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Introduction

Stroke is a leading cause of chronic disability worldwide in 
adults (Johnston et al. 2009; GBD 2019 Stroke Collabora-
tors 2021). Upper extremity (hand and arm) impairments 
are especially prevalent after stroke and cause lasting dis-
abilities. A study of 102 individuals with upper limb motor 
deficits showed that only one-third recovered full dexter-
ity at 6 months; lack of recovery markedly reduced auton-
omy and quality of life (Kwakkel et al. 2003). Clinical and 
experimental studies have shown that spontaneous recovery 
occurs to varying extents within days to weeks of the stroke. 
Functional reorganization of the motor cortex may occur in 
both the ipsilesional and contralesional hemispheres. If the 
cortical lesion is small, one recovery mechanism is remap-
ping of the remote ipsilesional primary motor (M1) and ven-
tral premotor cortices (Liepert et al. 2000; Frost et al. 2003; 
Kato et al. 2020). In non-human primates, focal damage of 
M1 triggers functional remapping to the adjacent M1, more 
specifically to the territory formerly occupied by the elbow 
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Abstract
Characterization of cortical activation patterns during movements in healthy adults may help our understanding of how the 
injured brain works. Upper limb motor tasks are commonly used to assess impaired motor function and to predict recovery 
in individuals with neurological disorders such as stroke. This study aimed to explore cortical activation patterns associ-
ated with movements of the hand and shoulder using functional near-infrared spectroscopy (fNIRS) and to demonstrate 
the potential of this technology to distinguish cerebral activation between distal and proximal movements. Twenty healthy, 
right-handed participants were recruited. Two 10-s motor tasks (right-hand opening-closing and right shoulder abduction-
adduction) were performed in a sitting position at a rate of 0.5 Hz in a block paradigm. We measured the variations in oxy-
hemoglobin (HbO2) and deoxyhemoglobin (HbR) concentrations. fNIRS was performed with a 24-channel system (Brite 
24®; Artinis) that covered most motor control brain regions bilaterally. Activation was mostly contralateral for both hand 
and shoulder movements. Activation was more lateral for hand movements and more medial for shoulder movements, as 
predicted by the classical homunculus representation. Both HbO2 and HbR concentrations varied with the activity. Our 
results showed that fNIRS can distinguish patterns of cortical activity in upper limb movements under ecological condi-
tions. These results suggest that fNIRS can be used to measure spontaneous motor recovery and rehabilitation-induced 
recovery after brain injury. The trial was restropectively registered on January 20, 2023: NCT05691777 (clinicaltrial.gov).
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and shoulder (Nudo and Milliken 1996). A shift of hand-
related brain activation to the rim of the infarct has been 
described in individuals with good post-stroke recovery 
(Cramer et al. 2006; Carrera et al. 2013). The contralesional 
motor cortex may play a greater role in recovery when dam-
age is more severe (Kato et al. 2020). Thus, knowledge of 
brain activation patterns during execution of a movement 
is important both for neuroscience and neurorehabilitation.

The use of brain imaging techniques for post-stroke 
follow-up is valuable for understanding the mechanisms of 
cerebral recovery. Functional MRI (fMRI) enables a precise 
study of distal upper limb movements; however, it is not 
used to study proximal movements because it requires strict 
immobility during the tests. Functional Near-Infrared Spec-
troscopy (fNIRS) is a non-invasive technique that assesses 
neural activation through the measurement of cortical oxy-
genated and deoxygenated hemoglobin concentrations dur-
ing motor tasks in a natural environment (Udina et al. 2019; 
Pinti et al. 2020). Low sensitivity to body movement and 
the system portability make fNIRS suitable for monitoring 
cortical hemodynamics during most motor tasks. Although 
it has a poorer spatial resolution than fMRI, it allows the 
study of motor skills in more ecological conditions. In 
healthy subjects, several fNIRS studies have investigated 
upper limb movements, especially the hand (Anwar et al. 
2016; Kashou et al. 2016; Csipo et al. 2019; Lee et al. 2019). 
Few studies have explored wrist (Abtahi et al. 2017; Muth-
alib et al. 2018) or elbow movements (Delorme et al. 2019). 
To our knowledge, few fNIRS studies have investigated 
cortical activation patterns during shoulder and hand move-
ments (Yeo et al. 2013; Yang et al. 2020) and only in healthy 
individuals. These studies have both reported more impor-
tant and extensive activation during shoulder movements 
compared to hand movements. However, these studies also 
report differences on several points such as unilateral or 
bilateral activation, the effet of task duration or type of task 
on the extension of activation.

