds were presented at around 60 dB measured 
from the ears of the participants. The participants kept 
their eyes closed during sequence presentation and were 
instructed to press a button when they heard a sound lower 
in volume as compared to the other sounds. The lower vol-
ume was implemented by reducing the sounds’ root mean 
square (RMS) value by a factor of 10. This attention target 
was presented 6 times per sequence in a randomized fash-
ion, excluding the 2 s fade-in and fade-out at the start and 
end of the sequence. Examples of the sequences are avail-
able at: https:// github. com/ sid03 09/ freqt ag_ emoti on. The 
experiment was designed on MATLAB R2016b (Math-
works) using the Psychtoolbox and extensions (Brainard 
1997; Kleiner et al. 2007; Pelli 1997).

Fig. 1  Stimuli and sequences: A The selected sounds of five emotion 
categories have similar spectral properties: center of gravity (COG), 
harmonicity to noise ratio (HNR) and pitch. B Behavioral experiment 
validated 84 short non-verbal vocalizations to depict the appropriate 
emotion category. A = Anger, D = Disgust, F = Fear, H = Happiness, 
S = Sadness. C Sounds were presented periodically at 2.5  Hz. The 
target emotion (e.g. fear in this illustration) repeated at every third 
position leading to a target presentation rate of 0.83 Hz while other 
emotion categories were presented randomly. D Bode plot shows 

similar averaged spectral power of intact and scrambled stimuli for 
target and non-target sounds for each emotion condition. E Similar 
averaged FFT distribution of the envelope between intact and scram-
bled sequences indicates similar temporal profiles across the two 
types of sequences in each emotion condition. F No significant differ-
ence found in the averaged FFT magnitudes of the simulated cochlear 
response to intact and scrambled sequence, verifying similar spectro-
temporal profile of all sequences as well as the processing of acoustic 
features at the cochlear level

https://github.com/sid0309/freqtag_emotion
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EEG Acquisition

During acquisition, participants sat in a dimly lit room 
and EEG was acquired with a Biosemi ActiveTwo System 
(https:// www. biose mi. com/ produ cts. htm) using 128 chan-
nel Ag/AgCl electrodes. International 10–20 system were 
used for the recording sites as well as their intermediate 
positions (position coordinates can be found at https:// www. 
biose mi. com/ headc ap. htm). Additionally, two surface elec-
trodes were applied at mastoids. The acquisition sampling 
rate was 512 Hz. The magnitude of offset of all electrodes 
that were referenced to the common mode sense (CMS) were 
kept below ± 25.

Analysis

Data was analyzed using Letswave 6 (https:// github. com/ 
NOCIO NS/ Letsw ave6) and the Fieldtrip toolbox (Oosten-
veld et al. 2011) running on MATLAB R2016b (Mathworks) 
with custom built scripts in MATLAB and on Rstudio (Rstu-
dio Team 2020). Subsequent sections of data preprocess-
ing and the frequency domain analysis followed a pipeline 
that has been adopted in many frequency-tagging studies in 
vision (Bottari et al. 2020; Dzhelyova et al. 2017; Retter and 
Rossion 2016; Rossion et al. 2015, 2020; Volfart et al. 2021) 
and audition (Barbero et al. 2021).

Preprocessing Raw continuous EEG data was filtered 
using a fourth order Butterworth band-pass filter from 0.1 
to 100 Hz and a notch filter at 50 and 100 Hz with a width 
of 0.5 Hz to attenuate the power line noise. The data was 
then down-sampled to 256  Hz to facilitate data handling 
and storage. Continuous data was then segmented from 2 s 
before the onset of the sequences to 2 s after the end of the 
sequence, resulting in a trial length of 61.6 s. Subsequently, 
the ICA matrix of each segmented trial was computed using 
RUNICA (Makeig et al. 1995) and the resulting components 
for each participant were visually inspected. Artefactual 
frontal components due to facial movements, when present, 
were deleted with at most one component deleted in 18 out 
of the 24 participants. Visual inspection was then conducted 
to detect potential noisy trials and/or electrodes. Trials con-
taining residual artefactual activity were deleted (on aver-
age 1.6 trials out of the 40 trials per participants, maximum 
number of trials deleted was 5 in two participants). Noisy 
channels were linearly interpolated using the three closest 
neighboring electrodes (2 channels for 5 subjects—FT8, 
FC5; T8h, AF7; FPz, AFF2; AF3, P9; PPO5, AFF2 respec-
tively—and 1 channel for 4 other subjects—I1; I1; C6; 
CPP5h). The trials were subsequently re-referenced to the 
average reference and divided into two emotion conditions 
(Fear and Happiness) and its two sequence types (Intact and 

Scrambled): Fear Intact, Fear Scrambled, Happiness Intact 
and Happiness Scrambled.

