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Abstract
There is a growing interest to understand the neural underpinnings of high-level sports performance including expertise-
related differences in sport-specific skills. Here, we aimed to investigate whether expertise level and task complexity modu-
late the cortical hemodynamics of table tennis players. 35 right-handed table tennis players (17 experts/18 novices) were 
recruited and performed two table tennis strokes (forehand and backhand) and a randomized combination of them. Cortical 
hemodynamics, as a proxy for cortical activity, were recorded using functional near-infrared spectroscopy, and the behav-
ioral performance (i.e., target accuracy) was assessed via video recordings. Expertise- and task-related differences in corti-
cal hemodynamics were analyzed using nonparametric threshold-free cluster enhancement. In all conditions, table tennis 
experts showed a higher target accuracy than novices. Furthermore, we observed expertise-related differences in widespread 
clusters compromising brain areas being associated with sensorimotor and multisensory integration. Novices exhibited, in 
general, higher activation in those areas as compared to experts. We also identified task-related differences in cortical activ-
ity including frontal, sensorimotor, and multisensory brain areas. The present findings provide empirical support for the 
neural efficiency hypothesis since table tennis experts as compared to novices utilized a lower amount of cortical resources 
to achieve superior behavioral performance. Furthermore, our findings suggest that the task complexity of different table 
tennis strokes is mirrored in distinct cortical activation patterns. Whether the latter findings can be useful to monitor or tailor 
sport-specific training interventions necessitates further investigations.

Keywords  Neuroplasticity · Near-infrared spectroscopy · Whole-brain · Table tennis · Neural efficiency · Unconstrained 
environments · Threshold-free cluster enhancement

Introduction

In recent years, there is mounting evidence that high-level 
sports performance does not only require well-developed 
physical capabilities but also relies on superior cognitive 

performance levels (Scharfen & Memmert 2019; Yarrow 
et al. 2009). The latter is a crucial element for extraordi-
nary motor control being observed in (elite) athletes (Yar-
row et al. 2009). To better understand the superior motor 
control of (elite) athletes, neural processes controlling 
the execution of sports-specific motor tasks were recently 
investigated (Nakata et al. 2010; Seidel-Marzi & Ragert 
2020; Yarrow et al. 2009). To study the neural processes 
of athletes in a realistic and natural environment (e.g., dur-
ing the execution of sport-specific motor tasks such as a 
table tennis stroke), mobile neuroimaging techniques such as 
electroencephalography (EEG) and functional near-infrared 
spectroscopy (fNIRS) have been applied (Carius et al. 2021; 
Park et al. 2015; Stephane Perrey & Besson 2018). While 
both EEG and fNIRS have yielded valuable insights into 
the neural processes being associated with motor control 
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of sport-specific motor tasks, EEG suffers from the vul-
nerability to motion artifacts and a limited spatial resolu-
tion, although it provided an excellent temporal resolution 
as compared to fNIRS (Stephane Perrey & Besson, 2018; 
Seidel-Marzi & Ragert 2020). In contrast, fNIRS offers a 
relatively high spatial resolution, an acceptable temporal 
resolution, and is relatively robust against motion artifacts 
(as compared to EEG). Hence, it is well-situated to study 
motor control-related neural processes during the execution 
of sport-specific gross-motor tasks (Seidel-Marzi & Ragert 
2020). FNIRS is a non-invasive neuroimaging technique that 
is based on the theory of neurovascular coupling and optical 
spectroscopy (for review please see Herold et al. 2018; Leff 
et al. 2011). In brief, fNIRS allows for an indirect assess-
ment of cortical activity patterns by using activity-related 
changes in oxygenated (HbO) and deoxygenated hemoglobin 
(HbR) as proxies of brain activity changes (Herold et al. 
2018; Leff et al. 2011). More specifically, higher cortical 
activity in a distinct brain area is typically reflected by an 
increase in HbO and a concomitant decrease in HbR result-
ing from an activity-related rise in the regional blood flow 
(Herold et al. 2018; Leff et al. 2011).

Within the sports context, our and other research groups 
have successfully applied fNIRS during sport-specific motor 
tasks such as balancing (Herold et al. 2017a, b; Seidel et al. 
2017; Seidel-Marzi et al. 2021), barbell squats (Kenville 
et al. 2017), juggling (Carius et al. 2016), climbing (Carius 
et al. 2020a), basketball (Carius et al. 2020b), and table ten-
nis (Balardin et al. 2017; Carius et al. 2021). In this context, 
some of the above-mentioned studies reported expertise-
related differences in cortical activity patterns (Carius et al. 
2016, 2021) which is, at least partly, in line with the neural 
efficiency hypothesis postulating that experts show a more 
efficient cortical processing (lower neural resources) than 
non-experts (Neubauer & Fink 2009). Recently, we inves-
tigated expertise-related differences in the behavioral per-
formance of forehand and alternating forehand and back-
hand strokes as well as the corresponding cortical activation 
patterns in table tennis experts and novices (Carius et al. 
2021). In this study, however, contrary to the neural effi-
ciency hypothesis, we observed a more pronounced increase 
in cortical activation (operationalized by changes in HbO) 
in motor control-related brain areas such as primary motor 
cortex (M1), premotor cortex (PMC), and inferior parietal 
cortex (IPC) in experts as compared to novices regardless of 
the stroke technique (Carius et al. 2021). Moreover, although 
this study provided valuable insights into the differences in 
motor control-related neural processes between table tennis 
experts and novices in a relatively naturalistic environment, 
some points somewhat weaken, from a scientific perspective, 
the robustness and generalizability of our findings (Carius 
et al. 2021). In particular, in the above-mentioned study 
(i) the movement frequency was not standardized across 

conditions as inherent in a naturalistic setting (ii) fNIRS 
was only recorded using a regions-of-interest (ROI) based 
approach covering exclusively motor-related brain regions 
(Carius et al. 2021). Based on the evidence that a faster 
movement frequency in specific motor tasks (i.e., finger 
tapping) lead to higher activation of motor-related brain 
areas (Guérin et al. 2021; Kuboyama et al. 2004, 2005), the 
observation of a higher cortical activation in motor-related 
brain areas in table tennis experts in our previous study 
might be related to the fact that table tennis experts exhib-
ited a higher movement frequency (i.e., a higher number of 
executed table tennis strokes in a specific time interval) as 
compared to table tennis novices (Carius et al. 2021). Fur-
thermore, given (i) that in gross-motor tasks (i.e., walking) 
a slower movement frequency leads to a higher activation 
of the prefrontal areas (Guérin et al. 2022), and (ii) that our 
fNIRS setup in the previous study (Carius et al. 2021) only 
covered motor-related areas which, in turn, does not allow 
to assess of “compensational” brain activity patterns (e.g., 
in the prefrontal cortex), the findings of our previous study 
needs to be confirmed and substantiated by addressing the 
above-mentioned methodological limitations. Such confirm-
atory research (e.g., replication studies) is important to move 
the field of sports science forward (Halperin et al. 2018).