An important further step in the use of fNIRS in activa-
tion studies would be to use this technology in patients with 
stroke in order to study neuroplastic changes. This implies 
to have concording methodological approaches and strong 
data in healthy individuals. Our study aims to contribute to 
this area of research by further investigating cortical patterns 
during these upper limb movements in healthy controls.

As remapping of the sensorimotor cortex after stroke 
with hand impairment can involve the territory of the elbow 
or shoulder (Nudo and Milliken 1996), we aimed to deter-
mine if the cortical activation of these regions (hand and 
shoulder) could be distinguished by fNIRS recordings in 
healthy subjects. We hypothesised that the activation pattern 
observed with fNIRS would differ for shoulder and hand 
movements. More specifically, we hypothesised that the 

cerebral activation during hand movements would mainly 
involve the contralateral hemisphere, particularly the lateral 
part of the primary motor cortex; whereas activation dur-
ing shoulder movements would be more medial and more 
extensive than that of the hand, involving the contralateral 
premotor region and supplementary motor cortex (Yeo et al. 
2013). If these three cortical regions could be distinguished 
by fNIRS, this technique could be used to measure sponta-
neous motor recovery and rehabilitation-induced recovery 
after stroke.

Materials and Methods

Participants

Twenty healthy, right-handed individuals (6 males, 14 
females; mean (SD) age 30.9 (4.9) years, range 23–40) with 
no history of neurological, physical, or psychiatric illness 
were recruited for this study. Four additional individuals 
were initially recruited, but their data could not be analyzed 
owing to the poor quality of the fNIRS signal. The Edin-
burgh Handedness Inventory (Oldfield 1971) was used to 
evaluate handedness. All subjects had an Edinburgh later-
ality ratio ≥ 80. All subjects understood the purpose of the 
study and provided written informed consent prior to par-
ticipation. This project was approved by the Institutionnal 
Review Board CPP SUD-EST IV on the June 16, 2020 (no. 
2020-A00325-34).

Experimental Design and Procedure

Participants were asked to sit comfortably in a chair in 
an upright position during the experiment. They were 
instructed to practice the two motor tasks several times 
before the experiments.

The experiments were arranged in a block paradigm 
(Fig. 1). The block design included 20 trials of 10 s of task. 
The rest time between trials varied from 20 to 30 s to mini-
mize the physiological effects of breathing, heart rate and 
Mayer waves (low-frequency arterial pressure oscillations) 
on the task hemodynamic responses (Leff et al. 2011).

The experiment consisted of two motor tasks:

i.	 Hand: alternating opening and closing movement of the 
right hand.

ii.	 Shoulder: alternating movement of abduction and 
adduction of the right shoulder with the elbow flexed. 
The movement began with the upper arm by the per-
son’s side and ended before the trunk began to tilt (range 
around 70–80 degrees).
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All tasks were performed at a frequency of 0.5 Hz, ensured 
by metronome guidance at a frequency of 1 Hz, correspond-
ing to half of a complete movement. The metronome was 
switched on during both the motor tasks and rest periods to 
control for the effects of the auditory stimulus.

The verbal instructions to start the motor tasks were 
‘‘Hand” or ‘‘Shoulder’’ for hand, and shoulder movement 
tasks respectively, and the instruction to stop the motor 
tasks was ‘‘Stop’’. Participants did not know which motor 
task was to be performed until the instruction to initiate the 
motor tasks was given.

The order of experimental sessions was randomized, and 
the pre-task baseline was 2 min in duration.

fNIRS Data Acquisition

Changes in the concentrations of oxyhemoglobin (HbO2) 
and deoxyhemoglobin (HbR) within the cortex were mea-
sured with a continuous wave optical system Brite 24 sys-
tem (Artinis Medical Systems, Netherlands). The sources of 
this system generate 2 wavelengths of near-infrared light at 

670 and 850 nm, and the sampling rate is fixed at 10 Hz. A 
total of 10 light sources and 8 detectors with an inter-optode 
distance of 3 cm constituted 24 channels (Fig. 2A).