Frequency Domain Analysis Considering the presenta-
tion rate of the target emotion category and the frequency 
resolution (1/duration of the sequence), all trials were 
re-segmented from 2  s after sequence onset (to remove 
fade-in) to a length of 52.8 s, to contain an integer num-
ber of target presentation cycles (0.833 Hz). Trials were 
then averaged in the time domain separately by emotion 
condition (Fear and Happiness) and sequence type (Intact 
and Scrambled) to attenuate the noise and brain responses 
that were not time-locked to the stimuli (Luck 2014). The 
resulting averaged trials for the four conditions were then 
grand-averaged across participants. Consequently, a Fast 
Fourier Transform (FFT) was applied to the averaged tri-
als. Amplitude spectra extended from 0 to 128 Hz with a 
frequency resolution of 0.0189 Hz, allowing us to isolate 
the base response (general presentation rate) at 2.5  Hz 
and target response at 0.833 Hz, along with their respec-
tive harmonics. The harmonic responses in addition to 
fundamental frequency (in this case 2.5  Hz or 0.83  Hz) 
can be accounted for in relation to complex responses of 
the brain, corresponding to the principles of frequency 
domain analysis of periodic signals (Retter et  al. 2021). 
Since the summation of harmonics in the FFT can indi-
cate the overall responses in single values (Retter et  al. 
2021; Retter and Rossion 2016), we applied a criterion to 
select significant harmonics to include in further analysis. 
Significance of harmonics was determined by first pool-
ing all 128 channels together and computing the z-score 
at each frequency bin, considering 12 bins at each side 
of the frequency bin of interest, excluding the immedi-
ate adjacent bins and the maximum and minimum of the 
entire window (Retter and Rossion 2016). For each tar-
get emotion condition (Fear and Happiness) and sequence 
type (Intact and Scrambled), consecutive harmonics that 
displayed a z-score > 2.32 (p < 0.01, 1-tail, signal > noise) 
were considered significant. While considering signifi-
cant harmonics for the target emotion conditions, the base 
frequency bins (i.e., 2.5, 5, 7.5  Hz etc.) were not taken 
into account. The chosen number of consecutive harmon-
ics for Intact and Scrambled sequences were equalized by 
considering the highest number of significant consecutive 
harmonics in any of the two types of sequences, knowing 
that adding responses at non-significant harmonics is not 
detrimental for the calculation of the response (i.e., add-
ing zeros, Retter et al., 2018). To quantify the responses 
at base and target frequencies, we computed the baseline 
subtracted amplitudes on the grand-averaged FFT of each 
condition and type, where the window for this calculation 
was defined similarly to the computation of z-scores (12 
bins on either side except maxima, minima and adjacent 

https://www.biosemi.com/products.htm
https://www.biosemi.com/headcap.htm
https://www.biosemi.com/headcap.htm
https://github.com/NOCIONS/Letswave6
https://github.com/NOCIONS/Letswave6
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bins). Baseline subtraction takes into account the differ-
ent noise profiles across different frequency bands (Luck 
2014), especially higher noise at low frequencies (< 1 Hz) 
in EEG recordings. Consequently, we summed the base-
line subtracted amplitude at the selected significant har-
monics to finally represent them as topographical maps. 
For illustration purpose, the signal-to-noise ratio (SNR) 
was computed using the same criteria to estimate the noise 
(12 bins on either side, excluding the immediate bins on 
either side, the maximum and minimum).

To find the electrode(s) of interest involved in emotion 
categorization for Fear and Happiness that could be inde-
pendent of low-level acoustic processes, we subtracted the 
grand averaged FFT spectra of the frequency-intact and 
frequency-scrambled sequences (intact—scrambled) for 
each target emotion condition separately. Then, we extracted 
chunks of the resultant spectra, where each chunk consisted 
of 25 frequency bins (central bin of the chosen harmonic and 
12 neighboring bins on each side). The number of chunks 
was defined as the number of chosen harmonics in each emo-
tion condition. The sum of the chunks and then, the z-score 
were computed at the harmonic (13th bin) for each channel 
(Volfart et al. 2021). Finally, we performed FDR (Benja-
mini and Hochberg 1995) correction across 128 channels 
for multiple comparisons, for each emotion condition. Addi-
tionally, to demonstrate the response of each individual and 
consider inter-individual variability, we repeated the analysis 
by applying the FFT to the average of all trials of each con-
dition, type and participant. Baseline subtracted amplitudes 
were calculated at the target frequency and its significant 
harmonics (that were found as per the grand-averaged analy-
sis for each emotion condition) and consequently summed.

Time Domain Analysis We conducted time-locked analy-
sis to characterize the time course of emotion discrimi-
nation process. The raw data was filtered through the 
Butterworth bandpass and the notch filter with the same 
parameters as in frequency domain analysis. An additional 
notch filter was applied to the filtered data to remove 
activity related to the sound presentation rate (at 2.5, 5, 
7.5  Hz) which would reflect general auditory processes 
not linked to emotion discrimination. Stimulus-locked 
epochs of 800 ms ranging from the onset of one stimulus 
prior to the target stimulus to the end of the target stimulus 
were extracted such that each sequence yielded 44 epochs. 
The first 2 and last 2 epochs were deleted to exclude 
the fade in and out of the sequences. Noisy epochs with 
amplitude deflections exceeding ± 100 µV in any channel 
were deleted. The resultant epochs were re-referenced to 
averaged mastoids, then equalized in number across con-
ditions and types separately and averaged for each subject. 
Baseline correction was implemented by subtracting the 
signal within 400 ms pre-stimulus activity, corresponding 

to 1 cycle of base rate, i.e. the prior epoch to the target 
epochs (Dzhelyova et al. 2017). Finally, the baseline sub-
tracted epochs were grand-averaged across all subjects for 
each condition and type separately.

