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Abstract
Network hyperexcitability (NH) is an important feature of the pathophysiology of Alzheimer’s disease. Functional connec-
tivity (FC) of brain networks has been proposed as a potential biomarker for NH. Here we use a whole brain computational 
model and resting-state MEG recordings to investigate the relation between hyperexcitability and FC. Oscillatory brain 
activity was simulated with a Stuart Landau model on a network of 78 interconnected brain regions. FC was quantified with 
amplitude envelope correlation (AEC) and phase coherence (PC). MEG was recorded in 18 subjects with subjective cogni-
tive decline (SCD) and 18 subjects with mild cognitive impairment (MCI). Functional connectivity was determined with the 
corrected AECc and phase lag index (PLI), in the 4–8 Hz and the 8–13 Hz bands. The excitation/inhibition balance in the 
model had a strong effect on both AEC and PC. This effect was different for AEC and PC, and was influenced by structural 
coupling strength and frequency band. Empirical FC matrices of SCD and MCI showed a good correlation with model FC 
for AEC, but less so for PC. For AEC the fit was best in the hyperexcitable range. We conclude that FC is sensitive to changes 
in E/I balance. The AEC was more sensitive than the PLI, and results were better for the thetaband than the alpha band. 
This conclusion was supported by fitting the model to empirical data. Our study justifies the use of functional connectivity 
measures as surrogate markers for E/I balance.

Keywords  Functional connectivity · E/I balance · Brain networks · Computational model · EEG · MEG · Mild cognitive 
impairment · Alzheimer’s disease

Introduction

Network hyperexcitability (NH) is a signature of a disturbed 
balance between excitation and inhibition (E/I balance) and 
is increasingly considered to be a key feature in the patho-
physiology of Alzheimer’s disease (AD). Early studies in 
animal models of AD demonstrated a direct relation between 

activity of synapses and levels of amyloid beta deposition in 
the surrounding interstitial fluid (Cirrito et al. 2005; Maestú 
et al. 2021; Tombini et al. 2021). It has become clear that 
many animal models of AD show a high incidence of epilep-
tic seizures and interictal epileptiform discharges (for review 
see: Cope et al. 2022; Palop and Mucke 2007; Tok et al. 
2022). The network hyperexcitability in AD animal models 
can be caused by abnormal depositions of amyloid beta and 
tau, but can also promote further depositions of these abnor-
mal proteins (Tombini et al. 2021; Wu et al. 2016). There 
are also indications that manifestations related to epilepsy 
are especially prevalent during sleep, which could guide 
hypotheses concerning possible underlying mechanisms 
(Szabo et al. 2022).

The observation of network hyperexcitability in animal 
models of AD has raised the question whether NH can also 
be detected in human subjects with AD, especially in the 
early stages, and whether this could point the way towards 
possible new approaches for treatment (Altuna et al. 2022; 
Babiloni 2022; Horvath et al. 2016; Vossel et al. 2017). 
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Several studies have shown that AD patients have a higher 
risk of suffering from epileptic seizures and a higher preva-
lence of interictal epileptiform discharges (for review see: 
Csernus et al. 2022). There are also indications that epileptic 
seizures in AD are often subclinical, and may require special 
techniques such as foramen ovale electrodes for discovery 
(Lam et al. 2017, 2019). In a large retrospective study of 
routine EEG recordings in a memory clinic, subclinical 
epileptiform discharges were detected in 3% of all subjects 
and across different types of dementia, and these subjects 
were significantly younger (Liedorp et al. 2010). Vossel 
et al. (2016) used resting-state magnetoencephalography 
(MEG)/electroencephalography (EEG) in combination with 
all night ambulatory EEG recordings and found subclinical 
epileptiform discharges in 42.4% of AD subjects compared 
to 10.5% of healthy controls. Presence of epileptiform dis-
charges was associated with a more rapid progression of 
cognitive dysfunction. In a study with ambulatory EEG Lam 
et al. (2020) reported a prevalence of interictal epileptiform 
abnormalities in 53% of AD patients with a known history 
of epilepsy, 22% of AD without such history, and 4.7% of 
healthy controls. Babiloni et al. (2020) reported interictal 
abnormalities in 41% of subjects with MCI, and suggested a 
relation with more abnormalities in the delta band. In a more 
recent study this group reported a relation between interictal 
epileptiform discharges and increased slowing in subjects 
with MCI due to AD pathology (Babiloni et al. 2022). In 
a study with 24 h ambulatory EEG recordings subclinical 
epileptiform discharges were detected in 54% of AD patients 
and 25% of control subjects (Horvath et al. 2021). Epilepti-
form activity was associated with worse cognition and more 
rapid progression. However, another study using sleep EEG 
recordings did not report a significant increase in epilep-
tiform abnormalities in AD or mild cognitive impairment 
(Brunetti et al. 2020).

Network hyperexcitability in AD is not only important for 
understanding the underlying disease mechanism, but also 
as a possible target for treatment (Canter et al. 2016a, b). A 
recent small clinical trial could not show an overall effect 
of treatment with an anti-epileptic drug (levetiracetam) on 
cognition in AD patients, but a subset of AD patients with 
subclinical epileptiform discharges did show improvement 
on a test of executive functioning and a test of virtual route 
learning (Vossel et al. 2021). Overall, these clinical studies 
point to an increased incidence of phenomena related to NH 
such as seizures and interictal epileptiform discharges, possi-
bly clinically relevant in early treatment, but the estimates of 
the prevalence vary widely, and there are large methodologi-
cal differences between the studies. This suggests that larger 
studies are necessary, and that more reliable biomarkers of 
NH may be needed (Luppi et al. 2022; Yu et al. 2021).

One candidate biomarker for network hyperexcitability 
in AD is functional connectivity: the correlation between 

activity recorded from different brain regions. AD is char-
acterized by a decrease in functional connectivity in higher 
frequency bands, and an increase in connectivity in the theta 
band (Schoonhoven et al. 2022). Changes in functional 
connectivity are correlated with depositions of pathologi-
cal proteins (Ranasinghe et al. 2020, 2021). Recently it has 
been shown that Alzheimer patients with interictal epilep-
tiform abnormalities have lower functional connectivity in 
the alpha band and higher connectivity in a combined delta 
theta band compared to AD patients without epileptiform 
abnormalities (Ranasinghe et al. 2022). A loss of functional 
connectivity in the gamma band has also been described 
in MCI subjects with interictal epileptiform abnormalities 
(Cuesta et al. 2022a, b).These studies suggest that functional 
connectivity (FC) could be an alternative biomarker for net-
work hyperexcitability in AD. If it could be shown that FC 
is more sensitive and/or reliable than interictal epileptiform 
discharges, it could be used in clinical trials to select patients 
who are more likely to benefit from treatment with anti-
epileptic drugs.