To localize the coordinates of each channel in the MNI 
standard brain (Lancaster et al. 2000), a 3D digitizer (FAS-
TRACK, Polhemus) was used, and the coordinates were 
further imported to the NIRS SPM (statistical parametric 
mapping for near-infrared spectroscopy) toolbox for spa-
tial registration (Ye et al. 2009) (Fig. 2B). NIRS SPM is a 
Matlab toolbox that can be used for processing fNIRS data 
and projecting the statistical results onto the brain using an 
anatomical atlas.

Preprocessing of fNIRS Data

We used both HbO2 and HbR signals to measure the hemo-
dynamic response because they provide different and com-
plementary information (Hoshi et al. 2001; Strangman et 
al. 2002). The Homer2 toolbox in Matlab (The MathWorks 
Inc.) was used for offline data preprocessing (Huppert et al. 
2009).

Fig. 2  Schematic diagram of 
the optode locations of the EEG 
10/20 system. (A) A total of 
18 optodes, including 10 light 
sources (in yellow) and 8 detec-
tors (in blue), were arranged on 
the scalp to enable 24-channel 
measurements. (B) The anatomi-
cal locations of the optodes were 
superimposed onto the normal-
ized brain surface in the MNI 
standard brain template

 

Fig. 1  Block design. The blue 
bars represent hand movements 
and the black bars represent 
shoulder movements
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significance level set at p < 0.05. To control for the growth 
of the false discovery rate (FDR) due to multiple compari-
sons, we employed the Benjamini-Hochberg procedure 
(Benjamini and Hochberg 1995). For task comparisons, we 
analyzed the mean changes in HbO2 and HbR concentra-
tions between the two conditions for each channel using 
one-way repeated measures ANOVA. Post-hoc analysis was 
conducted using paired Student’s t-tests. A total of 24 t-tests 
were performed for each condition or comparison, with a 
significance level set at p < 0.05. (Bonferroni correction).

Results

Results for cerebral activation and task comparisons are 
shown in Table 1.

Comparison of Baseline and Task Hemodynamic 
Responses: Cerebral Activation

The hemodynamic responses for both conditions are illus-
trated by the plotogramms (Fig. 3) and a NIRS-SPM rep-
resentation (Fig. 4). Overall, the responses were canonical 
with an increase in HbO2 concentration and a tendency 
towards a decrease in HbR concentration.

For the hand and shoulder tasks, common brain regions 
showed a significant increase in HbO2 concentration, a sig-
nificant decrease in HbR concentration, or both. The regions 
involved were contralateral to the task: primary motor cor-
tex (CH21, CH23) and somatosensory cortex (CH24). We 
also found specific activation for each task. The hand move-
ment resulted in an activation in premotor cortex (CH17) 
and somatosensory cortex (CH18) and the shoulder move-
ment resulted in an activation in premotor cortex (CH20) 
and primary motor cortex(CH23).

For both tasks, the activated areas were mainly contralat-
eral. However we also found anipsilateral activation in the 
somatosensory cortex (CH8) only for the hand task.

Comparison of Hemodynamic Responses Between 
Hand and Shoulder Tasks

A one-way ANOVA for HbO showed a significant task 
effect only for CH20 (F = 8.49; p = 0.009). Post-hoc analysis 
revealed a superiority for the shoulder task (p = 0.004). Sim-
ilarly, for HbR, a one-way ANOVA indicated a significant 
task effect only for CH18 (F = 5; p = 0.038), with post-hoc 
analysis showing a superiority for the hand task (p = 0.019).

The processing was as follows:

1.	 Identification and exclusion of bad channels: channels 
were considered as bad and excluded from the analy-
sis if the coefficient of variation ([standard deviation/
mean]*100) of the raw data was > 33%. The function 
hmrPruneChannels was used (SNRthresh = 3). The 
exclusion was done subject by subject. For each one, 
the number of excluded channels was between 0 and 3 
out of 18.

2.	 Optical density conversion: raw data were converted 
into optical density with the hmrIntensity2OD function.

3.	 Identification of motion artifacts: time sections were 
considered as containing motion artifacts if the signal 
for any given active channel changed by more than 50 
times the standard deviation or by more than 5 stan-
dard deviations during a 0.5 s period. The hmrMotion-
ArtifactByChannel function was used (tMotion = 0.5, 
tMask = 1, STDEVthresh = 50, AMPthresh = 5).

4.	 Motion artifact correction: sections marked as motion 
artifacts were corrected with principal component 
analysis, as movement is the principal source of vari-
ance. We used the hmrMotionCorrectPCA function 
(nSv = 0.8).