This assumption is further supported by the facts that (a) 
in table tennis athletes available neuroimaging studies inves-
tigating expertise-related effects (i.e., neural efficiency) are 
mostly limited to laboratory-based investigations in which 
no table tennis-specific movements were performed (Guo 
et al. 2017; Hülsdünker et al. 2019b, 2019a; Yingying Wang 
et al. 2019; Wolf et al. 2014; Wolf et al. 2015), and (b) that a 
profound knowledge on the neural process of motor control 
(e.g., expertise-related neural signatures of different table 
tennis stroke techniques) is an important prerequisite to 
optimize sport-specific training (Stephane Perrey & Besson 
2018; Seidel-Marzi & Ragert 2020; Yarrow et al. 2009), 
further studies elucidating the neural processes of high-
level motor performance are needed to gain a more nuanced 
understanding of motor control in general and to facilitate 
sportive success in particular. Thus, in the current study, we 
aimed to investigate expertise-related effects concerning dif-
ferent table tennis stroke techniques while recording cortical 
activity via a whole-head fNIRS setup in table tennis experts 
and novices. Based on our previous study (Carius et al. 
2021), we hypothesize (i) that table tennis experts outper-
form novices on behavioral performance levels and (ii) that 
table tennis experts show altered cortical activation patterns 
as compared to novices. In accordance with the neural effi-
ciency hypothesis predicting a task-related economization 
of brain activation patterns in experts (Ludyga et al. 2016; 
Neubauer & Fink 2009), we assume that table tennis novices 
in comparison to table tennis experts have a lower degree 
of neural efficiency being reflected by a higher activation 
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of compensational (i.e., prefrontal cortex) and task-relevant 
brain areas (i.e., motor cortex) during table tennis strokes. 
Although our assumption regarding the motor-related brain 
activation patterns is in contrast to the findings of our study, 
our previous observation of a higher activation of motor-
related brain areas in table tennis experts during table tennis 
strokes (Carius et al. 2021) is probably related to the higher 
number of table tennis strokes conducted by the experts as 
movement frequency is known to influence brain activation 
patterns (Guérin et al. 2021). To address the limitations of 
our previous study (i.e., no control for movement frequency 
and assessment of only motor-related brain regions), we 
rigorously controlled the movement frequency by using a 
robotic device and extended our measurement setup from 
motor-related areas to a whole-brain configuration. In addi-
tion, as recommended in recent best-practice recommen-
dations (Yücel et al. 2021), we also applied state-of-the-
art analyses tools to account for potential confounders of 
the fNIRS signal (i.e., short-separation channels to record 
extracerebral hemodynamic changes).

Taken together, the current study utilizing a sophisticated 
and rigorous methodological approach aimed to investigate 
expertise-related effects of different table tennis stroke tech-
niques on cortical activation patterns and thus will broaden 
our knowledge on the phenomenon of neural efficiency in 
sport-specific tasks (i.e., table tennis strokes).

Material and Methods

Participants

A total of 35 right-handed healthy volunteers (average age: 
25.40 ± 0.53 years; range 21–35 years; 18 women) were 
included in this study. The study procedure was approved 
by the local ethics committee of the University of Leipzig 
(309/17-ek) and was conducted in accordance with the latest 
version of the Declaration of Helsinki. None of the volun-
teers reported any previous neurological, psychiatric, cardio-
vascular, or musculoskeletal disease or took centrally acting 

drugs during the time of the experiment. To ensure that 
both groups did not significantly differ in terms of potential 
confounders, (i) hours of sports per week, and (ii) hours 
of fine motor training per week were assessed. Accord-
ing to the Edinburgh Handedness Questionnaire (Oldfield 
1971), all volunteers were right-handed (mean handedness 
score of 70.59 ± 3.30; cut-off score ≥ 50 indicated right-
handedness; < 50 to >  − 50 indicate ambidextrous handed-
ness; ≤  − 50 indicated left-handedness (Dragovic 2004)). 
A standardized questionnaire was used to assess a) hours 
of sports per week and b) hours of fine motor training per 
week (e.g., playing a musical instrument, knitting, handi-
crafts, playing video games). Out of the 35 participants 
included, 17 were expert table tennis players (experience: 
16.17 ± 1.08 years, quarterly table tennis ranking (QTTR): 
1826 ± 55.67, classified as highly trained athletes: Tier 3 
McKay et al. 2022), and 18 novice table tennis players (see 
Table 1 for details on group demographics). The QTTR is a 
quarterly adjusted scoring system for ranking seasonal table 
tennis performance. Here, the number of points depends on 
wins, losses, and the number of games played. The score 
ranges from 800 (beginner)–2700 (highest level of expertise, 
i.e., national league level). A QTTR of ~ 1600 thus indicates 
expertise related to the regional league level. To control for 
possible psychological confounders, all participants assessed 
their attention [1 (very distracted)–10 (very attentive)], 
fatigue [1 (sleeping)–10 (very energetic)], and discomfort [1 
(no discomfort)–10 (strong discomfort)] on a visual analog 
scale (VAS) both before and after the entire experiment.

Experimental Procedure

The present study aimed to compare cortical activity pat-
terns between table tennis experts and novices during the 
execution of forehand (FH) and backhand (BH) strokes, 
as well as the randomized (RD) execution of forehand and 
backhand table tennis strokes. For this purpose, the par-
ticipants performed FH cross-court, BH cross-court, and 
RD cross-court strokes against topspin balls played by an 
app-controlled table tennis robot (Donic Newgy Robo-Pong 

Table 1   Group demographics

LQ, Laterality Quotient as assessed with the Edinburgh Handedness Scale [range: − 100 (full left-handed) 
to + 100 (full right-handed)]. Hours of sports per week and hours of fine motor training per week (e.g., 
playing a musical instrument, knitting, doing handcrafts, playing video games with a keypad or joystick) 
were assessed with a questionnaire. All values are depicted as mean standard error (SE) of the mean. 
Statistical analysis revealed no differences in age, gender, LQ, sports/week, or fine-motor training/week 
between groups

Group Age (years) Gender 
(female/
male)

LQ (score) Sports/week (hours) Fine-motor 
training/week 
(hours)

Experts n = 17 25.71 ± 0.97 7/10 71.49 ± 3.67 6.68 ± 0.85 1.91 ± 0.77
Novices n = 18 25.11 ± 0.48 9/9 69.74 ± 5.51 6.03 ± 0.96 2.06 ± 0.78
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3050XL, Germany) in a standardized manner. Standardi-
zation includes the spin type (topspin), spin strength/ball 
speed, placement of the balls on the table, height, number 
of balls (13) and wait time (1.54 s). FH, BH, and RD strokes 
were each executed according to a block design for 6 × 20 s 
in random order (jittered intertrial interval 25–35 s, see 
Fig. 1b), whereby the participants were instructed to perform 
strokes as accurately as possible. The target areas on the FH 
and BH sides were isosceles right triangles with side lengths 
of 25 cm (3 points), 50 cm (2 points), and 75 cm (1 point), 
respectively (see Fig. 1). Target accuracy was recorded with 
a high-speed video camera and evaluated offline. To control 
for movement speed, we used a 9-axis accelerometer com-
bining a 3-axis gyroscope, 3-axis accelerometer and 3-axis 
magnetometer, which is an integral part of the fNIRS sys-
tem (NIRSport2, NIRX, US, 100 Hz). The accelerometer 
was fixed to the upper arm using an elastic strap (Velcro 
strap, Noraxon, Scottsdale, US) and a cap holder designed 
for NIRS samples and accelerometers.