However, FC can be assessed with different types of 
measures, and in different frequency bands, and it is unclear 
how these are related to the excitation inhibition balance of 
the underlying networks. In particular, measures of ampli-
tude correlations and measure of phase synchronization are 
often used to assess FC of EEG and MEG recordings, but 
these may reflect different intrinsic coupling modes (ICM) 
of brain networks, and cannot easily be reduced to each other 
(Engel et al. 2013; Siems and Siegel 2020).

These types of questions can be addressed with compu-
tational models of whole brain networks (for review see: 
Stefanovski et al. 2021). In an early simulation study, we 
showed how an activity dependent degeneration (ADD) sce-
nario, where high levels of synaptic activity would induce 
weakening of synaptic strength, could explain spectral slow-
ing, loss of functional connectivity (after an initial increase 
in the MCI phase), and selective involvement of highly con-
nectivity hub nodes (de Haan et al. 2012). This model has 
also been used to investigate the impact of different thera-
peutic interventions (de Haan et al. 2017). Demirtas et al. 
(2017) used empirical structural and functional MRI data 
and a large-scale brain network model of coupled Stuart 
Landau oscillators to show that progressive stages of AD 
are characterized by an increased distance from the putative 
ideal, critical state with optimal E/I balance. In a very exten-
sive study, using the computational framework of the virtual 
brain, Stefanovski et al. (2019) showed how local changes 
in hyperexcitability of neural masses, informed by individ-
ualized information about amyloid beta deposition based 
upon PET recordings, could be used to reproduce empirical 
findings in AD such as region-specific spectral slowing. In 
addition, the effect of treatment with an NMDA antagonist 
could be studied. Tait et al. (2021) used individualized brain 
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models based upon empirical observed functional connectiv-
ity to study the propensity for developing epileptic seizures. 
They observed an increased brain network ictogenecity 
(BNI) in the AD group. These large-scale model studies in 
AD clearly show the potential of this approach to address 
questions with respect to pathophysiological mechanisms 
and their implications. However, none of these studies spe-
cifically addressed how changes in the E/I balance would 
affect FC as assessed by measures of amplitude correlation 
versus measures of phase synchronization in different fre-
quency bands. This type of information is important since it 
could guide the choice of optimal biomarkers to select AD 
patients with high NH in clinical trials.

In the present study we use a computational whole-brain 
model of structural and functional brain networks to address 
the following two questions: (i) how does the EI balance, in 
combination with the connectivity strength, affect the FC 
as measured by amplitude correlation or phase synchro-
nization metrics? (ii) can we use empirical FC networks 
of subjects with subjective cognitive decline and subjects 
with mild cognitive impairment in theta and alpha bands to 
obtain consistent estimates of the EI balance of the underly-
ing networks?

Methods and Materials

Model Simulation and Signal Analysis

Brain Dynamics: Stuart Landau Oscillator

To simulate oscillatory activity of the local nodes in the 
whole brain network model we used the Stuart Landau 
model, also referred to as the Hopf bifurcation model. An 
overview of the model and the setup is shown in Fig. 1, and 
a summary of model parameters and their interpretation is 
shown in Table 1. This is one of the simplest models which 
has phase as well as amplitude information. This is impor-
tant, since we want to study the behavior of functional con-
nectivity measures which depend upon amplitude envelope 
correlations (AEC) as well as measures which depend upon 
phase differences between oscillators. The model has a bifur-
cation parameter a which controls a phase transition between 
a regime with no oscillations (point attractor) and a regime 
with oscillations (limit cycle). This parameter is of particular 
interest for the present study since it can be interpreted as 
a crude description of the E/I balance. The influence of the 
bifurcation parameter a on the model time series is shown 
in Fig. 2. The model has been used extensively to simulate 
brain dynamics in whole brain models of fMRI BOLD sig-
nals (Moon et al. 2015; Deco et al. 2017b, 2021; Demirtas 
et al. 2017; Goriely et al. 2020) and MEG signals (Deco 

et al. 2017a). The model dynamics is given by the following 
differential equation:

Here (in formula 1) z is a complex number, a is the bifur-
cation parameter, ω is the frequency (in radians/second), β 
is the noise level, and η is Gaussian white noise with zero 
mean and a standard deviation of 1. In the present study we 
used a noise level of β = 0.1, unless stated otherwise. The 
mean frequency ω was 6 or 10 Hz, depending on the fre-
quency band of interest (theta or alpha), with a variation of 
+ or – 0.5 Hz around the center frequency. By considering 
the real part of z (x) and the imaginary part (y) separately 
we can write (Deco et al. 2017b):

Here i and j are indices of different oscillatory systems, G 
is a global parameter of structural coupling strength, and ci,j 
is the weight of the structural connections between dynami-
cal system i and j. As can be seen in [2] and [3] G and ci,j 
are multiplied to obtain the obtain the structural connectiv-
ity strength. The variable x is taken as the oscillatory out-
put of the system. By writing the system equations in this 
way the instantaneous phase and amplitude can be obtained 
immediately:

where ϕt is the phase at time t (in radians) and

is the amplitude envelope or instantaneous amplitude at 
time t. We use Euler’s method for numerical integration of 
the model with a step size of 0.002 and a sample frequency 
of 500 Hz. Model output is in the form of trials or epochs 
of 4096 datapoints, each preceded by 5000 time steps to get 
rid of transients at the start of each trial in order to discard 
any transients in the dynamics.

Structural Brain Networks

We constructed a network with 78 connected oscillators. 
The locations of the 78 oscillators corresponded with the 
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coordinates of cortical regions of interest of the AAL atlas 
(Tzourio-Mazoyer et al. 2002). This atlas was chosen to 
allow comparison of the functional connectivity matrices 
with the empirical MEG recordings described below. To 
obtain the weights of the structural connections between 
all 78 nodes we used the exponential distance rule (Ercsey-
Ravasz et al. 2013).