To compare the temporal activity of emotion catego-
rization, we conducted a time point-by-time point, one-
tailed t-test between frequency intact and scrambled 
sequences across subjects for each electrode and emotion 
condition. FDR correction was applied across 128 chan-
nels to correct for multiple comparisons (Benjamini and 
Hochberg 1995). Segments of data were considered signif-
icantly different if the two conditions (intact vs scrambled) 
were different for more than 25 ms, i.e. > 13 consecutive 
time-points (Chen et al. 2021).

Cochlear Model and Envelope

To ensure that potential differences in the EEG responses 
elicited by different conditions could not be merely explained 
by differences in the temporal structure of the target emotion 
categories of interest, we compared the temporal envelopes 
of intact and scrambled sequences. We prepared unique 
sequences for each participant before the EEG session (40 
per individual) and extracted the envelope of each sequence 
using the Hilbert Transform. Then, we computed the FFT 
of all envelopes and averaged them across each sequence 
type (intact and scrambled) and condition (Fear and Happi-
ness) for each participant. Further, we chose the harmonics 
of interest in the FFT based on the empirical EEG data (see 
Sect. “Frequency Domain Analysis” for the procedure and 
Sect. “Frequency Domain: Base Response” for EEG results) 
and summed the FFT magnitudes across the chosen bins for 
every subject. Finally, a 1-tailed t-test was calculated across 
all participants to contrast intact from scrambled sequences. 
Additionally, to assess how spectral and temporal character-
istics of sound alone can influence early responses processed 
in the cochlea, we employed gammatone filters using Audi-
tory Toolbox (Slaney 1994) to simulate a cochlear response 
to a given sequence. Cochlear simulation was computed on 
each sequence before the EEG session. The FFT was applied 
on the simulated cochlear response and each sequence type 
(intact and scrambled) and condition (Fear and Happiness). 
Then, we chose the harmonics of interest in the FFT of the 
cochlear response based on the empirical EEG data (see 
Sect. “Frequency Domain Analysis” for the procedure and 
Sect. “Frequency Domain: Base Response” for EEG results) 
and summed the FFT magnitudes across the identified bins 
of interest for each subject. Lastly, we compared the summed 
FFT magnitudes of intact and scrambled sequences across 
all participants using a 1-tailed t-test (intact > scrambled) for 
each condition separately.
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Behavioral Experiment

We conducted a behavioral experiment to evaluate whether 
the participants could efficiently identify emotion from a 
stream of short bursts of affective voices, classify vocali-
zations to discrete emotion categories and to confirm the 
unintelligibility of the scrambled sounds.

Participants

21 out of 24 participants (11 women, age: 22.28, SD: 2.36, 
range: 19–28 years) who took part in the EEG experiment 
participated in the behavioral experiment. This session was 
scheduled after the EEG experiment to avoid familiarity with 
the sounds during the EEG session. All participants reported 
no history of neurological or audiological disorders and 
were all right-handed. The experiment was approved by the 
local ethical committee of Catholic University of Louvain 
(UCLouvain, project 2016–25). All participants provided 
written informed consent and received financial compensa-
tion for their participation.

Procedure

Stimuli from the EEG session were used in the behavioral 
experiment (see Sect. “Stimuli”). The behavioral session 
was divided into two tasks: (1) a “Sequence task” where 
subjects were asked to identify a target emotion category 
amongst sounds presented in a short sequence and (2) an 
“Isolation task”, where each sound was presented separately. 
The sequence task was divided into four blocks, each block 
consisting of 48 short sequences and each sequence com-
prising of five emotional sounds. Two of the four blocks 
required the participants to identify if a Fearful vocalization 
was present amongst the sounds presented while in the other 
two blocks, participants were instructed to detect whether a 
Happy vocalization was present in the sequence. To mimic 
the structure of the sequences used in EEG experiment, we 
inserted the target emotion at the third place in each short 
sequence. Subjects were asked to perform a two-alterna-
tive forced-choice task (target emotion present or not) with 
half of the sequences in each block (24/48) consisting of 
the target emotion category (Fear or Happiness according 
to the block). All sequences and blocks were presented in 
a random order. Later, participants performed the “Isola-
tion task” which was divided into four blocks, each con-
sisting of 84 sounds. In two blocks, subjects were asked 
to listen to a single affective vocalization and answer three 
questions- (a) classify the sound to one of the five emo-
tion categories: anger, disgust, fear, happiness or sadness 
in a five-alternatives forced choice task; (b) rate the valence 
of each sound on a scale from 1 to 5 (1 = most negative, 
3 = neutral, 5 = most positive); (c) rate the arousal evoked 

by the stimuli on a scale from 1 to 5 (1 = not aroused at all, 
5 = most aroused). In the other two blocks, the scrambled 
version of the same sounds were presented and the subjects 
were asked to classify them to an emotion category in a 
five-alternatives forced choice task. All sounds and blocks 
were presented in a randomized order. The experiment was 
implemented on Psychtoolbox and extensions (Brainard 
1997; Kleiner et al. 2007; Pelli 1997) running on MATLAB 
R2016b (Mathworks). For analysis, sensitivity indices were 
calculated for each task using D-primes (d’) constituting an 
unbiased quantification of performance in detection tasks 
considering both hits and false alarms (Hautus et al. 2021; 
Tanner and Swets 1954).