The onsets of the FH, BH, and RD blocks were presented 
as auditory stimuli via Psychopy (Peirce 2007). In addition, 
fNIRS triggers were set via Psychopy.

Functional Near‑Infrared Spectroscopy (fNIRS)

Hemodynamic responses were recorded on both hemispheres 
using a whole-brain continuous-wave fNIRS system (NIR-
Sport2, NIRX, US). The fNIRS setup used 32 LED light 
sources and 32 avalanche photodiode detectors with an inter-
optode distance of approximately 30 to 40 mm (depending on 
specific channel configuration and head circumference of the 
individual participant), which form 108 actual measurement 
channels. For an illustration of the fNIRS setup see Fig. 2. 
Fixation of a source and detector distance was achieved by 
using so-called distance holders. The NIRSport2 measures 
simultaneously at wavelengths of 760 nm and 850 nm and 
uses time and frequency multiplexing to minimize crosstalk 
between wavelengths and optodes. FNIRS optode placement 
was performed using an fNIRS cap (with different sizes) which 
ensures standardized sensor placement according to the well-
established 10–20 EEG system.

In addition to the 108 (standard) channels, we used a short-
distance detector bundle (NIRx Medical Technologies, Glen 
Head, NY) to eliminate potential fNIRS confounders, such 
as extra-cerebral blood flow alterations. For that purpose, we 

Fig. 1   Study design and experimental setup. A Forehand (FH) and 
backhand (BH) strokes illustrated on a table tennis plate with tar-
get areas 1–3. B Experimental procedure: Participants started with 
a 5 min warm-up phase. Following the warm-up phase, participants 

performed FH and BH strokes, as well as the randomized (RD) 
execution of forehand and backhand strokes with the dominant right 
hand
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used additional short-distance detectors with an inter-optode 
distance of 8 mm, as opposed to the inter-optode distance for 
all other long-separation channels of our configuration (i.e., 
between ca. 30 and 40 mm). This resulted in eight short-dis-
tance channels, which were taken into account in the analysis 
of the fNIRS signal (see Analysis). Data were acquired with 
a sampling frequency of 10.1725 Hz. To rule out expertise-
related differences, we measured cardiac stress, operational-
ized via heart rate, during the execution of table tennis strokes 
using an Apple Watch (Series 6) with a sampling frequency 
of 1 Hz.

Data Analyses

Hemodynamics

FNIRS data analysis was performed in MATLAB (Math-
Works, Natick, MA, United States of America) using 
HOMER3 (version 1.35.11) (Huppert et al. 2009) and QT-
NIRS (Hernandez & Pollonini 2020). Statistical analysis was 
performed using the TFCE-Toolbox (Mensen & Khatami 
2013).The first step in the fNIRS signal pre-processing was 
channel pruning. In this work, we used QT-NIRS (Her-
nandez & Pollonini 2020), a MATLAB-based tool for esti-
mating the quality of an fNIRS signal based on physiol-
ogy-related measures that are independent of the specific 
instrument and of the experimental paradigm being used. 
This approach, first proposed by Pollonini et al. (2016), 
uses a combination of time-domain (scalp coupling index, 

Fig. 2   Illustration of fNIRS configuration used during table tennis. 
Sources  are shown as red dots and detectors as blue dots. Yellow 
dots represent each center of the 108 channels (inter-optode distance 
3  cm). 10–20 EEG  positions for infrared sources (IR-S) and detec-
tors (IR-D), respective brain regions (arranged in rows), targeted by a 
10–20 system transfer method and defined by the “Brodmann” Atlas 
(aPFC anterior prefrontal cortex, Broca broca area, dlPFC dorsolat-

eral prefrontal cortex, IFG inferior frontal gyrus, IPC inferior pari-
etal cortex, ITG inferior temporal gyrus, M1 primary motor cortex, 
MFG middle frontal gyrus, MTG middle temporal gyrus, OC occipi-
tal cortex, PMC premotor cortex, S1 primary somatosensory cortex, 
SMA supplementary motor cortex, SPC superior parietal cortex, STG 
superior temporal gyrus, TP temporal pole; L left hemisphere, R right 
hemisphere, Zimeo Morais et al. 2018)
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SCI) and frequency-domain measures (peak spectral power, 
PSP) of the strength of the systemic pulsation to evaluate 
both optode-scalp coupling and the presence of movement 
artifacts at all time points in a dataset [Fminmax = (0.5 2.5); 
wLength = 3; sciThld = 0.7; pspThld = 0.1]. If more than 
30% of channels from a given dataset were deemed invalid, 
then the whole dataset was excluded from further analysis. 
Following this procedure, 13 subjects had to be excluded. 
The remaining participants (n = 22, 11 experts and 11 nov-
ices) show good data quality for 82.1% of the channels. Sec-
ond, the raw intensity signals were converted to changes in 
optical density (Huppert et al. 2009).

Correction for motion artifacts was performed using 
wavelet filtering (Brigadoi et al. 2014; Di Lorenzo et al. 
2019). We used the algorithm described by Molavi and 
Dumont (2012) as implemented in the HOMER3 hmrR_
MotionCorrectWavelet filtering function (inter-quartile 
range 1.219, Carius et al. 2020a). Following motion-artifact 
correction, the data was slightly low-pass filtered using 3 Hz 
as low pass cutoff frequency. We did not use a high pass 
filter as the following GLM handles this with a polynomial 
drift correction.

Attenuation changes of both wavelengths (850  nm 
and 760 nm) were transformed to concentration changes 
of oxy- and deoxygenated hemoglobin (HbO and HbR, 
respectively) using the modified Beer-Lambert approach 
(partial pathlength factor: 6.0; Huppert et al. 2009). As rec-
ommended in the current literature (Yücel et al. 2021), we 
report HbO and HbR (instead of only reporting changes in 
one chromophore), however, as concentration changes of 
HbR are considered to (i) be influenced by a lower extent by 
systemic physiological noise (Dravida et al. 2018; Kirilina 
et al. 2012), (ii) have a stronger correlation with the blood 
oxygen level-dependent signal of the functional magnetic 
resonance imaging (Huppert et al. 2006a; Huppert et al. 
2006b), and (iii) are spatially more focused (Dravida et al. 
2018; Plichta et al. 2007), we primarily, but not solely, focus 
on this parameter in the presentation and interpretation of 
the results.

In order to regress extra-cerebral contaminations (meas-
ured by short-distance channels) out of the signal, we mod-
eled the hemodynamic response function (HRF) by using 
a general linear model approach (GLM) that uses ordinary 
least squares and a consecutive sequence of Gaussian func-
tions with a standard deviation of 0.5 s and their means 
separated by 0.5 s over a specific regression time (used 
parameters in HOMER3 hrmR_GLM function: trange − 2.0 
to 40; glmSolveMethod 1; idxBasis 1; paramBasis 0.5 and 
0.5). Furthermore, to account for baseline drift, we used a 
third order polynomial fit. As implemented in this function, 
short-separation regression (SSR) is performed with the 
short-separation channel, which shows the highest correla-
tion with the respective long-separation channel (Lühmann 

et al. 2020; Yücel et al. 2015). Single trials were baseline 
corrected (regarding 2 s before stimulus onset) and time 
courses of HbO and HbR concentration changes in each 
measurement channel and condition (FH, BH, RD) were 
block-averaged. The entire time courses of HbO and HbR 
were exported for TFCE analysis.

