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Abstract
Patients with early Alzheimer’s disease (AD) have difficulty in learning new information and in detecting novel stimuli. 
The underlying physiological mechanisms are not well known. We investigated the electrophysiological correlates of the 
early (< 400 ms), automatic phase of novelty detection and encoding in AD. We used high-density EEG Queryin patients 
with early AD and healthy age-matched controls who performed a continuous recognition task (CRT) involving new stimuli 
(New), thought to provoke novelty detection and encoding, which were then repeated up to 4 consecutive times to produce 
over-familiarity with the stimuli. Stimuli then reappeared after 9–15 intervening items (N-back) to be re-encoded. AD 
patients had substantial difficulty in detecting novel stimuli and recognizing repeated ones. Main evoked potential differences 
between repeated and new stimuli emerged at 180–260 ms: neural source estimations in controls revealed more extended 
MTL activation for N-back stimuli and anterior temporal lobe activations for New stimuli compared to highly familiar rep-
etitions. In contrast, AD patients exhibited no activation differences between the three stimulus types. In direct comparison, 
healthy subjects had significantly stronger MTL activation in response to New and N-back stimuli than AD patients. These 
results point to abnormally weak early MTL activity as a correlate of deficient novelty detection and encoding in early AD.

Keywords Alzheimer’s disease · Evoked potentials · Inverse solution · Medial temporal lobe · Memory encoding · Novelty 
detection

Background

Patients with early Alzheimer’s disease (AD) have difficulty 
in learning new information, indicating impaired encoding 
(Peña-Casanova et al., 2012). This failure is explained by 
the early involvement of the medial temporal lobe (MTL) 

in the disease (Braak et al., 1999). However, patients also 
have false familiarity with stimuli that they have not seen 
before (Budson et al., 2000). While this difficulty might 
be explained by weak encoding of information, it may also 
reflect deficient detection of the novelty of stimuli (Bud-
son et al., 2006). Though it is difficult to clearly separate 
encoding from novelty detection, the former is known to 
depend strongly on the depth of processing (e.g., recruit-
ment of superficial, visual rather than semantic processes), 
which is not necessary for the latter. In the realm of memory, 
encoding and novelty detection are linked: healthy subjects 
encode novel stimuli better than familiar stimuli (Nyberg, 
2005; Ranganath & Rainer, 2003; Tulving & Kroll, 1995). 
In addition, neuroimaging studies indicate that similar neu-
ral sources in the MTL are implicated in novelty detection 
and encoding (Grunwald & Kurthen, 2006; Ranganath & 
Rainer, 2003).

In AD patients, deficient novelty detection was demon-
strated using oddball paradigms, which require detection 
of stimuli “popping out” from a series of stimuli (Knight, 
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1996). In healthy subjects, novelty detection in the oddball 
paradigm typically evokes a midline fronto-parietal poten-
tial peaking at around 300 ms, the P300 (Polich, 2007). 
This potential is attenuated and delayed in AD (Bennys 
et al., 2007; Hedges et al., 2016). However, the relevance 
of novelty processing in the oddball paradigm for mem-
ory encoding is unclear. Memory effects in healthy sub-
jects are typically observed at later stages in form of an 
enhanced frontal positivity evoked by new stimuli at about 
300–600 ms, also labelled the P600 (Addante et al., 2012; 
Curran & Cleary, 2003; Duarte et al., 2004; Friedman & 
Johnson, 2000; Hoppstädter et al., 2015; Rugg & Curran, 
2007). In patients with AD or amnestic mild cognitive 
impairment (MCI; a precursor of AD), this response is 
attenuated or absent (Olichney et al., 2006; Yang et al., 
2015).

Paradigms investigating old/new effects cannot unequivo-
cally distinguish between the encoding of new stimuli as 
opposed to the recognition of old items. Raynal et al. (2020) 
described a continuous recognition paradigm comparing 
new pictures –reflecting novelty and encoding- with highly 
familiar stimuli repeated 4 consecutive times. In this study 
frontal positivity at 200–300 ms in response to novel items 
was estimated to emanate from the MTL. This result sug-
gests that the processing of novelty –tested with an odd-ball 
paradigm- and encoding –tested with a dedicated continuous 
recognition task- may both occur at an early stage, around 
200–300 ms. So far, such early processing has not been 
explored in AD, in particular not with respect to the novelty 
of stimuli in a memory paradigm.