(6)p(d) = e−�d

Here p(d) is the probability that two regions separated 
by a Euclidian distance d are connected. We normalized 
d by dividing it by the largest distance between any two 
oscillators. We used λ = 10 based upon exploratory stud-
ies (Supplementary Fig. 1). All connection weights were 
divided by the highest weight in the matrix to obtain the 
connection weights ci,j of eqs. (2) and (3). Structural net-
works generated with this exponential distance rule closely 
resemble the ground truth of anatomical connectivity 

Fig. 1   Schematic overview of the methods. For both the model as 
well as the empirical MEG recordings we reconstructed activity at the 
centroids of 78 cortical ROIs of the AAL atlas, shown at the top in 
the middle column. In the model connection weights between all 78 
ROIs were based upon an exponential distance rule. Dynamics of the 
nodes was simulated with a Stuart Landau model, with a slightly dif-
ferent frequency for each ROI. Model time series were generated for 
all ROIs. From these multichannel data the amplitude envelope cor-
relation was computed, resulting in a model empirical functional con-

nectivity matrix. For the empirical MEG data, signals were filtered in 
the alpha band (8–13 Hz) or the theta band (4–8 Hz), and projected to 
the centroids of the 78 cortical ROIs using beamformer techniques. 
This resulted in 78 channels of source reconstructed MEG data. From 
these the AEC was computed, with pairwise correction for volume 
conduction (AECc). This resulted in an empirical functional connec-
tivity matrix. Finally, the correlation between model and empirical 
FC matrices was computed as a function of the coupling strength G in 
the model (bottom, middle column)
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derived from tract-tracing studies in animals (Ercsey-
Ravasz et  al. 2013) and have been shown to correlate 

strongly with MRI tractography-based networks (Deco 
et al. 2021). (Supplementary Fig. 2).

Characterization of Amplitude Envelope Correlation 
and Phase Synchronization

Our aim was to determine the relation between functional 
connectivity measures and the E/I balance in the underly-
ing networks. Here we choose to investigate two measures 
which are representative for broad categories of functional 
connectivity: (i) amplitude envelope correlation (AEC) and 
(ii) phase coherence (PC). Amplitude envelope correlation 
and phase coherence are illustrated schematically for two 
coupled oscillators with different frequencies in Fig. 3. The 
choice to study these two coupling measures is motivated 
by the fact that amplitude correlations and phase coherence/
synchronization probably reflect two fundamentally differ-
ent modes of communication in brain networks (Engel et al. 
2013; Qiu et al. 2020; Schoonhoven et al. 2022; Siems and 
Siegel et al. 2020). The amplitude envelope correlation is the 
Pearson correlation coefficient of the amplitude envelopes of 
pairs of channels, which can be obtained directly from the 
model as shown in formula [4]. We only used positive values 
of the Pearson correlation coefficient. Negative values were 
set to zero. Phase coherence between all pairs of channels 
was computed as follows:

where i and j indicate oscillators, t is discrete time, T is 
the total number of time steps (4094 per epoch) and ϕi,j the 
instantaneous phase difference between oscillator i and j at 
time t. The phase difference can be obtained directly from 
the model output using formula 4. In the model functional 
connectivity was computed for all pairs of channels and for 
each trial/epoch of 4096 samples. The resulting functional 
connectivity matrices were subsequently averaged over mul-
tiple runs to obtain a better signal-to-noise ratio.

To compute amplitude envelope correlation and phase 
synchronization from empirical datasets it is necessary first 
to extract the instantaneous phase from the recorded sig-
nals, and next to correct for the influence of volume or field 
spread. As described previously (Stam et al. 2007), this can 
be realized using the analytical signal based on the Hilbert 
transform. The analytical signal zt is complex-valued with xt 
a real time series and x̃t its corresponding Hilbert transform:

The Hilbert transform of xt is obtained via integration 
as follows:

(7)phase coherencei,j =

||||||

T∑

t=1

ei�i,j(t)

||||||
∕n,

(8)zt = xt + ĩxt = Ate
i�t .

Table 1   Parameter settings of the model

Parameter Interpretation Value Range

ω Frequency 6,10 Hz
Frequency range 1 Hz
Sample frequency 500 Hz
Euler integration step 0.002
Epoch length 4096 samples

a Bifurcation parameter (excita-
tion/inhibition balance)

− 5–5

b Noise level 0.1
η Gaussian white noise Mean = 0  SD = 1
G Global coupling strength 0–5
cij Local coupling strength 0–1
λ Exponent exponential distance 

rule
10

N Number of nodes (AAL atlas) 78

Fig. 2   Change in model time series under influence of a, noise and 
coupling G. A Model time series of a single channel as a function of 
bifurcation parameter a (from − 4 to 4), for a noise level of b = 0 and 
no coupling (G = 0). The bifurcation parameter can be interpreted as a 
crude approximation of the excitation/inhibition balance in the model. 
Note the transition between a flat line to oscillatory fluctuations at 
the bifurcation point a = 0. B Same data, but now for a noise level of 
b = 0.1 and G = 0. Note that the addition of noise results in the blur-
ring of the transition point. C Same data, but now for b = 0.1 and 
G = 1. Note that adding coupling to the model influences the onset of 
oscillations, which now occur at a positive value of a 
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where PV refers to the Cauchy principal value. Note 
that xt corresponds to the x in Eq. (2), and ix̃t to the y in 
Eq. (3). The Hilbert transform [9] is related to the original 
signal by a [1/2]π phase shift that does not alter the spec-
tral distribution (it can be computed by performing a Fou-
rier transform, shifting all the phases by [1/2]π, followed 
by an inverse Fourier transform). From Eq. (8), both the 
instantaneous amplitude At and the instantaneous phase ϕt 
can be obtained in a similar way as in (4) and (5). For the 
computation of functional connectivity measures (amplitude 

(9)x̃t =
1

�
PV ∫

∞

−x

xt

t − �
d�,

envelope correlation as well as phase synchronization) from 
empirical data the influence of volume conduction or field 
spread has to be dealt with as well. In the case of the ampli-
tude envelope correlation this is accomplished by pair-wise 
orthogonalization of the data before the AEC is computed 
(Hipp et al. 2012; O’Neill et al. 2015; Schoonhoven et al. 
2022). We refer to this corrected version of the AEC as the 
AECc. In the case of phase synchronization, we used the 
phase lag index (PLI) which is not sensitive to volume con-
duction (Stam et al. 2007):

(10)PLIi,j =
���⟨sign

�
sin

�
�i,j

��
⟩���.