5.	 Physiological artifacts were removed using Principal 
Component with the enPCAfilter_nSV function.

6.	 Filtering periodic noise: respiration, cardiac activity and 
high frequency noise were attenuated with hmrBand-
passFilt (hpf = 0, lpf = 0.1).

7.	 Concentration conversion: corrected optical density 
data were converted into relative concentration changes 
with the modified Beer-Lambert law (Kocsis et al. 
2006). The age-dependent differential path length fac-
tor (DPF) value was calculated for each participant 
(Scholkman et al., 2010). DPF values were calculated 
for each wavelength according to the mean age. They 
were respectively 6.4 and 5.3 for the 760 and 840 nm 
wavelengths.

8.	 Hemodynamic response function (HRF) was estimated 
by solving a general linear deconvolutionmodel (GLM) 
using the hmrDeconvTB_SS3rd function (t range = 
[-10, 20], gstd = 1, gms = 1, rhoSD_ssThresh = 1).

Data Analysis

Data analysis was performed with MATLAB. Mean val-
ues were calculated for the rest (from 10  s before, to the 
beginning of the task) and trial periods (from + 5 s to + 15 s) 
for each channel. To detect cerebral activation, the mean 
changes in HbO2 and HbR between the rest period and con-
dition for each channel were compared using the Student 
t-test. For each condition, we performed 24 t-tests with a 
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Discussion

This fNIRS study of the hemodynamic response during hand 
and shoulder movements in healthy subjects confirmed our 
hypotheses that hand movement is associated with contra-
lateral hemisphere activation in the region of the sensorimo-
tor cortex, and shoulder movement is associated with more 
medial activation than hand movement. However, in con-
trast with one of our hypotheses, we did not observe more 
extensive activation towards the more anterior regions dur-
ing shoulder movement. These results suggest that fNIRS is 
a useful alternative to fMRI for the evaluation of proximal 
limb movement and could be used to investigate cerebral 
activation in individuals with brain injury.

Numerous studies have provided precise information on 
the neurological control of the hand in animals and humans 
(Azim and Alstermark 2015; Boraud et al. 2018; Bruur-
mijn et al. 2021; Sobinov and Bensmaia 2021). We stud-
ied simple movements of the right hand (opening - closing) 
in right-handed, healthy individuals. We mainly observed 
lateral activation within the left hemisphere. This result is 
consistent with the conventional view that voluntary move-
ments derive primarily from cortical hemisphere activation 
contralateral to the moving limb. For simple motor tasks, 
hemodynamic changes have been shown to be maximal over 
the contralateral cortex for channels centered on the motor 
cortex (M1) (Kim et al. 1993; Maki et al. 1995; (Obrig et al. 
1996a, b; Watanabe et al. 1996; Hirth et al. 1997; Strangman 
et al. 2003; Durduran et al. 2004; Sato et al. 2006; Holper 
et al. 2009; Lee et al. 2019). This is particularly true for 
simple movements performed with the right, dominant hand 
(Sobinov and Bensmaia 2021).

Hemodynamic changes have also been described in the 
ipsilateral supplementary motor cortex (Obrig et al. 1996a; 
Wriessnegger et al. 2008; Derosière et al. 2014) suggesting 
the ipsilateral hemisphere plays an active and specific role 
in interhemispheric inhibition and facilitation and the plan-
ning and execution of voluntary movements (Bundy et al. 
2018; Bundy and Leuthardt 2019; Bruurmijn et al. 2021). 
However, ipsilateral changes are inconsistant (Durduran et 
al. 2004). The region of the motor cortex activated during 
ipsilateral hand movements is spatially distinct from that 
activated during contralateral hand movements (Cramer et 
al. 2006). In our study, the change in ipsilateral activation 
between baseline and task was weak compared to contralat-
eral activation. Indeed, for the hand task, only one ipsilateral 
channel showed activity in HbR. However, several ipsilat-
eral channels exhibited p-values < 0.05, but did not pass the 
statistical correction threshold.This could be explained by 
the fact that the participants performed simple tasks with 
their right, dominant hand whereas ipsilateral responses are 
stronger for the non-dominant hand (Kim et al. 1993; Lee 
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been suggested that proximal joint muscles are partly con-
trolled by the corticoreticulospinal tract, which originates 
mainly from the premotor cortex (PMC) (Jang and Lee 
2019). Although they did not directly statistically compare 
each channel, the authors found more medial activation for 
shoulder movements and more lateral activation for hand 
movements, similarly to our study. According to the classi-
cal homunculus, the area representing the shoulder muscles 
is more medial than that of the finger muscles in the primary 
motor cortex (Schott 1993).