In the present study we compared the early, automatic 
stage of encoding (< 400 ms) of novel as opposed to familiar 
stimuli in patients with early AD. In this context, “novelty 
detection” refers to the ability to detect a stimulus as new, 
rather than familiar from previous presentation; “encod-
ing” refers to the process allowing for later recognition of 
a stimulus; finally, “re-encoding” refers to the additional 
encoding of stimuli already familiar from previous encoun-
ter. We composed a continuous recognition task (CRT) with 
3 types of items differing in terms of novelty and incentive 
for encoding: (1) New designs evoking novelty detection and 
encoding; (2) stimuli repeated after 9–15 intervening stim-
uli, which are not novel but induce re-encoding, as reflected 
in better recognition after a delay (James et al., 2009.); (3) 
items repeated 3 to 4 times in immediate succession. As in 
Raynal et al. (2020), these highly familiar stimuli, unlikely 
to undergo relevant further encoding, were used as a “base-
line” to seize encoding activity provoked by the stimuli (1) 
and (2). Our hypothesis was that, in healthy elderly subjects, 
the rapid, automatic processing of these stimuli in the first 
400 ms after presentation induces evoked potential responses 
that vary as a function of stimulus novelty and incitement 
to encoding. In patients with early AD, signals reflecting 

novelty detection, encoding, or both would be attenuated 
or absent.

Materials and Methods

Participants

Twenty-nine patients (aged 72.7 ± 6.2 years) investigated 
for memory impairment at the Geneva University Hospi-
tal Memory Clinic, and 19 age-matched healthy controls 
(69 ± 7 years, 9 women) participated in the study. Five 
patients were excluded due to poor EEG signal and/or inca-
pacity to perform the task, which made the final sample of 
24 patients (72 ± 6 years, 14 women). All participants gave 
written informed consent to participate in the study, which 
was approved by the Ethical Committee of the Canton of 
Geneva. The study was conducted according to the Declara-
tion of Helsinki.

All patients were recruited from the Memory Clinic of 
Geneva University Hospital. They had a diagnosis of Mild 
Cognitive Impairment (MCI) or early dementia due to prob-
able Alzheimer’s disease (AD) based on clinical assessment. 
All had a positive amyloid positron emission tomography 
(PET) scan, and other neuroimaging signs of AD pathology: 
hippocampal atrophy or/and pathological values of fluoro-
deoxyglucose PET scan. Table 1 summarizes demographic 
data.

Nineteen healthy, age-matched controls with no history of 
neurological or psychiatric illness, and no signs of cognitive 
decline were recruited in the community through word of 
mouth and announcements in various Geneva senior associa-
tions. These subjects underwent the MMSE and Digit Span 
tests during the experimental task with EEG session. Their 
MMSE score was 28.4 ± 1.6, conforming to unimpaired cog-
nitive functioning (Korsnes, 2020).

Experimental Paradigm

Subjects performed a continuous picture recognition task 
(CRT), composed of concrete black and white line drawings 
from Snodgrass and Vanderwart (1980) (Fig. 1). Subjects 
had to indicate picture recurrences. Healthy participants 
responded by pressing the right button of the response box 
with their right middle finger if they had already seen the 
picture appearing on the screen, and the left button with 
their index finger if they had not seen the stimulus before. To 
prevent confusion of response keys and difficulties in multi-
tasking, patients were asked to indicate their response ver-
bally to the examiner, who pressed the corresponding button 
on the response box. Stimuli were presented on a white com-
puter screen until the response, with a 700 ms inter-stimulus 
interval. If response time was longer than 2000 ms, picture 



669Brain Topography (2022) 35:667–679 

1 3

would be exchanged by a white screen until the response 
button was pressed.

Main Learning Task

Participants firstly performed two blocks of a learning task 
(LT) separated by a 5 min’ break. Each block contained New 
pictures (New, N = 72) which were immediately repeated 
up to 4 consecutive times (Rep1, Rep2, Rep3 trials, each 
N = 72, Rep4 trial, N = 36). Pictures then re-appeared after 
9–15 intervening items (N-back, N = 66). 22 pictures were 
presented only once and served as Catch trials to avoid the 
routine and give the impression that not all new the stimuli 
were repeated: they were presented randomly after Rep3, 
Rep4 or N-back stimuli. To avoid the expectation of a new 
picture after 3 repetitions, 36 pictures were repeated 4 times 
(Rep4 stimuli). Thus, in total, there were 72 New, 72 Rep3 
and 66 N-back stimuli.