Fig. 3   Results for two coupled non identical oscillators. A Time 
series of two oscillators, one with a frequency of 10 Hz (upper row) 
the other with a frequency of 12 Hz (lower row) as a function of cou-
pling strength G (0, 1 and 4). The amplitude envelope of the time-
series is shown on top in blue. Note that amplitude envelope fluc-
tuations appear only for G = 1. B Distribution of phase differences 
between the two oscillator time series on the unit circle for differ-
ent coupling strengths G (0, 1 and 4). For G = 0 and G = 1 the phase 
difference takes on all possible values, whereas for G = 4 the phase 
difference is limited to a very small range. C Plot of normalized 

(z-scores) amplitude envelopes of the time series of the two oscilla-
tors as a function of phase difference G (0, 1 and 4). For G = 0 there 
are no amplitude envelope fluctuations, but the phase differences take 
all possible values. For G = 1 there are clear amplitude envelope fluc-
tuations, which are closely related for the two oscillators (amplitude 
envelope correlation); the phase difference still takes on all possi-
ble values (no phase synchronization). For G = 4 there are no longer 
amplitude fluctuations, but the phase difference is restricted to a very 
small range (phase synchronization)
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Here sign is the signum function which returns 1 if the 
argument if positive and − 1 otherwise, and ϕi,j is the instan-
taneous phase difference between oscillators i and j.

Empirical Data

Subjects

In the present study we re-analyzed a dataset which was 
previously used in two other studies for different analyses 
focused on spectral power (Luppi et al. 2022) and symbolic 
dynamics (Scheijbeler et al. 2022). As previously described 
(Scheijbeler et al. 2022) the study involved two age- and 
gender-matched groups consisting of 36 subjects: 18 sub-
jects with subjective cognitive decline (SCD; mean age 64.2 
years, SD 6.1; 8 males; MMSE 27.8, SD 2.1) and 18 subjects 
with amnestic mild cognitive impairment (MCI; mean age 
64.1 years, SD 6.2; 9 males; MMSE 25.8, SD 1.9). The data 
was retrospectively collected from the Amsterdam Dementia 
Cohort (Van der Flier and Scheltens 2018), which included 
data of subjects who visited the memory clinic of the VUmc 
Alzheimer Center in the period of spring 2015–2018 and 
provided written informed consent for the use of their data 
for research purposes. As part of an extensive diagnostic 
work-up, all subjects received medical history taking, neu-
rological and neuropsychological examination, blood tests, 
3T MRI of the brain, routine MEG and, if possible, a lumbar 
puncture to collect cerebrospinal fluid (Van der Flier and 
Scheltens 2018). A multidisciplinary team decided upon 
a diagnosis during a consensus meeting and according to 
the 2011 National Institute on Aging-Alzheimer’s Associa-
tion (NIA-AA) criteria. Positive amyloid biomarkers were 
available for all MCI subjects (by cerebrospinal fluid (CSF) 
ptau/amyloid ratio > 0.020 and/or abnormal amyloid PET). 
All SCD subjects, except three subjects with unknown bio-
marker status, had confirmed negative amyloid biomarkers.

MEG Recordings and (Pre‑)Processing

MEG recordings were obtained in a magnetically shielded 
room using a 306-channel whole-head vectorview MEG sys-
tem (Elekta Neuromag Oy, Helsinki, Finland) at a sample 
frequency of 1250 Hz, with an online anti-aliasing filter of 
410 Hz and high-pass filter of 0.1 Hz. The head position rela-
tive to the MEG sensors was continuously recorded and digi-
tized using four to five head-localization coils and a 3D-dig-
itizer (Fastrak, Polhelmus, Colchester, VT, USA). The scalp 
outline (~ 500 digitized points) was used for coregistration 
to the best fitting structural MRI template. The sensor-
space data was filtered by a temporal extension of the signal 
space seperation (tSSS) filter (implemented in MaxFilter 
software, Elekta Neuromag Oy, version 2.2.15) (Taulu and 
Simola 2006) and a broad-band filter (0.5–70 Hz). Then, an 

atlas-based beamforming approach (Hillebrand et al. 2012) 
was applied to reconstruct time-series of neuronal activity. 
The centroid voxel of each region of the automated anatomi-
cal labeling atlas (AAL; Tzourio-Mazoyer et al. 2002) was 
representing that region (Hillebrand et al. 2016). The sphere 
that best fit the scalp surface was used as volume conductor 
model and an equivalent current dipole as source model for 
computation of the beamformer weights.

MEG Time‑Series Analysis

Functional connectivity was calculated for the source-level 
time-series data of the whole-brain and between each ROI of 
the AAL atlas. For the AECc analysis the first 20 epochs of 
the first eyes-closed recording were selected. These epochs 
were down sampled by a factor of four. This resulted in 
epochs of 4096 samples in length (duration of 13.11 s). For 
the computation of the PLI no down sampling was used and 
80 epochs of 4096 samples (3.2768 s) of the first eyes-closed 
recording were selected. Computation of AECc and PLI was 
done with software written by the first author (BrainWave, 
version 0.9.165.51, available from home.kpn.nl/stam7883/
brainwave.html). For the present study the epochs were fil-
tered in two canonical frequency bands, i.e., theta (4–8 Hz), 
alpha (8–13 Hz) using a discrete fast fourier transform. For 
both groups and both connectivity measures and both fre-
quency bands grand mean functional connectivity matrices 
were computed by averaging over all subjects and all epochs. 
These grand average connectivity matrices were used for 
comparison with connectivity matrices generated by the 
model.

Results

As a first step we analyzed how the two functional connec-
tivity measures reflected changes in the excitation inhibition 
balance, as represented by the bifurcation parameter a. An 
important consideration here is that the effect of the bifurca-
tion parameter on functional connectivity is not independ-
ent of the structural coupling strength. For this reason, we 
studied the mean functional connectivity as a function of 
both the bifurcation parameter and the structural coupling 
strength in a single plot. In addition, we also looked at the 
standard deviation of the amplitude of individual oscillators, 
since this may also reflect indirectly the consequences of 
coupling (see Fig. 3, results for coupling strength G = 1). The 
results are shown in Fig. 4. Figure 4A shows that there is a 
clear effect of E/I balance and coupling strength on the mean 
amplitude standard deviation of individual channels. The 
standard deviation shows a region with large fluctuations 
for E/I values of bifurcation parameter a higher than − 1, 
up to 5, and for G between 0.25 and 0.75. This suggests that 
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fluctuations of local amplitudes are maximal for relatively 
high levels of E/I balance, and relatively weak coupling, 
even before the onset of interregional synchronization.