Behavioral Data

The target accuracy of FH, BH, and RD was recorded with 
a high-speed video camera (iPhone 13, 4096 × 2160 Pixel 
(4 K), 60 frames per second, Apple Inc., California) and 
further evaluated offline by two experimenters. For this pur-
pose, the hit points of the table tennis balls on the board had 
to be assigned to the respective target areas (isosceles right 
triangles with side lengths of 25 cm (3 points), 50 cm (2 
points), and 75 cm (1 point), see Fig. 1). Total points were 
determined for each stroke condition.

The analysis of the movement speed was performed with 
a customized Matlab script. The three components of the 
gyroscope were used for this purpose. The assignment of 
gyroscope data to the table tennis stroke movements was 
based on recorded fNIRS triggers. Using the local maxima 
of the three components of the gyroscope, the maximum 
angular velocities of the upper arm were determined. The 
angular velocities of the 18 strokes were averaged block 
wise for each subject and each stroke condition. The compo-
nent with the highest angular velocities represents the main 
movement in the sagittal plane of motion and was used to 
evaluate expertise- and task-related differences.

Statistical Analyses

In fNIRS studies, the assumptions for parametric tests are 
often violated (e.g., normal distribution). Furthermore, due 
to mass univariate testing, the multiple comparison problem 
(MCP) arises, especially when using whole-brain configu-
rations with a huge number of channels. For these reasons, 
nonparametric threshold-free cluster enhancement (TFCE) 
was applied with a cluster threshold of p = 0.05 (Mensen & 
Khatami 2013; Smith & Nichols 2009) and 10.0000 per-
mutations. Data-driven cluster-based permutation tests are 
widely used in ERP/ERF analysis (EEG/MEG) and have 
also been applied in fNIRS studies as a suitable solution 
strategy for the problems mentioned above (Abboub et al. 
2016; Ferry et al. 2016; Mahmoudzadeh et al. 2013). Clus-
ter-based methods are particularly useful for the statistical 
analysis of data where spatial and/or temporal dependencies 
are expected, as in the case of EEG or fNIRS data. TFCE 
tests were conducted in Matlab using the TFCE-Toolbox 
(Mensen & Khatami 2013). Differences in HbO and HbR 
concentration changes between FH, BH, and RD (task as 
within-subject-factor), respectively, novices and experts 
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(group as between-subject-factor) were tested using TFCE 
mixed two-way ANOVA (default TFCE parameters: E = 2/3, 
H = 1, Mensen & Khatami 2013; Smith & Nichols 2009). 
In the case of non-significant interactions, we conducted 
post hoc tests for the main effects task and expertise. For 
the factor task, we used one-way repeated measures TFCE 
ANOVA. For factor expertise we used independent sam-
ple TFCE T-Tests (default parameters: E = 2/3, H = 2). The 
TFCE statistic does not provide an estimate of the effect 
size. Estimating the effect size using the T-statistics only 
takes into account the magnitude of the effect, but does not 
take into account the contribution of the cluster size to the 
TFCE statistic.

The resulting spatio-temporal clusters are printed as 
color-coded T- & F-Maps in time (− 2 to 40 s) and space 
(108 channels). We report the actual mean differences, clus-
ter sizes (the number of significant channels and/or time 
points), corrected p-values, and TFCE values for peak coor-
dinates of the resulting clusters. In addition, to illustrate the 
task-related changes during the execution of the table tennis 
strokes, we averaged the TFCE test values from 5 to 20 s and 
mapped them onto the brain surface using the Brain Func-
tion Mapping Tool of Wang et al. (2016). Finally, TFCE 
test values were summed in time and space according to 
their associated brain areas, separately for left and right 
hemispheres. In the results section, L represents left and R 
represents right hemisphere.

The behavioral data (target accuracy & movement) of the 
FH, BH, and RD were analyzed using a mixed ANOVA with 
post-hoc tests (i.e., T-tests). The threshold for statistical sig-
nificance was set to α = 0.05.

Results

Behavioral Data

In general, experts achieved higher target accuracy as com-
pared to novices [mean ± SD: NOV: 74.20 ± 25.18 points, 
EXP: 99.48 ± 19.48; F(1, 31) = 15.36, p < 0.001, ηp

2 = 0.33, 
Fig. 3].

Furthermore, we also identified task differences across 
groups (FH: 91.18 ± 27.74, BH: 88.49 ± 21.28, RD: 
79.70 ± 27.30; F(1.52, 47.16) = 7.39, p = 0.004, ηp

2 = 0.19). 
There was no interaction between task and group [F(1.52, 
47.16) = 3.41, p = 0.054, ηp

2 = 0.10]. Within experts, tar-
get accuracy did not differ between conditions (FH vs. 
BH: t(16) = 1.59, pholm = 0.354, d = 0.32; FH vs. RD: 
t(16) = 1.76, pholm = 0.335, d = 0.35; BH vs. RD: t(16) = 0.17, 
pholm = 1.000, d = 0.04). In contrast, novices achieved lower 
target accuracy in RD as compared to FH and BH (FH vs. 
BH: t(15) = -0.41, pholm = 1.000, d = − 0.09; FH vs. RD: 
t(15) = 3.39, pholm = 0.012, d = 0.70; BH vs. RD: t(15) = 3.80, 
pholm = 0.004, d = 0.79). The aforementioned results for tar-
get accuracy are based on the total sample (n = 35). The sta-
tistical analysis of the fNIRS subsample (n = 22) leads to the 
same behavioral results as the analysis of the total sample 
(see Supplementary Table 1).

In addition, we quantified expertise-related differences 
in movement speed. There were no differences in move-
ment speed between experts and novices (mean ± SD: 
NOV: 26.33 ± 13.23°s−1, EXP: 35.92 ± 8.10°s−1; F(1, 
18) = 3.83, p = 0.066, ηp

2 = 0.18) and no interaction between 
task and group (F(2, 36) = 1.31, p = 0.282, ηp

2 = 0.07). In 
contrast, we identified task differences across groups (FH: 
33.48 ± 15.86, BH: 23.44 ± 12.09, RD: 36.48 ± 14.77; 

Fig. 3   Group and task effects on target accuracy during table tennis. 
Harrell plot combining box plot, dot plot and forest plot. A Box plot 
and dot plot showing target accuracy of Novices and Experts execut-
ing Forehand (FH), Backhand (BH) and Forehand/Backhand strokes 
(RD). B Forest plot showing modeled effects. Experts achieved 

higher target accuracy as compared to novices (EXP-NOV). Within 
experts, target accuracy did not differ between conditions (EXP: 
FH-BH, FH-RD, BH-RD, Holm adjusted p-values). In contrast, nov-
ices achieved lower target accuracy in RD as compared to FH and BH 
(NOV: FH-BH, FH-RD, BH-RD, Holm adjusted p-values)
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F(2, 36) = 9.40, p < 0.001, ηp
2 = 0.34). Here, BH was per-

formed at a lower movement speed compared to FH and 
RD (FH vs. BH: t(19) = 3.19, pholm = 0.006, d = 0.74; RD 
vs. BH: t(19) = 4.14, pholm < 0.001, d = 0.96; FH vs. RD: 
t(19) = − 0.95, pholm = 0.347, d = − 0.22).