In a more recent study, 20 healthy, right-handed indi-
viduals performed similar hand and shoulder tasks to those 
in our study (Yang et al. 2020) during a bilateral record-
ing of HbO2 and HbR concentrations. In their 10-s duration 
hand task, the authors observed changes in the same regions 
as we did in our study. However, the variations only con-
cerned HbO2 concentration. Instead, we observed a canoni-
cal response with an increase in HbO2 concentration and a 

et al. 2019) or during complex tasks (Verstynen et al. 2005; 
Anwar et al. 2016).

To our knowledge, only two fNIRS studies compared 
hand and shoulder movements (Yeo et al. 2013; Yang et al. 
2020). Yeo et al. compared brain activation between move-
ments of the right hand and shoulder in nine healthy con-
trols (Yeo et al. 2013). They measured changes in HbO2 and 
total hemoglobin (sum of HbO2 and HbR) concentrations 
in the left hemisphere in three main regions: SM1 (primary 
sensory motor cortex), PMC (premotor cortex) and PFC 
(prefrontal cortex). They did not report HbR concentrations. 
During movements of the right hand, activation was found 
only in the the left SM1. These results are similar to our 
findings, also for right hand movements. By contrast, move-
ments of the right shoulder generated a stronger response 
in the three regions than the hand task. Their interpreta-
tion of this difference was that shoulder movements require 
greater neural recruitment than hand movements. It has 

Fig. 3  Results of the hemody-
namic response by task (Hand 
and Shoulder) for each chan-
nel. The results are expressed 
as means (average of the 
participants). Graph locations 
were organized according to the 
anatomical correspondence using 
the EEG 10/20 system. The time 
window analyzed was 30 s: from 
10 s before the beginning of the 
task to 20 s after. The red traces 
indicate HbO2 concentrations 
and the blue traces indicate HbR 
concentrations. The red boxes 
indicate a significant difference 
between rest and task periods 
for HbO2 concentration. The 
blue boxes indicate a significant 
difference between rest and task 
periods for HbR concentrations. 
p < 0.05 FDR corrected
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specific activation patterns. Moreover, fNIRS can be used 
in a more ecological situation than fMRI to explore human 
movements.

fMRI and fNIRS are both based on the physiological 
principles of neurovascular coupling, the process by which 
active brain regions induce a local increase in blood flow 
to match their energy demands via the dilation of capillar-
ies and arterioles (Mishra 2017). fMRI measures the blood 
oxygen level-dependent (BOLD) response corresponding to 
the ratio of oxy to deoxy-hemoglobin (Chen et al. 2020). 
However, the two types of hemoglobin are not individually 
measured with fMRI. In contrast, fNIRS measures these 
two types of hemoglobin separately. During neurovascu-
lar coupling, the amount of oxygen supplied is typically 
greater than that consumed locally, resulting in a substan-
tial increase in HbO2 concentration and a slight reduction 
in HbR concentration in the region. These typical changes 
in HbO2 and HbR concentrations are called the canonical 
hemodynamic response.

There is a debate as to how to interpret variations in 
the concentration of each chromophore when the canoni-
cal response is not observed. If we take fMRI as the gold 
standard, HbR would theorically be the most reliable 

decrease in HbR concentration in most activated regions. 
For shoulder movements, they found a more extensive cor-
tical response, concerning both the contralateral medial 
regions and the ipsilateral motor regions.

Together with the results of those two studies, our results 
indicate that fNIRS can distinguish between hand and 
shoulder movements. In all three studies, hand movements 
were associated with low levels of contralateral activation 
in the lateral motor regions. The results were less consistent 
for shoulder movements. Yeo et al. found a marked medial 
and anterior extension towards the premotor regions, which 
we did not. Their study does not provide information on 
right hemisphere activation because the optodes were only 
placed on the left hemisphere. Unlike our results, which 
showed exclusive contralateral medial activation, Yang et 
al. found both contralateral and ipsilateral activation. An 
fMRI study in 11 healthy subjects studied brain activation 
during hand, elbow, shoulder, hip and ankle movements 
(Kocak et al. 2009). For hand and shoulder movements, 
they found similar results to ours with more lateral activa-
tion for the hand and more medial activation for the shoul-
der. Although the spatial resolution of the fNIRS is not as 
good as that of fMRI, it is sufficiently precise to distinguish 

Fig. 4  Mean cerebral cortex activation maps for HbO2 and HbR dur-
ing the hand and shoulder tasks. Data are t values, t: statistical value 
of sample t-test with a significance level of p < 0.05 ( FDR corrected). 