In Fig. 4B the mean AEC values averaged over all channel 
pairs and 100 epochs are shown. The plot shows two areas of 
relatively low AEC separated by a demarcation zone which 
is determined by the bifurcation parameter and the coupling 
strength. This pattern suggests that the AEC is maximal at, 
or close to the onset of interregional coupling. Remarkably, 
the AEC decreases in the zone with high values of a and G. 
Finally, Fig. 4C shows the results for phase coherence (PC). 
Here we see a very clear transition between a zone with low 
PC for low a and G, and a zone with very high PC for high a 
and G. The transition between the low and high PC regions 
seems to coincide with the zone where AEC showed the 

highest values (Fig. 4B). However, in contrast to the AEC, 
the PC rapidly increased to a maximum value close to 1, and 
stays at this high value for high values of a and G.

To better appreciate the detailed relationship between 
local amplitude fluctuations, AEC and PC, we plotted the 
results for a fixed value of a = 0 (bifurcation point, cor-
responding to interrupted yellow line in plots), as shown 
in Fig.  4D. Results are the mean of 50 iterations, with 
2 × standard error of the mean. Again, we can see that the 
fluctuations of the local amplitudes reach a maximum at 
weak coupling, before the onset of interregional synchro-
nization. The AEC reaches a maximum value at the onset 
of synchronization, whereas the PC only reaches its maxi-
mum value for higher levels of coupling. The first conclu-
sion is that local signal variability and the two functional 

Fig. 4   The relation between key model parameters and model output. 
The oscillators had a mean frequency of 10 Hz (range: 1 Hz) and a 
noise level of b = 0.1. A Standard deviation of amplitude envelope 
fluctuations per channel as a function of bifurcation parameter a, and 
coupling strength G.There is a region with a relatively high standard 
deviation for relatively low G, and positive values of a. B Amplitude 
envelope correlations (AEC) as a function of bifurcation parameter 
a and coupling strength G. The plot shows two areas with low AEC 
separated by a narrow boundary with high AEC, determined by a 
combination of the bifurcation parameter a and the coupling strength 

G. C Phase coherence as a function of bifurcation parameter a and 
coupling strength G. Phase coherence shows a transition between low 
and high levels at a transition boundary determined by a combination 
of the bifurcation parameter a and the coupling strength G. D Mean 
(shaded area: 2 ⋅ standard error of the mean) standard deviation of 
amplitude envelop per channel (in blue), amplitude envelope correla-
tion (in red) and phase coherence (in green) as a function of coupling 
strength G for a value of a = 0 (critical point, indicated by yellow line 
in A, B and C)
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connectivity measures do reflect changes in the E/I balance, 
but this effect is different for amplitude dependent and phase 
related measures, and also depends upon the coupling 
strength.

Our second question was whether we can obtain con-
sistent estimates of the E/I balance of the underlying brain 
networks from empirical resting-state MEG recordings. 
To address this question, we generated average FC matri-
ces (50 iterations) in the model for different values of the 
bifurcation parameter a and coupling strength G, using 
either a mean frequency of 6 or 10 Hz (variation around 

mean frequency + or – 0.5 Hz), and using either AEC or 
PC as connectivity measure. Next, the Pearson correlation 
coefficient was computed between these average model 
matrices and grand average FC matrix of empirical MEG 
recordings of SCD and MCI groups in the theta (4–8 Hz) 
or alpha band (8–13 Hz), and using either the AECc or the 
PLI. We interpreted a high correlation/good fit between 
empirical FC data and model FC data for specific values 
of the E/I balance and coupling strength as an indication 
that the MEG FC data contain information about the E/I 
balance of the underlying brain networks. A high fit thus 

Fig. 5   Correlation between model and empirical matrices for AECc 
in the 4–8 Hz band. A Pearson correlation between empirical matrix 
(AECc in 4–8  Hz band, averaged over 20 epochs and 18 subjects 
with subjective cognitive decline) and model matrix (mean of 100 
iterations; mean frequency 6  Hz) for different combinations of the 
bifurcation parameter a (from 5 to − 5, in steps of 0.5) and the cou-
pling strength G (from 0 − 5, in steps of 0.25). The strongest cor-
relation between empirical and model matrices is found for positive 
a, in particular for G around 1. B Similar analysis as in A, but now 

for empirical matrix of 18 subjects with cognitive decline. C Differ-
ences between matrices shown in A and B. First, the mean and stand-
ard deviation were computed for the full 20 × 20 matrices. Next, for 
each cell, the group difference was expressed as a z-score: [(Pearson 
matrix A − Pearson matrix B) − mean difference]/standard deviation. 
Red indicates higher Pearson correlation for the SCD group, blue for 
the MCI group. Results are shown for three different cutoff levels for 
the z-score
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would support the potential value of FC as a biomarker of 
E/I balance.

The results of the empirical model comparison for the 
AEC/AECc in the theta band are shown in Fig. 5. The 
correlation plots for the SCD and the MCI groups show 
a similar pattern with relatively higher empirical model 
correlations for values of a > 0. The highest values are 
found for a small zone at a > 0 and G around 1 (which cor-
responds roughly with the onset of synchronization; see 
also Fig. 4). Figure 6 shows the model matrices for this 
parameter region. Figure 6 suggests that the visual pat-
tern of model and empirical matrices is more informative 
for positive values of a for a coupling strength of 1. The 
highest Pearson correlation between empirical and model 
matrices for the SCD group was 0.697. For the MCI group 
the highest correlation was somewhat lower at 0.587. The 
region with relatively high empirical model correlation 
for a > 0 is separated from the lower part of the plots by a 
blue zone. A second region with relatively high empirical 

model correlations is found in the lower right part of the 
plots, but here the correlations are lower than in the upper 
part.

Although the empirical model correlation plots of the 
SCD and MCI groups show a very similar organization, 
they are not identical. To illustrate any patterns in the dif-
ferences between the two plots we computed the mean and 
the standard deviation of the differences in Pearson correla-
tion of all 20 × 20 cells. Next, we show the differences in 
the two matrices expressed as z-scores, with red indicat-
ing higher empirical model correlations in the SCD group 
and blue higher empirical model correlations in the MCI 
group. The pattern that emerges from Fig. 5C is that the 
SCD group shows a slightly better model fit for positive 
values of a (in the high E/I range), especially around G = 1, 
whereas the MCI group has a somewhat better model fit for 
values of a at or below zero (in the low E/I range), and for a 
somewhat broader range of coupling strengths. We should 
stress however that overall, the similarities in model fit for 

Fig. 6   A Examples of model AEC matrices at a mean frequency 6 Hz 
as function of bifurcation parameter a from 2 to − 2 and a fixed noise 
level b = 0.1 and coupling strength G = 1. B MEG AECc connectivity 
matrix in 4–8 Hz band of subjective cognitive decline (SCD) group, 
averaged over 20 epochs per subject, and 18 subjects in total. C MEG 

AECc connectivity matrix in 4–8 Hz band of mild cognitive impair-
ment (MCI) group, averaged over 20 epochs per subject, and 18 sub-
jects in total. The functional connectivity matrices of both groups 
show a greater similarity with model matrices for positive values of 
the bifurcation parameter a
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the SCD and MCI groups are much more striking than the 
subtle differences.