Results

Experiment 1‑ EEG

Frequency Domain: Target Response

The target response was quantified as the sum of consecu-
tive significant harmonics, i.e., 5 harmonics for Fear (0.833, 
1.666, 3.333, 4.166 and 5.83  Hz) and 4 for Happiness 
(0.833, 1.666, 3.333 and 4.166 Hz). Presence of a response 
in each condition and type was assessed by computing the 
z-scores in all channels. (Fear Intact > 0: 107 channels, 
maximum at TP8: z = 10.2913, p = 3.8550 ×  10–25; Fear 
Scrambled > 0: 77 channels, maximum at PO10: z = 6.3015, 
p = 1.4731 ×  10–10; Happiness Intact > 0: 110 channels, 
maximum at TP8: z = 10.0758, p = 3.5342 ×  10–24; Hap-
piness Scrambled > 0: 100 channels, maximum at PPO6: 
z = 9.7109, p = 1.3553 ×  10–10, all p-values are FDR cor-
rected). Crucially, after pooling all channels in each con-
dition separately, the sum of baseline subtracted ampli-
tudes at the harmonic bins of interest revealed a higher 
amplitude for intact sequences type in comparison to 
scrambled for both Fear and Happiness conditions (Fear 
Intact: mean = 0.0484  μV, S.D. = 0.0613; Fear Scram-
bled: mean = 0.0292 μV, S.D. = 0.0333; Happiness Intact: 
mean = 0.0561 μV, S.D. = 0.0516; Happiness Scrambled: 
mean = 0.0379 μV, S.D. = 0.0357; topoplots depicted in 
Fig. 2a).

To find the channels contributing to the emotion-selective 
EEG responses at the target frequency and harmonics, we 
first computed the difference between the grand averaged 
Fast Fourier spectra of frequency intact and scrambled con-
ditions at each electrode and computed the z-score for the 
2 conditions: Fear and Happiness (see methods Sect. “Fre-
quency Domain Analysis”). We found 42 significant chan-
nels for Fear selective response in bilateral temporal areas 
(Fig. 2c; Fear intact—Fear scrambled > 0: maximum in 
right temporal FT8h: z = 5.3219, p = 5.1345 ×  10–8; in 
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left temporal TP7h: z = 4.7200, p = 1.1792 ×  10–6) and 
fronto-central electrodes (maximum at FFC3: z = 5.4294, 
p = 2.8272 ×  10–8). 16 significant channels for Happiness 
condition were clustered in right temporal (Happiness intact 
– Happiness scrambled > 0: maximum at C6h: z = 4.8022, 
p = 7.8466 ×  10–7) and left frontal area (maximum at AFF5: 
z = 4.3399, p = 7.1274 ×  10–6). All p-values are FDR cor-
rected and other significant channels with their z-scores are 
tabulated in Table S1 in supplementary material.

We found five significant overlapping channels across 
Fear and Happiness conditions over right temporal elec-
trodes, that may indicate elicitation from regions common 
to emotion processing, regardless of the category: P6, TP8h, 
TP8, CP6 and T8h (Fig. 2d). For visualization, the signal-to-
noise ratio (SNR) at the right temporal channel TP8h (signif-
icant in both Fear and Happiness conditions) shows higher 
SNR at the harmonics of interest for intact in comparison 
to scrambled (Fig. 2b). However, we also observed differ-
ent clusters of significant electrodes across conditions. To 
investigate further whether some channels were more selec-
tive to Fear than Happiness or vice versa, we subtracted the 
FFT of Happiness intact from Fear intact and computed the 

z-score at the bins of interest. Since we previously selected 
different number of harmonics to quantify Fear (5 harmon-
ics) and Happiness (4 harmonics) responses, we equalized 
the number of harmonics to the maximum (i.e. 5 harmonics) 
since adding responses at non-significant harmonics is not 
detrimental for the calculation of the response (i.e., adding 
zeros, Retter et al., 2018). The two-sided FDR corrected 
p-values from the z-test revealed 38 significant channels 
that were more selective to Fear than Happiness (Fig. 2c) 
mostly clustered at and around the central region (Fear 
intact—Happiness intact > 0: maximum at FFC1: z = 6.4061, 
p = 7.4645 ×  10–11). We did not find any channels signifi-
cantly more selective to Happiness than Fear.