The interest of the stimulus types was as follows: (1) 
New pictures represent novelty and undergo encoding. 
(2) N-back pictures are not novel, but they undergo re-
encoding, as indicated by the fact that they are better rec-
ognized after a delay (e.g. 30 min) than stimuli presented 

only once (James et al., 2009). (3) Rep3 pictures are highly 
familiar after 3 consecutive presentations. Such repetitions 
induce repetition suppression, that is, reduction of neu-
ral activity, pronounced in the MTL (Grill-Spector et al., 
2006; Henson et al., 2003; Johnson et al., 2008; Yassa & 
Stark, 2008). Thus, these stimuli provide no novelty and 
induce no or minimal encoding. They thus also serve as 
baseline condition to determine encoding effects with the 
other stimuli.

Delayed Recognition Task

To test long-term retention, subjects performed a delayed 
recognition task (DRT) 30 min later, which consisted of 
pictures presented repeatedly (N = 60) or as Catch trials 
(N = 22) in the learning task, plus new stimuli never pre-
sented before (Novel, N = 30). Participants were asked to 
indicate whether the presented picture was new or previously 
seen in the learning task.

Data Acquisition

EEG was recorded continuously at 512 Hz using the 128 
channels Active-Two Biosemi EEG system (BioSemi Active-
Two, V.O.F., Amsterdam, The Netherlands). EEG data pre-
processing and analyses were performed using the CarTool 
software (Brunet et al. (2011), https:// sites. google. com/ 
site/ fbmlab/ carto ol), MATLAB 2012a, and the Statistical 
Toolbox for Electrical Neuroimaging (STEN), developed by 
Jean-François Knebel and Michael Notter (https:// doi. org/ 
10. 5281/ zenodo. 11640 38). Offline, the EEG data was band-
pass filtered to 1–30 Hz applying the second order Butter-
worth low and high pass filters, with -12 db/octave roll-off, 
recalculated against the average reference, and smoothened 
spatially using the instantaneous spatial filter (Michel & 
Brunet, 2019). Epochs from 100 ms before stimulus onset 
to 450 ms post-stimulus onset were averaged for each subject 
and for each stimulus type of the LT (New, R3, and N-back 
items) to compute event-related potentials (ERPs). Only tri-
als with correct responses were selected for analyses. Eye 
blinks and cardiac artifacts were removed using Independ-
ent Component Analyses (ICA) based on the time course of 
the ICA component and its topography. Defective electrodes 
were interpolated using 3D spline interpolation (Perrin et al., 
1987). Finally, each trial was visually inspected and epochs 
with remaining noise were excluded from analyses. The 
average number of accepted epochs was similar between 
and within groups for each condition (repeated measures 
ANOVA, all p > 0.05), and were as follows: mean ± SD; 
Healthy subjects: New, 57 ± 5; Rep3, 57 ± 4; N-back, 56 ± 6; 
Patients: New, 55 ± 6; Rep3, 56 ± 3; N-back, 54 ± 7.

Table 1  Demographic and neuropsychological data

MMSE mini mental state examination; n.s. non significant; *signifi-
cant differences (p < 0.05)

Patients Controls
n = 24 n = 19

Age 72,0 ± 6,0 69 ± 7,0 n.s.
Years of education 12,5 ± 3,3 19 ± 6,0 *
Gender
 Women N = 16(57%) N = 9(47%)
 Men N = 12(43%) N = 10(53%)

Orientation
 Spatial 4,0 ± 0,7
 Personal 4,8 ± 0,5
 Circonstantial 4,6 ± 0,6
 Temporal 3,7 ± 1,4
 Total orientation 17,2 ± 2,4

MMSE
 Total score 23,6 ± 3,9 28,4 ± 1,6 *
 Orientation 7,7 ± 1,9 9,6 ± 0,6 *
 Recollection 3 words 1,1 ± 1,1 2,5 ± 0,8 *

Memory task
 First immediate recall 13,3 ± 3,2
 First free recall 4,0 ± 2,4
 First cued recall 5,1 ± 2,9

Digit span
 Direct 8,2 ± 1,9 9,4 ± 2,2 n.s.
 Indirect 6,2 ± 1,7 6,9 ± 1,9 n.s.