A similar analysis was done for empirical and model FC 
matrices in the alpha band, again using the AEC or AECc. 
Figure 7 shows that the overall organization of the empiri-
cal model correlation plots of both groups is comparable 
to the results obtained for the theta band. Again, the best 
model fit is obtained for high values of a and a coupling 
strength around 1, near the phase transition to a synchro-
nized state. The highest Pearson correlation for the SCD 
group was 0.646, and for the MCI group 0.703. However, 
one remarkable difference between the theta and the alpha 

band results is the transition between the upper, high cor-
relation region, and the lower correlation which occurs for 
the alpha band at a value of a around − 3, whereas in the 
theta band this transition was observed around a value of a 
around 0. Differences in model fit between the SCD and the 
MCI group are shown in Fig. 7C. The z-scores show that 
the SCD group has two regions in parameter space where it 
has a slightly better model fit than the MCI group: the lower 
left corned (low a and low G), and the region of a > 0 and 
G around 1. Remarkably, the MCI has a better model fit in 
a narrow zone with a > − 3 and G around 0.75, continuing 
in a zone with a around − 3 and G > 0.75. Again, we should 

Fig. 7   Correlation between model and empirical matrices for AECc 
in the 8–13  Hz band. A Pearson correlation between empirical 
matrix (AECc in 8–13 Hz band, averaged over 20 epochs and 18 sub-
jects with subjective cognitive decline) and model matrix (mean of 
100 iterations; mean frequency 10 Hz) for different combinations of 
the bifurcation parameter a (from 5 to − 5, in steps of 0.5) and the 
coupling strength G (from 0–5, in steps of 0.25). The strongest cor-
relation between empirical and model matrices if found for positive 
a, in particular for G around 1. B Similar analysis as in A, but now 

for empirical matrix of 18 subjects with cognitive decline. C Differ-
ences between matrices shown in A and B. First, the mean and stand-
ard deviation were computed for the full 20 × 20 matrices. Next, for 
each cell, the group difference was expressed as a z-score: [(Pearson 
matrix A − Pearson matrix B) − mean difference]/standard deviation. 
Red indicates higher Pearson correlation for the SCD group, blue for 
the MCI group. Results are shown for three different cutoff levels for 
the z-score
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stress however that overall, the similarities in model fit for 
the SCD and MCI groups are much more striking than the 
subtle differences.

The results of the empirical model functional connectiv-
ity for the phase coupling measures (PLI empirical data, 
phase coherence of model data) for the theta band are shown 
in Fig. 8. Both SCD and MCI groups show a similar pattern, 
which is in some respects rather different than the pattern 
for the AEC. The best model fit is found for a zone of posi-
tive a around G = 1. However, there is now a large region 
with a < 0 where the model fit is better irrespective of the 
coupling strength. Also, the overall model fit is substantially 

worse compared to the results for the AEC. The highest 
Pearson correlation for the SCD group was 0.234. and for 
the MCI group 0.295. Due to this very modest model fit dif-
ferences between the SCD and MCI shown in Fig. 8C have 
to be interpreted with great care. The SCD shows a better 
model fit than the MCI group for relatively low G, in par-
ticular in the range between 0.25 and 1.5, however this does 
not seem to depend on the bifurcation parameter a. The MCI 
group shows a better fit with a rather scattered distribution, 
mainly for a > 0, irrespective of G.

Finally, correlations between empirical and model phase 
coupling matrices for the alpha band are shown in Fig. 9. In 

Fig. 8   Correlation between model and empirical matrices for phase 
coherence in the 4–8 Hz band. A Pearson correlation between empiri-
cal matrix (phase coherence in 4–8 Hz band, averaged over 20 epochs 
and 18 subjects with subjective cognitive decline) and model matrix 
(mean of 100 iterations; mean frequency 6 Hz) for different combina-
tions of the bifurcation parameter a (from 5 to − 5, in steps of 0.5) 
and the coupling strength G (from 0–5, in steps of 0.25). The strong-
est correlation between empirical and model matrices if found for 
positive a, in particular for G around 1. B Similar analysis as in A, 

but now for empirical matrix of 18 subjects with cognitive decline. 
C Differences between matrices shown in A and B. First, the mean 
and standard deviation were computed for the full 20 × 20 matrices. 
Next, for each cell, the group difference was expressed as a z-score: 
[(Pearson matrix A  − Pearson matrix B)  − mean difference]/stand-
ard deviation. Red indicates higher Pearson correlation for the SCD 
group, blue for the MCI group. Results are shown for three different 
cutoff levels for the z-score



607Brain Topography (2023) 36:595–612	

1 3

this case there is a striking region of relatively best model 
fit for both groups for low values of a, mostly < − 3.5 to 4, 
for a broad range of coupling strengths, mostly with G > 0.5. 
There is a second region with a rather modest model fit in 
the region with a > 0 and G between 0 and 1. The highest 
Pearson correlation for the SCD group is 0.425 and for the 
MCI group 0.421. These fits are better than for the theta 
band, but lower than the fits for the AEC for both bands. 
Comparison of both groups shown in Fig. 9C shows that 
the SCD group has a better model fit than the MCI group 
for slightly higher values of G, over a large range of values 
of a. This shows that both the strength of the model fit, as 
well as differences in fit between the SCD and MCI groups 

clearly depend upon the connectivity measure, the frequency 
band, and a characteristic combination of EI balance and 
coupling strength.