Furthermore, we also quantified each participant’s 
response to Fear and Happiness by averaging the summed 
baseline subtracted amplitude across 42 and 16 signifi-
cant channels, respectively. One-tailed t-tests revealed that 
the contrast Intact and Scrambled is significantly supe-
rior to 0 (Intact—scrambled > 0: Fear: mean = 0.0485 μV, 
S.D. = 0.0638,  t(23) = 3.7237, p = 5.5720 ×  10–4, Cohen’s 
d = 0.7602; Happiness: mean = 0.0361 μV, S.D. = 0.0621, 
 t(23) = 2.8480, p = 0.0045, Cohen’s d = 0.5813, all p-values 
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Fig. 2  EEG results: A Sum of baseline subtracted amplitudes are rep-
resented as topographies. The base response appears similar across all 
conditions and types. The target response to Intact Fear is localized 
to bilateral temporal and central areas while response to Intact Hap-
piness is elicited in the right temporal and left frontal region. Higher 
responses observed for intact stimuli sequences than scrambled stim-
uli sequences. B Signal to noise ratio (SNR) at channel TP8h for both 
emotion conditions to visualize the response across frequencies. H1 

and Hn refer to the first harmonic of target frequency i.e. 0.83 Hz and 
higher harmonics, respectively. C Scalp regions eliciting significant 
emotion-selective responses Fear is significant at bilateral temporal 
and central regions; Happiness at right temporal and left frontal areas. 
Channels in central and bilateral temporal regions are more selec-
tive to Fear than Happiness while no channels are more selective to 
Happiness. D Distinct, yet overlapping channels selective to Fear and 
Happiness
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are FDR corrected). Individual baseline subtracted ampli-
tudes are plotted in Fig S5 in supplementary material.

Frequency Domain: Base Response

2 consecutive significant harmonics for Fear (2.5, 5 Hz) and 
3 for Happiness were identified (2.5, 5, 7.5 Hz). A similar 
topography was observed visually at the general rate of pres-
entation of sounds across intact and scrambled sequences 
(Fig. 2a). However, z-scores revealed differences between 
intact and scrambled types for both Fear and Happiness 
emotion conditions (Intact—Scrambled > 0: Fear: 1 chan-
nel at FC6: z = 5.2978, p = 5.8611 ×  10–8; Happiness: 38 
channels. maximum at FC6: z = 6.4441, p = 5.8128 ×  10–11, 
p-values are FDR corrected).

Time Domain

We compared the grand averaged trials of intact and scram-
bled targets with a time point-by-time point 1-tailed t-test 
separately for each emotion condition. The analysis revealed 
two significant windows for the Fear condition (Fig. 3): 
between 135 and 176 ms (Intact > Scrambled, peak at Cz 
at 152 ms: mean = 0.6780 μV, SD = 0.7978,  t(23) = 4.1631, 
p = 0.0012, Cohen’s d = 1.0257, p-values are FDR corrected) 
and between 311 and 398 ms (Intact > Scrambled, peak at 
Cz at 339 ms: mean = 0.8361 μV, SD = 0.8528,  t(23) = 4.6508, 
p = 8.8496 ×  10–4, Cohen’s d = 0.9345, p-values are FDR cor-
rected). These differences expressed over central, frontal and 
parietal electrodes. Happiness intact trials elicited a stronger 

response than their scrambled version across right tempo-
ral channels in only one late time window—between 319 
and 356 ms (Intact > Scrambled, peak at CP6 at 337 ms: 
mean = 0.5764 μV, SD = 0.5628,  t(23) = 5.0178, p = 0.0013, 
Cohen’s d = 1.1390, p-values are FDR corrected) expressing 
over right temporal channels. Thus, in addition to different 
topographic representations, we also found different tempo-
ral windows of categorization of Fear and Happiness, where 
responses to Fear occurred earlier than Happiness. Lastly, 
four channels in the right temporal region: P6, TP8h, CP6 
and T8h showed greater responses for intact sequences than 
scrambled for both Fear and Happiness conditions, consist-
ent with the results of the frequency domain analysis.

Cochlear Model and Envelope

After preparing the sequences of affective sounds for each 
subject, the FFT spectrum of the envelope of sequences of 
both emotion conditions (Fear and Happiness) and types 
(Frequency Intact and Scrambled) were averaged separately. 
Then, the FFT magnitude at the harmonics were summed 
(defined from the empirical EEG results: 5 harmonics 
for Fear, 4 for Happiness) and contrasted with a 1-tailed 
t-test suggesting similar temporal structure for both type 
of sequences (Intact > Scrambled: Fear:  t(23) = -0.3718, 
p = 0.6432, Cohen’s d = -0.1759; Happiness:  t(23) = -0.7062, 
p = 0.75644, Cohen’s d = -0.1442, p-values are FDR cor-
rected across participants; Fig. 1e). Similarly, we computed 
a 1-tailed t-test between the summed FFT magnitudes of 
harmonics of interest of the simulated cochlear response 
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Fig. 3  EEG time domain results: t-statistic of Fear intact > scram-
bled and Happiness intact > scrambled plotted with respect to time. 
The representation of Fear on contrasting with scrambled sequences, 
evolves early (peaking at 152 ms) and later (339 ms) across fronto-

central-parietal channels; only one significant window for happiness 
was found peaking at 352  ms in the right temporal parietal region. 
The topographies represent the EEG amplitude at the peak time 
points
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to the two types of sequences (Intact > Scrambled: Fear: 
 t(23) = -6.9465, p = 0.9999, Cohen’s d = -1.4180; Happiness: 
 t(23) = − 11.7324, p = 0.9999, Cohen’s d = − 2.3949) indi-
cating similar processing of acoustic cues at the cochlear 
level for both type of sequences and each emotion condition 
(Fig. 1f).