Hemodynamics

Nonparametric cluster-based permutation analysis (TFC 
E) revealed no interactions between groups (experts vs. 
novices) and conditions (FH vs. BH vs. RD), neither for 
HbO (peak significance found at PMCL: F(2,40)max = 9.41, 
pmax = 0.434, FWE TFCE-corrected), nor for HbR (peak 
significance An39R: F(2,40)max = 9.17, pmax = 0.582, FWE 
TFCE-corrected). In contrast, testing main effects, clus-
ter-based permutation tests indicated differences between 
groups and conditions suggesting that expertise level (nov-
ices vs. expert) and task complexity (i.e., FH vs. BH vs. RD) 
modulate the cortical hemodynamics. In the following, we 
will describe our results of expertise- and task-related effects 
on cortical hemodynamics in more detail.

Effect of Expertise

Regarding HbR, the difference between experts and nov-
ices (Fig. 4a) was driven by two clusters primarily located 
over left (Cluster 1) and right pre- and postcentral chan-
nels (Cluster 2). Cluster 1 included left SMA, PMC, M1, 
S1 (22 unique channels; time range 0–40 s; mean ± SD: 
NOV: 19.56 ± 14.03 µM mm, EXP: 13.70 ± 16.94 µM mm; 
t(20)max =  − 5.02, pmax = 0.001, FWE TFCE-corrected, 
Fig.  4b). Cluster 2 included right M1, S1, IPC, SPC 
and STG (9 unique channels; time range 0–23 s; NOV: 
30.69 ± 12.59 µM mm, EXP: 1.62 ± 9.64 µM mm; t(20)max =  
− 5.83, pmax = 0.005, FWE TFCE-corrected). All the afore-
mentioned channels showed higher concentration changes 
in HbR in novices compared to experts. TFCE-based post 
hoc testing for novices revealed a significant decrease in 
HbR concentration during table tennis compared to base-
line in bilateral M1, S1, SPC, SMAL, PMCL and IPCR 
(t(32)max = − 9.42, all channels: pmax < 0.002, Fig. 4c shows 
summed TFCE t-values). In contrast, in experts a more 
focused task-related decrease in HbR in bilateral M1, PMCL 
and S1R was identified [t(32)max = − 7.35, pmax < 0.001].

Considering HbO, TFCE identified two spatio-temporal 
clusters comparing experts and novices (suppl. Fig. 1a). 
Cluster 1 includes left dlPFC and left Broca [two unique 
channels, time range 12–23 s; NOV: 34.53 ± 5.47 µM mm, 
EXP: 102.68 ± 7.54 µM mm; t(20)max = 4.43, pmax = 0.039]. 
Cluster 2 includes bilateral dlPFC, MFG, SMA, PMC, 
M1, S1, SPC, IPC and OC (54 unique channels, time 
range 0–40  s; NOV: 22.15 ± 26.02  µM  mm, EXP: 
− 50.76 ± 27.75 µM mm; t(20)max = − 7.47, pmax < 0.001). 

In the time range of 5–20 s only bilateral dlPFC, MFG, 
SMA, PMC & M1 were included (17 channels, Supplemen-
tary Fig. 1b). For all channels belonging to cluster 2, higher 
concentration changes in HbO were found in novices than 
in experts. TFCE-based post hoc testing for novices showed 
significant increases in concentration changes in HbO dur-
ing table tennis compared to baseline in bilateral dlPFC, 
MFG, SMA, PMC, M1 and BrocaL [t(32)max = 9.15, all 
channels: pmax < 0.001, see Supplementary Fig. 1c]. Experts 
showed increases in task-related concentration changes in 
HbO in left Broca, left dlPFC and left M1 [t(32)max = 8.63, 
pmax < 0.001]. In contrast, in the right hemisphere MFG, 
SMA, PMC and M1 showed decreases (t(32)max = − 6.79, 
pmax < 0.004).

Effect of Task

Regarding HbR, the difference between conditions (FH 
vs. BH vs. RD) was mainly driven by a widespread clus-
ter containing pre- and postcentral channels as well as 
temporal subcluster on both hemispheres (see Fig.  5). 
This cluster included bilateral dlPFC, MFG, SMA, PMC, 
M1, MTG, STG, SPC, IPC and S1L [68 unique channel, 
time range 0–40 s; F(2,42)max = 29.76, pmax < 0.001, FWE 
TFCE-corrected]. During the execution of the table tennis 
strokes only bilateral dlPFC, PMC, M1, MTG, and STG as 
well as MFGR, SMAL, S1L, SPCL, and IPCL were included 
(Fig. 5b). Furthermore, there was a small cluster including 
aPFC and dlPFC [three unique channel, time range 2–21 s; 
F(2,42)max = 25.29, pmax = 0.01, FWE TFCE-corrected].

Cluster-based post hoc pairwise comparison of FH and 
BH showed various differences depending on the brain area. 
In bilateral M1, S1L, and SPCL, we observed higher concen-
tration changes in HbR during the execution of FH [t(32)max 
= − 5.03 , all channels: pmax < 0.022]. In contrast, in bilat-
eral MTG and STG as well as IFGr, we observed higher 
concentration changes in HbR during the execution of BH 
[t(32)max = 6.08, pmax < 0.042, Fig. 5c shows summed TFCE 
t-values]. The comparison of FH and RD showed higher 
HbR concentrations changes in bilateral MTG, STG, and 
IFG during RD [t(32)max = 5.60, pmax < 0.005]. With regard 
to the statistical comparison of BH and RD, we observed 
higher HbR concentrations changes in RD in bilateral MFG, 
SMAL, and SPCL [t(32)max = 5.54, pmax < 0.044].

The HbO the difference between conditions (FH vs. BH 
vs. RD) was also driven by a single, widespread cluster con-
taining pre- and postcentral channels as well as a contigu-
ous temporal subcluster on both hemispheres (suppl. Fig-
ure 2a). This cluster included bilateral dlPFC, SMA, MTG, 
STG and SPC as well as MFGL, PMCL, M1L, S1L and IPCL 
[66 unique channel, time range 0–40 s; F(2,42)max = 28.20, 
pmax < 0.001]. Except for IPCL, all of the above-mentioned 
areas were included during the execution of the table tennis 
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strokes (suppl. Figure 2b). Post hoc pairwise comparison 
of FH and BH showed no differences. In contrast, compar-
ing FH and RD higher HbO concentrations changes were 
noticed in MTGR, STGR, and IFGR during RD [t(32) max 
= − 4.07 , all channels: pmax < 0.026, suppl. Figure 2c shows 
summed TFCE t-values]. When comparing BH and RD, we 

observed higher HbO concentrations changes in RD in bilat-
eral IFG, MTG and STG [t(32)max = − 6.72, pmax < 0.001] as 
well as M1L and S1L [t(32)max = − 3.73, pmax < 0.016].