Discussion

The present study investigated the relation between E/I bal-
ance and functional connectivity measures. Understanding 
how functional connectivity measures reflect the E/I bal-
ance is important if we want to develop reliable biomarkers 
of network hyperexcitability in Alzheimer’s disease. Those 
biomarkers could be used for patient selection in clinical 

Fig. 9   Correlation between model and empirical matrices for phase 
coherence in the 8–13  Hz band. A Pearson correlation between 
empirical matrix (phase coherence in 8–13 Hz band, averaged over 20 
epochs and 18 subjects with subjective cognitive decline) and model 
matrix (mean of 100 iterations; mean frequency 10 Hz) for different 
combinations of the bifurcation parameter a (from 5 to − 5, in steps 
of 0.5) and the coupling strength G (from 0–5, in steps of 0.25). The 
strongest correlation between empirical and model matrices if found 
for negative a, in particular for G around 1. B Similar analysis as in 

A, but now for empirical matrix of 18 subjects with cognitive decline. 
C Differences between matrices shown in A and B. First, the mean 
and standard deviation were computed for the full 20 × 20 matrices. 
Next, for each cell, the group difference was expressed as a z-score: 
[(Pearson matrix A  − Pearson matrix B)  − mean difference]/stand-
ard deviation. Red indicates higher Pearson correlation for the SCD 
group, blue for the MCI group. Results are shown for three different 
cutoff levels for the z-score
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trials, and possibly provide information on clinical progres-
sion. Our most important conclusion is that both amplitude 
as well as phase-based connectivity measures were influ-
enced by the excitation inhibition balance. The nature of this 
dependence was different in both types of measures, and also 
depended upon the structural coupling strength and the fre-
quency band. Our second conclusion is that it is possible to 
obtain consistent estimates of E/I balance of the underlying 
brain networks by fitting the model to empirical resting-state 
MEG recordings. The best results were obtained for the theta 
band and the amplitude coupling measure, and suggest that 
the underlying brain networks are operating in a regime with 
a high E/I balance near a phase transition.

We showed that both amplitude envelope as well as phase 
coupling measures reflect E/I balance, but they do so in a dif-
ferent way. In a classic paper the differences between these 
two families of functional connectivity measures were dis-
cussed in detail, and interpreted as two fundamentally dif-
ferent “intrinsic coupling modes” of the brain (Engel et al. 
2013). These authors suggested that amplitude correlations 
might reflect more closely the underlying anatomical con-
nections and the interregional regulation of activity levels, 
whereas phase synchronization might be an expression of 
information transfer on relatively short time scales. Recent 
studies have also confirmed the fundamentally different and 
non-redundant nature of amplitude and phase-based con-
nectivity measures (Siems and Siegel 2020; Avramieo et al. 
2022). Until recently, a proper understanding of the relation 
between amplitude and phase related measures has been 
lacking, and the assumption was that amplitude correlations 
would arise in the context of stronger coupling. However, 
using the same Stuart Landau model as in the present study, 
Qiu et al. (2020) were able to show that amplitude envelope 
correlations can be caused by weak coupling between oscil-
lators with slightly different frequencies in the absence of 
noise and before the onset of phase synchronization.

We have replicated this finding of Qiu et al. (2020) for 
a simple system of two coupled oscillators (Fig. 3). In the 
case of a large network of coupled oscillators we also see a 
different behavior of amplitude and phase coupling: in the 
parameter plane defined by the excitation–inhibition balance 
(bifurcation parameter a) and the coupling strength G, the 
AEC showed a local maximum at the transition zone between 
the non-oscillatory and the oscillatory regimes (Fig. 4B), 
whereas phase coherence displays a transition from low 
to high values at approximately the same transition zone 
(Fig. 4C). This suggests that the AEC is especially sensitive 
to connectivity in a critical state at the transition between 
(noisy) point attractor on one side, and a (noisy) limit cycle 
on the other side. Of interest, a very similar behavior of 
amplitude envelope correlation and phase synchronization 
was recently described in a very different model (Avramieo 
et al. 2022). Importantly, this transition is not a single point, 

but a demarcation line in the parameter plane determined by 
both the E/I balance, as well as global coupling strength. In 
addition to the differences described above, the AEC also 
showed higher correlations between empirical and model 
FC matrices. This seems to be related to the fact that ampli-
tude envelope correlations tend to resemble the topology 
of the underlying structural networks relatively closely, and 
especially near a bifurcation point in the dynamics (see also 
Fig. 6). The different behavior of amplitude and phase-based 
connectivity could perhaps also explain why AEC turns out 
to be a more robust and reproducible measure in empirical 
datasets (Colclough et al. 2016; Schoonhoven et al. 2022). 
Of interest, even very weak coupling in combination with 
a relatively high excitation inhibition balance could give 
rise to fluctuations of the amplitude envelopes of individual 
channels, even before the onset of proper amplitude cor-
relations (Fig. 4D). This observation lends some support to 
the interpretation of local measures of “neural variability” 
in terms of the excitation inhibition balance (Garrett et al. 
2013; Scheijbeler et al. 2022).

In empirical studies of functional connectivity in Alzhei-
mer’s disease based upon EEG or MEG different and oppo-
site patterns are often observed in low and high frequency 
bands (Cuesta et  al. 2022a, b; Ranasinghe et  al. 2022; 
Schoonhoven et al. 2022). In particular, connectivity is often 
increased in the theta band, especially in the early disease 
stages, and decreased in alpha and higher bands (beta and 
gamma). In the present study we also observed differences 
between the results for the theta and the alpha band. For 
both types of connectivity measures, the best fit between 
empirical and model functional connectivity matrices tended 
to occur for relatively higher E/I balance for the theta band, 
and lower E/I balance for the alpha band. For the theta band, 
the best correlation was for positive values of the bifurcation 
parameter and a coupling strength around 1, whereas for 
the alpha band the best model fit was observed for negative 
values of bifurcation parameter a over a large range of G. 
This suggests that in general theta band connectivity could 
reflect dynamics in a more hyperexcited regime, while alpha 
band connectivity is associated with a more inhibited type 
of dynamics. This is of interest in view of the empirically 
observed increased connectivity in the theta band in AD 
patients, in particular those with subclinical epileptiform 
activity (Ranasinghe et al. 2022; Schoonhoven et al. 2022). 
The fact that empirical studies report a decreased connec-
tivity in the alpha and higher bands might be related to the 
fundamentally different, more inhibitory dynamics in this 
frequency range.

However, we should point out that the relation between 
amyloid deposition, hyperexcitability, and local power 
changes in specific frequency bands is still the topic of active 
research. Nakamura et al. (2018) showed in a MEG study 
that amyloid deposition in the frontal regions may be related 



609Brain Topography (2023) 36:595–612	

1 3

to increased power in the alpha band. Babiloni et al. (2022) 
did not find significant differences in local alpha power 
between 8 patients with MCI due to AD with epileptiform 
discharges in their EEGs compared to 34 patients without 
epileptiform discharges. In contrast, the subgroups with epi-
leptiform discharges—as a signature of hyperexcitability—
showed a significant increase in delta power in the occipital 
and temporal areas. Finally, a recent model study supports 
the relation between hyperexcitability and increased low fre-
quency power (van Nifterick et al. 2022).