The change from red to yellow indicates that the degree of activation is 
from low to high. Only statistically significant responses are illustrated. 
The data and maps were calculated and generated by NIRS-SPM
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patients, who are older than our study participants, justify-
ing further studies with elderly subjects.

Conclusion

Characterization of cortical activation patterns during 
movements in healthy adults increases understanding of 
how the injured brain functions. Our findings support and 
extend the motor control literature on upper limb motor 
control. Unilateral movements require essentially contralat-
eral activation of the sensorimotor cortex Hand activity is 
mainly driven by neuronal activation in a limited part of the 
contralateral lateral sensorimotor cortex. Movements of the 
shoulder require more medial activation than movements of 
the hand. These activation patterns can also be influenced 
by age and laterality. Therefore, future studies should inves-
tigate the impact of these parameters on activation patterns 
during motor tasks.This study confirms the value and feasi-
bility of using fNIRS to understand normal motor control. 
The fNIRS measures distinguished between proximal and 
distal tasks and between brain regions; thus, this technique 
could be used to measure spontaneous motor recovery and 
rehabilitation-induced recovery after brain injury.

Finally, we found changes in both HbO2 and HbR con-
centrations; therefore, we recommend that future research 
includes an analysis and report of all the available hemo-
globin data from fNIRS to increase understanding of task-
evoked cortical activation patterns.
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parameter reflecting activation. However, few studies have 
found strong correlations between HbR concentration and 
fMRI BOLD signals. HbO2 concentration seems to be more 
sensitive to brain activation than HbR (Kleinschmidt et al. 
1996; Toronov et al. 2001, 2003; Strangman et al. 2002; 
Huppert et al. 2006; Zama and Shimada 2015; Hoshi 2016; 
Nishiyori et al. 2016; Gentile et al. 2019) but is more sensi-
tive to artefacts. The HbR response is more spatially local-
ized (i.e. stimulus evoked HbR concentration decreases in 
only a few channels), whereas that of HbO2 is more gener-
alized, with typical responses being observed in almost all 
NIRS channels (Hirth et al. 1997; Cannestra et al. 2003; Sato 
et al. 2007; Dravida et al. 2018). Additionally, decreases in 
HbR concentration are not homogenous across individuals 
(Maki et al. 1996; Miyai et al. 2001), and statistically sig-
nificant changes in HbR concentration do not occur in all 
individuals (Watanabe et al. 1996). There are discrepancies 
between studies regarding the type of response observed. 
For instance, in the study by Yang et al., with a task com-
parable to ours, finger movements only induced variations 
in HbO2 concentration. In our study, we found two types of 
variation in the same regions: an increase in HbO2 concen-
tration, or a complete canonical response. In the shoulder 
task, Yang et al. mostly found variations in HbR concen-
tration in the regions where we observed an increase in 
HbO2 concentration, a decrease in HbR concentration or a 
complete canonical response. Therefore, each hemoglobin 
type may have advantages regarding the detection of cere-
bral activation in different motor paradigms. Analysis and 
reporting of all the available hemoglobin data in fNIRS is 
recommended to better understand the task-evoked cortical 
activation patterns (Chen et al. 2020).

This study has several limitations. The first relates to 
preprocessing quality. The use of short channels is rec-
ommended for the preprocessing of fNIRS data (Yucel et 
al. 2021) but they were not available for this study. Our 
study has some limitations related to recruitment. First, we 
only recruited right-handed participants and simple motor 
tasks were performed on the dominant side. Therefore, our 
results cannot be extrapolated to the non-dominant side, 
left-handed individuals or complex motor tasks. Secondly, 
we only recruited young subjects, whereas some studies 
have shown that cortical activation patterns are different 
in older individuals (Berger et al. 2020; Yuan et al. 2022). 
For instance, a study comparing brain activation between 
young and elderly healthy subjects during a grasping task 
found greater activation in the elderly (Berger et al. 2020). 
Another study showed that activation was more bilateral in 
older subjects during a hand rehabilitation exercise using a 
multisensory glove (Yuan et al. 2022). Therefore, our results 
cannot be directly generalized to elderly people or stroke 
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