Experiment 2‑Behavior

We conducted a separate behavioral experiment with the 
same participants who took part in the EEG experiment to 
validate:(a) if participants could categorize a short non-ver-
bal affective vocalization played in a sequence (Sequence 
task), b) the unintelligibility of the scrambled sounds (Isola-
tion task). In the Sequence task, all participants identified 
the presence of a target emotion amongst a stream of other 
emotional sounds well above chance, for both Fear (one 
tailed t-test d’ > 0: d’ values mean = 1.3866, SD = 0.5116, 
 t(20) = 12.4212, p = 7.37 ×  10–11, Cohen’s d = 2.7103) and 
Happiness (one tailed t-test d’ > 0: d’ values mean = 2.2399, 
SD = 0.8638,  t(20) = 11.882, p = 1.61 ×  10–10, Cohen’s 
d = 2.5931; Fig. 4a).

The following results in the isolation task are also tabu-
lated in Table S2 and S3 in supplementary material. All 
intact stimuli were correctly categorized above chance 
level (Fig.  4b: one tail t-test d’ > 0: Anger: d’ values 
mean = 1.3214, SD = 0.2711,  t(20) = 22.3376, p = 1.33 ×  10–15, 
Cohen’s d = 4.8742; Disgust: d’ values mean = 1.6475, 
SD = 0.1768,  t(20) = 42.7111, p = 0, Cohen’s d = 9.3184; 
Fear: d’ values mean = 1.2428, SD = 0.2511,  t(20) = 22.6799, 
p = 9.99 ×  10–16, Cohen’s d = 4.9494; Happiness: d’ values 
mean = 1.2828, SD = 0.1309,  t(20) = 44.9205, p = 0, Cohen’s 
d = 9.7998; Sadness: d’ values mean = 1.4006, SD = 0.2331, 
 t(20) = 44.9205, p = 0, Cohen’s d = 6.0086, all p-values are 
FDR corrected). For scrambled stimuli, the categorization 
of three categories: Anger, Disgust and Sadness vocali-
zations were at chance level (one tail t-test d’ > 0: Anger: 
d’ values mean = 0.0665, SD = 0.3587,  t(20) = 0.8501, 
p = 0.4053, Cohen’s d = 0.1854; Disgust: d’ values 
mean = -0.0387, SD = 0.3132,  t(20) = -0.5670, p = 0.577, 
Cohen’s d = -0.1236; Sadness: d’ values mean = 0.1284, 
SD = 0.3523,  t(20) = 1.6704, p = 0.1104, Cohen’s d = 0.3645, 
all p-values are FDR corrected). However, d’ of scram-
bled versions of Fear and Happiness were found to be 

Fig. 4  Behavioral results: A Sequence task: Participants could iden-
tify the presence of an exemplar of the target emotion category 
amongst a short sequence of sounds well above chance level. B Isola-
tion task: Intact sounds were categorized to the appropriate emotion 
category, with worse performance for scrambled sounds, thus verify-

ing the disruption in unintelligibility. C Similar arousal ratings across 
all emotion categories suggest no involvement of arousal in the EEG 
responses. D Happiness was the only ‘positive’ emotion amongst 
other categories. Greater values indicate positive valence
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significantly higher than chance (one tail t-test d’ > 0: Fear: 
d’ values mean = 0.3071, SD = 0.2332,  t(20) = 6.0349, 
p = 6.71 ×  10–6, Cohen’s d = 1.3169; Happiness: d’ values 
mean = 0.4956, SD = 0.3341,  t(20) = 6.7958, p = 1.31 ×  10–6, 
Cohen’s d = 1.4834, all p-values are FDR corrected). Two 
explanations could be given for this result. First, there were a 
higher number of Fear and Happiness stimuli than the stim-
uli of other emotion categories, since we chose the number 
of stimuli based on equal presentation of each sound in a 
sequence (see methods Sect. “Sequences and Procedure”). 
Therefore, higher d’ values for Happy and Fearful vocaliza-
tion could indicate an effect of training. Second, it is pos-
sible that the scrambled sounds of Fear and Happiness cat-
egories carried some amount of acoustic information which 
made them slightly recognizable. However, contrasting d’ 
of intact sounds with their frequency scrambled versions 
indicated that the intact vocalizations carried significantly 
more information than their scrambled version (two-tailed 
t-test Intact > Scrambled: Fear: SD = 0.2996,  t(20) = 14.306, 
p = 5.74 ×  10–12, Cohen’s d = 3.12; Happiness: SD = 0.3841, 
 t(20) = 9.3916, p = 8.99 ×  10–9, Cohen’s d = 2.04, all p-values 
are FDR corrected).

We further analyzed the arousal and valence ratings 
of the intact sounds. We observed similar arousal lev-
els across all the discrete emotion categories (ANOVA 
F = 0.15, p = 0.9612, ηp2 = 0.5848; Fig. 4c) and an effect 
of emotion on the valence ratings ( ANOVA F = 28.15, 
p = 6.8228 ×  10–16, ηp2 = 17.7659; Fig. 4d). As expected, 
post hoc t-tests revealed that valence ratings for Happiness 
were significantly different than other categories (Hap-
piness vs Anger: p = 2.98 ×  10–8; Happiness vs Disgust: 
p = 1.98 ×  10–8; Happiness vs Fear: p = 1.81 ×  10–8; Hap-
piness vs Sadness: p = 5.96 ×  10–8, all p-values are FDR 
corrected).