The primary aim of this study was to understand the rela-
tion between functional connectivity measures and E/I bal-
ance. In addition, we also explored whether our model has 
some potential to provide information on differences in E/I 
balance between subjects with subjective cognitive decline 
(SCD) and subjects with mild cognitive impairment (MCI). 
Here we expected to find evidence for a higher E/I balance 
as a sign of neural hyperexcitability in MCI as an early stage 
of Alzheimer’s disease. Compared to the contrasts between 
the two different types of connectivity measures, and the 
differences between the two frequency bands, the differences 
between the model fit of the SCD and MCI groups were rela-
tively small. Furthermore, we have to take into account that 
we have only one single average FC matrix for each group 
per condition. Even so, the z-score plots of group differences 
in the empirical model correlation matrices do suggest some 
non-arbitrary patterns. Notably, for the AEC in the theta 
band, the SCD group seems to have a slightly better fit than 
the MCI group in the hyperexcitable region. The z-score 
plots of the other frequency bands and the phase coherence 
also suggest that both groups may have a characteristic “fin-
gerprint” in terms of their optimal fit with the model in the 
excitation inhibition/coupling strength plane. A major chal-
lenge for future work is to extend this type of analysis to the 
individual level to obtain statistically supported conclusions 
about changes in excitation inhibition levels in early AD.

Other model studies have also investigated various 
aspects of functional connectivity and hyperexcitability in 
AD. In an early study we showed that disruption of synaptic 
strength induced by peak levels of synaptic activity could 
give rise to a transient phase of increased neural firings rates 
and interregional synchronization, followed by a late phase 
of spectral slowing, loss of activity and connectivity (de 
Haan et al. 2012). The present study replicates some of these 
findings in a much simpler model of the dynamics, where the 
E/I balance is compressed into a single parameter (the bifur-
cation parameter a). This simpler model greatly facilitates 
the investigation of amplitude and phase-based connectivity 
(which can both be derived directly from the model vari-
ables), and also enables fitting the model directly to empiri-
cal data, which is effectively impossible for the complex 
neural mass model used in other studies (de Haan et al. 
2012; Stefanovski et al. 2019). Demirtas et al. (2017) used a 

whole brain model with Stuart Landau oscillators to explore 
the origins of decreased functional connectivity related to 
the progression of AD pathology. In this study empirical 
functional connectivity was based upon resting-state fMRI, 
and only showed a decrease going from healthy subjects 
to Alzheimer’s disease. Progressive loss of functional con-
nectivity could be explained by successively lowering the 
bifurcation parameter from slightly negative to more nega-
tive values, further away from the equilibrium point at a = 0. 
These findings are more like those obtained in the alpha than 
the theta band in the present study, but direct comparison 
of fMRI and MEG findings is challenging. Of note, in a 
related study addressed specifically at modelling MEG rest-
ing state functional connectivity the authors showed that 
optimal results were obtained with a frequency of the oscil-
lators of 12 Hz (Deco et al. 2017a; Tait et al. 2021) also used 
a modeling approach to explore hyperexcitability in AD. 
They used empirical, EEG-based functional connectivity to 
create individualized brain network models, on which they 
studied the propensity of these models to show a transition 
to seizure-like activity. This study showed a higher “brain 
network ictogenecity” (BNI) in the AD patients, with par-
ticular involvement of those brain areas that also typically 
display high levels of amyloid beta deposition. However, 
none of the AD patients in this study actually experience 
seizures, so the significance of the changes in BNI is not yet 
completely clear.

The present study has several limitations. First of all, the 
Stuart Landau model is relatively simple, and has no direct 
link to neurobiologically relevant features such as spike 
rates, membrane potentials, post synaptic potentials and 
time constants which feature prominently in more realistic 
neural mass models (de Haan et al. 2012; Haan et al. 2017; 
Stefanovski et al. 2019). The model generates steady state or 
oscillatory time series, but cannot deal with the 1/f part of 
the spectrum. However, this simplicity also has advantages 
since the behavior of this model is well understood, and it 
is easier to fit empirical data to his model and manipulate 
abstract features such as E/I balance. To keep the model 
simple, we did not include time delays between the oscil-
lators. This approach without time delays was also used in 
another study that modeled MEG with Stuart Landau oscil-
lators (Deco et al. 2017b). Please note that time delays are 
not necessary to obtain fluctuations of the amplitude enve-
lope and amplitude envelope correlations in the model (see 
Fig. 3). We used a structural connectivity matrix based upon 
the positions of the centroids of AAL ROIs in combina-
tion with an exponential distance rule (Ercsey-Ravasz et al. 
2013; Tzourio-Mazoyer et al. 2002). One might expect better 
results with structural networks based upon MRI tractogra-
phy, but the exponential distance probably presents a very 
good approximation of the anatomical ground truth (Deco 
et al. 2021; Ercsey-Ravasz et al. 2013). The empirical data 
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consisted of group level functional connectivity matrices 
averaged over all epochs of all subjects in a particular fre-
quency band using either the AECc or the PLI. This was 
done to obtain FC matrices with the best possible signal-to-
noise level for comparison with the model output. However, 
an important challenge for future studies is to explore the 
possibility of fitting the model to FC matrices of individu-
als rather than groups. Finally, the groups of SCD and MCI 
subjects were relatively small. Future studies should aim 
to study larger groups along the Alzheimer continuum to 
allow conclusions about disturbed E/I balance in different 
disease stages.

To conclude, we have shown that two different categories 
of functional connectivity measures based upon amplitudes 
or phases each have their own unique relation with the exci-
tation E/I balance in the underlying brain networks. Fur-
thermore, the relation between functional connectivity and 
excitation inhibition balance is modulated by the connection 
strength and the frequency band. These findings can guide 
the use of functional connectivity as biomarker of network 
hyperexcitability in AD, in particular when selecting sub-
jects for future trials with anti-epileptic drugs. There are 
several challenges for future research. First of all, it would be 
helpful to explore new connectivity measures for their poten-
tial as network hyperexcitability biomarkers. One promising 
direction would be the concept of local and interregional 
neural variability (Garrett et al. 2013; Scheijbeler et al. 
2022). Another challenge would be to fit models like the one 
used in this study to connectivity data of individual subjects. 
This would allow individual, quantitative assessment of the 
presence of network hyperexcitability, and could create new 
opportunities for therapeutic trials with anti-epileptic drugs 
of various forms of non-invasive stimulation.
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