Fig. 4   Group effects on deoxygenated hemoglobin (HbR) concentra-
tion changes during table tennis [Novice (NOV) vs. Experts (EXP) 
executing forehand and backhand strokes] according to TFCE anal-
ysis. A Raster diagram showing significant data points (spatio-tem-
poral cluster). Rectangles indicate channel/time points modulated by 
expertise. Red rectangles indicate higher concentration changes for 
novices. The colorbar indicates TFCE t-values. Note that channels 
(source-detector combinations) are organized along the y-axis accord-
ing to their associated brain areas. B Temporal aggregated difference 
map (EXP—NOV). Optodes (sources  and detectors) are shown for 
the topographic images; colors represent mean TFCE t-values (sam-
ple range 5–20  s). Images are thresholded at p < 0.05 (Top view, 
Cluster 1: 22 channels including SMAL, PMCL, M1L, S1L, time range 
0–40 s, t(20)max = − 5.02, pmax = 0.001, Cluster 2: 9 channels includ-
ing M1R, S1R, IPCR, SPCR, time range 0–23  s, t(20)max =  − 5.83, 
pmax = 0.005). All channels indicate higher concentration changes  in 
HbR for novices. C Within-group comparisons activity vs. baseline 

(rest) concentration changes. Sunburst plots showing novices resp. 
experts. Values are summed TFCE t-values (sample range 5–20  s) 
for all significant channels resp. associated brain areas. The size of 
the segments reflects the sum of the TFCE t-values of the respective 
brain areas. The total size of the sunburst plots reflects the total sum 
of all significant TFCE t-values. Please note, that all channels show 
higher concentration changes during activity compared to baseline. 
TFCE threshold-free cluster enhancement, A Anterior, P Posterior, L 
left hemisphere, R right hemisphere, aPF anterior prefrontal cortex, 
Broca broca area, dlPFC dorsolateral prefrontal cortex, IFG infe-
rior frontal gyrus, IPC inferior parietal cortex, ITG inferior temporal 
gyrus, M1 primary motor cortex, MFG middle frontal gyrus, MTG 
middle temporal gyrus, OC occipital cortex, PMC premotor cortex, 
S1 primary somatosensory cortex, SMA supplementary motor cortex, 
SPC superior parietal cortex, STG superior temporal gyrus, TP tem-
poral pole
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Psychological and Physiological Confounders

Statistical analysis of the questionnaires revealed no pre-
post differences, neither for the participants’ attention 
level, nor for the fatigue level [attention: pre: 8.0 ± 1.0 
(median ± MAD), post: 7.0 ± 1.0, z = 0.32, p = 0.755; fatigue: 
pre: 7.0 ± 1.0, post: 7.0 ± 1.0, z =  − 0.58, p = 0.557]. Never-
theless, regarding discomfort, there was an increase from 
pre- to posttest (pre: 1.0 ± 0.0, post: 2.0 ± 1.0, z =  − 3.62, 

p < 0.001). However, there were no statistically signifi-
cant differences between experts and novices concerning 
pretest (attention: p = 0.111, U = 200.0, fatigue: p = 0.736, 
U = 142.5, discomfort: p = 0.303, U = 127.0), posttest 
(attention: p = 0.055, U = 96.5, fatigue: p = 0.068, U = 98.5, 
discomfort: p = 0.731, U = 163.5), or pre–posttest differ-
ences (fatigue: p = 0.116, U = 106.5, discomfort: p = 0.362, 
U = 179.5) with the exception of attention (p = 0.002, 
U = 62.0).

Fig. 5   Task effects on deoxygenated hemoglobin (HbR) concentra-
tion changes during table tennis (Forehand vs. backhand vs. Fore-
hand/backhand strokes across groups) according to TFCE analysis. 
A Raster diagram showing significant data points (spatio-temporal 
cluster). Rectangles indicate channel/time points modulated by task. 
The colorbar indicates TFCE f-values. Note that channels (source-
detector combinations) are organized along the y-axis according to 
their associated brain areas (Zimeo Morais, Balardin, & Sato 2018). 
B Temporal aggregated difference map (FH vs. BH vs. RD). Optodes 
(transmitters and detectors) are shown for the topographic images; 
colors represent mean TFCE f-values (sample range 5–20 s). Images 
are thresholded at p < 0.05 (Top view, Cluster 1: 68 channels includ-
ing bilateral Broca, dlPFC, MFG, SMA, PMC, M1, MTG, STG, SPC, 
IPC as well as aPFCL and S1L, time range 0–40 s, F(2,42)max = 29.76, 

pmax < 0.001). C Post-hoc Tests FH—BH, FH—RD and BH—RD. 
Bars represent post-hoc comparisons between FH, BH & RD. Values 
are summed TFCE t-values (sample range 5–20 s) for all significant 
channels belonging to the aforementioned cluster resp. brain areas. 
TFCE threshold-free cluster enhancement, A Anterior, P Posterior, 
L left hemisphere, R right hemisphere, aPFC anterior prefrontal cor-
tex, Broca broca area, dlPFC dorsolateral prefrontal cortex, IFG infe-
rior frontal gyrus, IPC inferior parietal cortex, ITG inferior temporal 
gyrus, M1 primary motor cortex, MFG middle frontal gyrus, MTG 
middle temporal gyrus, OC occipital cortex, PMC premotor cortex, 
S1 primary somatosensory cortex, SMA supplementary motor cortex, 
SPC superior parietal cortex, STG superior temporal gyrus, TP tem-
poral pole
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Concerning cardiac stress operationalized via heart 
rate recordings during the execution of the table ten-
nis strokes, there were no difference between experts and 
novices (mean ± SD: NOV: 88.14 ± 10.69  bpm, EXP: 
92.72 ± 11.93 bpm; F(1, 31) = 1.37, p = 0.251, ηp

2 = 0.04), 
no task-related differences (F(1.45, 45.02) = 1.51, p = 0.232, 
ηp

2 = 0.05) and no interaction between task and group 
(F(1.45, 45.02) = 1.97, p = 0.162, ηp

2 = 0.06). The afore-
mentioned results (questionnaires & heart rate) are based 
on the total sample (n = 35). The statistical analysis of the 
fNIRS subsample (n = 22) leads to the same outcomes (see 
Supplementary Tables 2 & 3).

Discussion

In recent years, there is an increasing interest to utilize neu-
roimaging methods to improve our understanding of the 
neural processes of sport-specific tasks (Carius et al. 2021; 
Seidel-Marzi & Ragert 2020). In this context, the current 
study aimed to investigate expertise-related effects concern-
ing different table tennis stroke techniques while recording 
cortical activity via a whole-head fNIRS setup in table tennis 
experts and novices and to extend the findings of our previ-
ous study (Carius et al. 2021). Based on our previous study 
(Carius et al. 2021) and the current evidence regarding the 
neural efficiency hypothesis (Li & Smith 2021; Neubauer 
& Fink 2009), we hypothesized (i) that table tennis experts 
outperform novices on behavioral performance levels and 
(ii) that table tennis experts show a higher neural efficiency 
than novices which is reflected by a lower activation of task-
specific (e.g., PMC, M1) and compensational brain areas 
(e.g., dlPFC) in experts.

In line with both of our hypotheses, we observed (i) that 
table tennis experts outperformed novices with respect to the 
target accuracy of table tennis strokes and (ii) that the supe-
rior behavioral performance of expert table tennis players 
was accompanied by distinct cortical activities that probably 
reflects a better neural efficiency. In the following, we will 
discuss our findings in more detail.