Discussion

In our study, we demonstrated how combining electroen-
cephalographic recordings (EEG) in humans with a fre-
quency-tagging paradigm provides a robust and objective 
measure of a categorical brain response to short bursts of 
affective vocalizations. To disentangle the potential con-
tributions of low-level auditory processing of affective 
vocalizations to representations of a higher order emotion 
categorization process, we implemented a careful selection 
of affective vocalizations to match their spectro-temporal 
properties across emotion categories. In particular, we first 
selected stimuli with comparable spectral features: spectral 
center of gravity, harmonicity-to-noise ratio (HNR) and 
pitch, such that no emotion category was spectrally different 
than the others (Fig. 1a). These sounds could be accurately 
classified to a discrete category of emotion: anger, disgust, 

fear, happiness and sadness, validated with a behavioral 
experiment (Fig. 1b). In addition to the periodic sequence 
created with intact sounds, we introduced a sound sequence 
with identical periodic constraints like the intact sequences 
but with frequency-scrambled sounds such that their spectro-
temporal structure is similar but their intelligibility and har-
monicity are disrupted (Barbero et al. 2021; Dormal et al. 
2018; Fig. 1c,d,e). It is important to note that the difference 
in EEG responses between intact and scrambled sequences 
was unlikely to solely rely on differences in the harmonic-
ity of our sounds since the intact sounds had comparable 
HNR across categories that were all presented in the same 
intact sequence (Fig. 1a). To ensure that emotion-selective 
EEG responses could not be explained by different temporal 
envelopes across emotion categories, we compared the FFT 
magnitude of the sequences’ envelopes of frequency-intact 
and frequency-scrambled sequences to find no significant 
difference at the frequency bins of interest (Fig. 1e). As a 
final validation, we also used Gammatone filters to simu-
late the cochlear response to intact and scrambled sequences 
and showed no differences at frequency bins of interest, at 
the level of early peripheral auditory processing (Fig. 1f). 
Thus, any difference in the EEG response to intact versus 
scrambled sequence cannot be simply explained by a coch-
lear simulation of acoustic response, nor by their spectral or 
envelope structure. Altogether, our stimuli selection proce-
dure and control analyses assert that the observed categori-
cal response to specific emotion expression categories is at 
least partially independent from low-level acoustic features 
and, therefore, likely reflects a higher-level categorization 
process.

We relied on a frequency-tagging technique to isolate the 
responses to emotion vocalizations objectively, with a high 
signal-to-noise ratio and automatically at specific known fre-
quencies without having the participants to overtly respond 
to the sounds, thus avoiding the decisional and attentional 
processes to contaminate the EEG response (Levy et al. 
2003). Unlike other ERP studies where emotion responses 
are compared to responses of neutral vocalizations caus-
ing confounds due to differences in acoustic features and 
in terms of arousal and valence, the method presented here 
provides a direct approach to obtain vocal emotion responses 
to discrete categories by including various heterogenous 
exemplars of each category. Although the frequency of pres-
entation of sounds of the target emotion category (0.83 Hz) 
lies at the lower end of the frequency EEG spectrum which 
is susceptible to noise (Luck 2014), we acknowledged the 
trade-off between the frequency of presentation of target 
emotion category and presenting stimuli of sufficient length 
to allow correct emotion categorization (Falagiarda and Col-
lignon 2019).

We observed a higher emotion-selective response to the 
intact sequences than the scrambled version at the target 
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frequency and its harmonics (Fig. 2a, b). This could only 
occur if the brain was able to discriminate the target emo-
tion from other emotion categories as well as generalize all 
sounds of the target emotion to one common category (Bar-
bero et al. 2021). Nevertheless, the target response for the 
scrambled condition alone was significantly greater than 0. 
Such significant response in the scrambled condition could 
either be explained by some low-level properties of the 
sounds of an emotional category (as seen in the envelope 
or cochlear simulation) or that the response arises from 
some residual intelligibility that was retained, as indicated 
by the behavior experiment showing that the categorization 
of scrambled Fear and Happiness vocalizations were above 
chance level, but significantly lower than the categoriza-
tion accuracy of the intact sounds (Fig. 4b). Thus, it can 
be concluded that the significantly stronger responses to 
intact affective vocalizations when compared to scrambled 
sequences (Fig. 2c, d), in conjunction with controlling of 
low-level features of the sounds indicate that the emotion-
selective EEG response is at least partially independent of 
low-level acoustic features and characterize a higher-order 
categorization process. We also observed a robust response 
and a similar scalp topography at the general rate of presen-
tation of all stimuli for both intact and scrambled sequences. 
However, we found a higher response to intact sequences 
than scrambled that could be accounted for by the overlap 
of the first harmonic of the general rate of presentation and 
third harmonic of the target response. Additionally, the 
higher response can be explained by a perceptual advantage 
of the intact sounds that may trigger enhanced attention to 
the stimulation.

We tested two types of sequences with either Fear or Hap-
piness as the target emotion category repeated periodically 
at every third position (unknown to the participant). They 
expressed different topographies with part of their response 
spanning across few common right temporal channels sug-
gesting the involvement of distinct yet overlapping neural 
substrates in emotion processing (Hamann 2012; Johnstone 
et al. 2006; Mauchand and Zhang 2022; Phan et al. 2002; 
Phillips et al. 1998). The distribution of the response to the 
Fear category suggests the involvement of fronto-central and 
temporal areas, in line with neuroimaging studies indicating 
large scale networks involved in the processing of fearful 
expressions (Kober et al. 2008; Zhou et al. 2021). Further, 
the different scalp topographies found for Fear and Happi-
ness suggest different generators might be involved in the 
processing of the two different emotion expressions. In fact, 
previous research in visual emotion discrimination using 
Fast Periodic Visual Stimulation (FPVS) found a differen-
tial topography of the responses to distinct facial emotion 
expressions (Dzhelyova et al. 2017; Leleu et al. 2018; Poncet 
et al. 2019). Further studies are required to validate the claim 
by exploring the EEG responses to other emotion categories 

such as anger, disgust and sadness. Although the arousal 
ratings of all discrete emotions were similar in our study, a 
possible reason for different topographies may be due to the 
difference in valence between Fear and Happiness (Fig. 4d; 
Happiness has a positive valence). However, valence does 
not seem to be a strong driver since we observed a strong 
target response when Fear is the target category and Fear 
was not deviant in terms of valence when compared to the 
other emotion categories presented in the sequence.

We also investigated the time-course of the vocal cat-
egorization process. Both emotions elicited a significant 
response 300 ms post stimulus presentation (Intact > Scram-
bled), in line with electrophysiological studies that observed 
the late positive component (LPP) to emotional utterances 
(Frühholz et al. 2011; Jessen and Kotz 2011). Additionally, 
we observed the categorical response to Fear as early as 
135–175 ms post stimulus presentation. While previous lit-
erature has reported P200 time window to be modulated 
by emotional interjections and non-verbal vocalizations 
(Charest et al. 2009; Jessen and Kotz 2011; Sauter and 
Eimer 2010; Schirmer et al. 2013), it is debated whether 
these modulations are linked to the categorical nature of 
emotion expressions or to differences in arousal (Paulmann 
et al. 2013). But due to comparable affective dimensions 
(valence and arousal) of Fear with other categories in our 
stimuli sequence (Fig. 4c, d), we speculate that the early 
ERP evoked by various vocalizations depicting Fear could 
be an early marker of its categorization, supporting recent 
evidence of the brain’s ability to represent discrete catego-
ries as early as < 200 ms (Giordano et al. 2021). In fact, 
faster responses to fear may be possible due to the potential 
contribution of subcortical pathways (Pessoa and Adolphs 
2010) and primitive circuits recognizing danger or fear 
which are preserved in mammals and in humans (LeDoux 
2012). Further, the absence of differences between intact 
and scrambled sequences before 100 ms supports the idea 
that the EEG responses to both emotion categories are not 
elicited by low-level acoustic properties of the sounds, which 
are well known to modulate early ERP components such as 
the N100 (Näätänen and Picton 1987). Another interesting 
observation found in both frequency and time domain analy-
sis (post 300 ms), was that the responses from four channels 
in the right temporal region (P6, TP8h, CP6 and T8h) were 
found to be significantly greater for intact sequences than 
scrambled for both Fear and Happiness conditions, puta-
tively suggesting common processes for vocal emotion pro-
cessing in the right temporal regions.

There are well known differences between the spec-
tral and temporal properties between fear, happiness and 
other emotion categories (see Juslin and Laukka 2003; 
Scherer 2003). These differences are integral in disasso-
ciating one emotion category from another. For instance, 
studies that used morphing of affective vocalizations of 
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various categories, hence impacting the acoustic cues of 
the sounds, manipulated perceived emotions (Giordano 
et al. 2021) or found lower reaction time to classify a 
morphed vocalization (Whiting et al. 2020). The debate 
does not lie at how these acoustic differences express over 
sensory regions, but at the spatio-temporal representation 
of categorical discrimination of emotion expressions in 
the human brain, i.e. the higher-order representation of 
emotions. However, the mental states that support mecha-
nisms of emotion processing can be abstract and highly 
dimensional, rendering it difficult to disentangle which 
part of the processes linked to emotion discrimination are 
better conceptualized as categorical or dimensional as 
well as, which of these processes are driven by acoustic 
cues (see Giordano et al. 2021; Hamann 2012; Kragel and 
LaBar 2016; Skerry and Saxe 2015). Thus, to add to this 
knowledge gap, we propose a method that demonstrates 
categorical responses from the human brain to different 
discrete vocal emotions that are at least partially inde-
pendent from processing of acoustic features. In the future, 
frequency tagging can also be used to investigate dimen-
sional aspects of emotions such as valence, arousal, inten-
sity etc. to unravel the interplay between categorical and 
felt perception of emotions and investigating the contri-
bution of acoustic features to both processes. This makes 
frequency-tagging a valuable technique to study emotion 
categorization, suitable to use in populations that are more 
difficult to test (e.g., individuals with autism, infants etc.) 
with traditional paradigms such as ERP design studies and 
other neuroimaging techniques.
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