Behavioral Data

Our results indicate that table tennis experts achieve a higher 
target accuracy than novices in FH and BH. In general, our 
findings are in line with previous studies showing that table 
tennis experts as compared to novices achieved a superior 
performance concerning behavioral indices of table tennis 
strokes (e.g., target accuracy) (Schaefer & Amico 2022; 
Schaefer & Scornaienchi 2019). Furthermore, the finding 
that only novices, in contrast to experts, exhibited a per-
formance decrease in a more complex motor task condi-
tion (i.e., RD) implies that the increase in the complexity 

of the motor task is not challenging enough to pose seri-
ous demands on the motor control resources of table ten-
nis experts to lead to measurable decrements in behavioral 
performance (i.e., target accuracy) or, in other words, that 
table tennis experts have sufficient motor control resources 
allowing them to cope with the increased motor task com-
plexity. The latter might be related to a higher neural effi-
ciency of expert athletes allowing them to solve a specific 
tasks with a more efficient utilization of neural resources as 
compared to novices (Neubauer & Fink 2009). Furthermore, 
our findings complement the current literature in which such 
expertise-related differences in motor performance (i.e., 
operationalized by the number of hits) were not reported 
for the modulation of the difficulty of an additional cogni-
tive task in a dual-task situation (Schaefer & Scornaienchi 
2019). In conjunction with our observations, the finding of 
Schaefer and Scornaienchi (2019) suggests that neural effi-
ciency is relatively task-specific and do not fully generalize 
to a broad set of (unfamiliar) tasks (i.e., solving a cognitive 
task while playing table tennis), although, arguably more 
research is necessary, to provide further empirical support 
for this assumption.

The finding that BH was performed at lower movement 
speed compared to FH and RD might raise the assumption 
that BH also leads to higher target accuracy. However, this 
was not the case in our study. Hence, lower movements 
speed during TT does not seem to affect motor performance, 
neither in novices nor in experts.

Hemodynamics

Expertise‑Related Effects

To better understand expertise-related differences in sport-
specific skills by probing theories aiming to explain the 
former phenomenon (e.g., neural efficiency hypothesis), 
the application of neuroimaging methods (e.g., fNIRS) is 
essential (Stephane Perrey & Besson 2018; Seidel-Marzi & 
Ragert 2020). In the current study, we observed that novices 
compared to table tennis experts showed more pronounced 
alterations in cortical activity during different table tennis 
strokes. In particular, we found that novices as compared 
to experts show a higher activation (i.e., operationalized by 
HbR) in two widespread clusters that compromise the fol-
lowing cortical regions: (i) Cluster 1 in the left, contralateral 
hemisphere including the SMA, PMC, M1, and S1 as well 
as (i) Cluster 2 in the right, ipsilateral hemisphere including 
the M1, S1, IPC, SPC and STG.

While previous studies (Balardin et al. 2017; Carius et al. 
2021) also observed a more pronounced activation of spe-
cific brain areas such as the PMC, M1, and IPC during the 
execution of table tennis strokes, a higher activation in those 
areas in table tennis experts as compared to novices was 
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noticed (Carius et al. 2021). This contrasting finding seems 
to be related to differences in study methodology. In our 
previous study, we did not control for movement frequency 
to preserve the ecological validity of the task (Carius et al. 
2021). However, given the fact (i) that movement frequency 
can alter cortical activity patterns in prefrontal and motor-
related brain areas (Guérin et al. 2021, 2022; Kuboyama 
et al. 2004, 2005), and (ii) that table tennis experts in our 
previous study performed significantly more strokes than 
novices (i.e., exhibited a higher movement frequency), the 
higher activation observed in the previous study in table 
tennis experts is probably related to the higher movement 
frequency rather than reflecting expertise-related differences 
in cortical activity (Carius et al. 2021).

The expertise-related effects being observed in the cur-
rent study (i.e., higher activation in table tennis novices as 
compared to experts), in which we apply a more rigorous 
study design (i.e., controlled for movement frequency), fit 
to the neural efficiency hypothesis postulating that experts 
utilize cortical resources more efficiently than novices 
(e.g., higher activation on task-relevant and “compensa-
tional” brain regions in novices as compared to experts) (Li 
& Smith 2021; Neubauer & Fink 2009). In line with the 
neural efficiency hypothesis, the lower activation of motor-
related areas such as the PMC and M1 in table tennis experts 
probably mirror a more automatized planning, preparation, 
and execution of table tennis strokes as such functions are 
generally attributed to these brain areas (Leff et al. 2011). 
The higher activation of the inferior partial cortex—namely 
the angular gyrus—in table tennis novices in comparison to 
experts might reflect a higher reliance of novices on mul-
tisensory and sensorimotor integration (i.e., lower neural 
efficiency) to perform table tennis strokes as the inferior 
parietal cortex in general (Bruner 2018; Culham & Valyear 
2006; Fogassi & Luppino 2005; Freedman & Ibos 2018) 
and the angular cortex in particular (Seghier 2013) play an 
important role in different processes of multisensory and 
sensorimotor integration (e.g., in visuomotor actions such 
as grasping, reaching and eye-movements).

Concerning prefrontal cortex activation, there is evidence 
that table tennis novices as compared to experts exhibit a 
higher activation of prefrontal areas (e.g., middle frontal 
gyrus) during sport-related and -unrelated tasks (Guo et al. 
2017). Such an activation of prefrontal structures during 
specific task is interpreted as a typical sign of a more con-
trolled (“compensational”) and less automatized (motor) 
control (Herold et al. 2017a, b). However, in the current 
study, we are not able to draw solid conclusion with regard 
to expertise-related differences in prefrontal cortex activa-
tion since no clear pattern in concentration changes of the 
chromophores (neither in HbO nor in HbR) emerged. In 
particular, we did observe higher concentration changes of 
HbO in dlPFC in novices as compared to experts, but did not 

identify such a difference for HbR. As a higher brain activa-
tion is typically mirrored in a task-related increase in the 
concentration of HbO and a concomitant decrease of HbR 
(Herold et al. 2018; Scholkmann et al. 2022), a sole increase 
in HbO cannot be reliably interpreted as an indicator for a 
higher brain activation of table tennis novices, which, in 
turn, somewhat limits the interpretation of such a finding.

Task Effects

In addition to expertise-related differences, we also observed 
task-based differences in cortical activity. More specifically, 
task-related effects were observed in a widespread cluster 
comprising of bilateral dlPFC, MFG, SMA, PMC, M1, 
MTG, STG, SPC and IPC as well as S1L (see result section 
for a more detailed overview). Here, the current study has 
addressed the majority of the limitations of our previous 
study such as the standardization of the movement frequency 
and the utilization of a randomized sequence of strokes (i.e., 
RD) instead of a fixed one. Especially, the latter point, the 
transition from FH or BH to RD, is probably a greater chal-
lenge for the motor control of novice and expert table tennis 
players than the transition from FH to FHBH—as applied in 
our previous study (Carius et al. 2021). However, our find-
ings that cortical activity vary as a function of task complex-
ity are consistent with the observations of previous studies 
investigating the influence of motor complexity on corti-
cal activity using tasks such as finger tapping (Holper et al. 
2009), juggling (Carius et al. 2016) or table tennis strokes 
(Balardin et al. 2017). For instance, in the single-subject 
study of Balardin et al. (2017) in which cortical activity of 
one expert table tennis player were studied during different 
table tennis strokes (i.e., FH and BH), higher PMC activity 
in unpredictable (i.e., unpredictable strokes to FH or BH) 
in comparison to predictable (i.e., strokes to FH) table ten-
nis strokes was observed (Balardin et al. 2017). Given the 
observation of other studies showing that the PMC plays 
a crucial role in movement planning and monitoring (Leff 
et al. 2011; Pearce & Moran 2012; Pesaran et al. 2006), our 
findings suggest that different types of table tennis strokes 
might rely on higher level movement planning and monitor-
ing which is mirrored by an increased activation of the PMC. 
This line of interpretation is supported by recent evidence 
showing that higher task complexity is associated with more 
pronounced activation of PMC (Maes et al. 2020; Meister 
et al. 2005; Swinnen & Wenderoth 2004). Comparably, our 
results of dlPFC activation in more complex task condi-
tions are consistent with the findings that frontal areas (e.g., 
dlPFC) are activated (i) when a (motor) task becomes more 
complex (Serrien et al. 2007), and (ii) when motor control is 
less automatized and is controlled by the indirect locomotor 
pathway (Herold et al. 2017a, b).
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Regarding post hoc comparisons of the different task con-
ditions (i.e., FH, BH, and RD), FH and BH showed vari-
ous differences depending on the brain area. In particular, 
a higher concentration of HbR in bilateral M1, S1L, and 
SPCL was observed during the execution of FH, whereas 
we noticed a higher concentration of HbR in bilateral MTG, 
STG, and IFGr during the execution of BH. These findings 
suggest that FH poses higher demands on sensorimotor inte-
gration, while BH requires a higher level of multisensory 
integration, although more research is necessary to further 
corroborate the evidence for these assumptions.

Based on the findings (i) that HbR concentrations in 
bilateral MFG, SMAL, and SPCL are higher during RD as 
compared to BH, and (ii) that HbR concentrations are higher 
in bilateral MTG, STG, and IFG during RD as compared to 
FH, it seems reasonable to assume that, from a neurobio-
logical point of view, RD is the condition with the highest 
task complexity (i.e., as compared to FH and BH). Such a 
higher task complexity might be related to switch costs that 
occur in RD requiring participants to switch in a random 
and unpredictable manner between two different table tennis 
stroke techniques (i.e., FH and BH) as compared to FH and 
BH in which the participants executed only one table tennis 
stroke technique. This line of interpretation is supported by 
other neuroimaging studies that observed that switch costs 
(i.e., in a cognitive task) were associated with a more pro-
nounced activation of brain areas being located in premo-
tor cortex (e.g., SMA, Cutini et al. 2008; Dove et al. 2000) 
and/or parietal cortex (Kimberg et al. 2000; Petruo & Beste 
2021) which resembles the observations of the current study. 
In addition, the assumption of the highest task complexity of 
RD is at least partly supported by our finding showing that 
novices have a lower target accuracy in the RD condition in 
comparison to FH and BH.

The higher movement speeds of FH and RD compared 
with BH may also account for the higher concentration 
changes of HbR in bilateral M1, S1L, and SPCL during 
execution of FH compared with BH and bilateral MFG, 
SMAL, and SPCL during execution of RD compared with 
BH, respectively (see Results section for Behavioral Data). 
Although we standardized movement frequency, we did not 
standardize movement speed. This limitation restricts the 
results with respect to task-related differences in cortical 
brain processing. However, a generalized higher concen-
tration change of HbR as a consequence of larger move-
ment speed could not be observed. This finding makes it 
rather unlikely that movement speed per se is the main driver 
of our current findings.

Whether these task-related differences in cortical activity 
can be used to monitor a training and/or to adjust specific 
exercise variables seems to be a promising area for further 
research (Herold et al. 2020; Stéphane Perrey, 2022; Seidel-
Marzi & Ragert 2020).

Limitations

The current study addressed the majority of the limita-
tions of our previous study (Carius et al. 2021) such as the 
standardization of movement frequency, ball placement 
via a robot, and assessment of whole-head cortical activity, 
but some points should be considered when interpreting 
our findings.

Firstly, although we observed that the ratings of some 
psychological confounders (i.e., level of discomfort) 
slightly increased from pre- to post-test, we did not notice 
significant changes in systemic physiological confounders 
(i.e., mean heart rate). Thus, it seems unlikely that such 
changes have seriously influenced our results and fNIRS 
data quality, although it has to be acknowledged that the 
activation patterns observed in the temporal lobe—namely 
differences in MTG and STG—should be interpreted cau-
tiously as there is evidence in the literature that the tem-
poral muscle of the head can confound the fNIRS signal to 
some extent (Schecklmann et al. 2017). Research further-
more suggests, that the temporal lobe represents a critical 
hub in the regulation of autonomic cardiovascular function 
(Dono et al. 2020), which might relate to the execution of 
sports-specific movements in our study. However, as we 
followed recent recommendations concerning the process-
ing of fNIRS data (Scholkmann et al. 2022; Tachtsidis & 
Scholkmann 2016; Yücel et al. 2021) and applied state-
of-the-art techniques (i.e., data quality check via scalp 
coupling index, short-separation channels regression) to 
ensure high data quality, the influence of potential con-
founders (i.e., systemic physiological changes) is probably 
low.

Secondly, as fNIRS neuroimaging allows to cover 
hemodynamic alterations only in cortical layers, it is not 
possible to provide information whether expertise level or 
task complexity modulates the activation of subcortical 
structures as well since such structures are highly relevant 
for the control of sport-specific movements and influenced 
by the level of motor expertise (e.g., cerebellum, basal 
ganglia) (Park et al. 2009; Roberts et al. 2013; Taubert 
et al. 2015; Yang 2015; Yarrow et al. 2009; Zhang et al. 
2021).

Thirdly, as the current investigation is among the first 
studies that applied TFCE as a specific method of cluster-
based permutation testing in the context of fNIRS neuro-
imaging, there are some limitations of TFCE that needs to 
be acknowledged. In particular, TCFE is well-situated to 
address the multiple comparison problem and to identify 
a significant differences between conditions, but it does 
not allow to assess of the statistical significance regard-
ing a specific timepoint (i.e., temporal onset) or precise 
spatial estimation (i.e., a single optode) (Sassenhagen & 
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Draschkow 2019). Thus, the interpretation of TCFE results 
can be somewhat challenging and prone to misinterpreta-
tion, if not conducted appropriately. To avoid such pitfalls, 
we follow recent recommendations on how to report the 
results of the TCFE analysis (Sassenhagen & Draschkow 
2019).

Conclusion

In summary, our results suggest that there are expertise-
related differences between table tennis experts and novices 
in widespread clusters compromising sensorimotor and mul-
tisensory brain areas, whereas novices exhibit, in general, 
a higher activation in those areas as compared to experts. 
The latter finding provides further empirical evidence for the 
neural efficiency hypothesis which postulates that experts 
can solve a specific task with lower neural resources (i.e., 
mirrored in lower activation of specific brain areas). Fur-
thermore, we observed task-specific differences in cortical 
activity concerning FH, BH, and RD suggesting that the task 
complexity is probably reflected in distinct brain activation 
patterns. Whether our findings can be useful to monitor and 
tailor sport-specific training interventions requires future 
investigations.
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