https://sites.google.com/site/fbmlab/cartool
https://sites.google.com/site/fbmlab/cartool
https://doi.org/10.5281/zenodo.1164038
https://doi.org/10.5281/zenodo.1164038
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Behavioural Data Analysis

Demographic and behavioural data were analysed using 
SPSS, version 20. Performance in LT and DRT was deter-
mined as the sum of hits (correct recognition of repeated 
stimuli) and correct rejections of non-repeated stimuli. 
Repeated measures analysis of variance (rmANOVA) were 
performed on the percentage of correct trials with factors 
Group (Patients, Controls) and Condition (New, Rep3, and 
N-back in the LT, and Novel, Repeated and Catch in the 
DRT) separately for the LT and the DRT. In case of viola-
tion to the assumption of sphericity, Greenhouse–Geisser 
correction was used. Effect sizes are reported with the partial 
eta square (ɳp

2). Post-hoc pairwise comparisons were per-
formed when significant effects were found with Bonferroni 
correction for multiple comparisons.

To further investigate relations between subjects’ perfor-
mance in our CRT and clinical variables that best describe 
the two groups, we performed correlational analyses 
between MMSE total score, orientation and recollection 
scores and response accuracy across experimental condi-
tions. Partial correlations accounting for subjects’ age and 

years of education were computed separately in Controls 
and Patients groups.

ERP Waveform Analysis

EEG analyses were performed only on stimuli from the 
learning task. For determination of periods with effects over 
the whole set of electrodes, we computed electrode and time-
wise ANOVAs on amplitudes in response to all 3 experi-
mental stimulus types (New, R3 and N-back) for each of the 
128 electrodes in Controls and Patients groups. To correct 
for temporal autocorrelation, only amplitude differences 
extending over at least 20 ms (10 time points) with p < 0.01, 
in the cluster of minimum 6 neighbouring electrodes, were 
retained (Murray et al., 2006).

Peak Amplitudes Analyses

To investigate the direction of amplitude effects we further 
extracted ERP waveforms over 3 scalp regions of interests 
(ROIs): frontal (12 channels: C12, C13, C14, AF4, C18, 
AFz, C20, Fz, F1, C26, C27, AF3), central (12 channels: 

Fig. 1  Continuous recognition task design. The learning task con-
sists of two blocks containing different set of pictures. Subjects had 
to indicate if the presented picture is new (New) or repeated. Pictures 
were repeated up to four consecutive times (Rep1, Rep2, Rep3, Rep4) 
and then re-appeared after 9–15 intervening items (N-Back). Pictures 

presented only once in the sequence (Catch) were inserted in order 
to avoid the habituation to the sequence. To test recollection capac-
ity, 30 min later pictures, repeated several times in the learning task 
(Repeated), Catch, and new pictures (Novel) were presented only 
once and subjects had to indicate their recurrence
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Cz, A2, CPz, B1, CP2, C1, C2, FCz, D1, D2, D15, D16) 
and parietal (12 channels: O1, A15, A16, PO3, A21, A22, 
Oz, A24, A27, O2, A29, A30) clusters corresponding to the 
International 10–20 system (Jurcak et al., 2007). Since the 
latency of ERP components might be shifted between and 
within groups, we performed amplitudes’ peak analyses. The 
time periods of peak amplitudes were chosen based on the 
observation of grand-averaged ERP waveforms over frontal, 
central and parietal clusters in Control and Patients groups, 
and were as follows: In the Frontal and Central ROIs, most 
positive peaks at 150–250 ms after stimulus onset and the 
most negative peaks at 225–360 ms; in the parietal clus-
ter, most negative peaks at 140–210 ms and the most posi-
tive peaks at 225–400 ms. Peak amplitudes in these time 
windows were extracted for each condition and ROI at the 
single subject level. They were compared statistically with 
2 (group: Controls and Patients) × 3 (condition: New, Rep3 
and N-back) repeated measures ANOVA (rmANOVA) sepa-
rately for each ROI and ERP component. In cases where 
sphericity was violated Greenhouse–Geisser correction was 
applied. We report the effect sizes with the partial eta square 
(ɳp

2).

Source Estimation

The localization of the neural generators underlying the 
ERPs of each experimental condition were estimated using 
the distributed linear inverse solution model of the low res-
olution brain electromagnetic tomography (LORETA) (de 
Peralta Menendez et al., 2001; de Peralta Menendez et al., 
2004). For Controls the current distribution was estimated 
from 128 scalp electrodes within the grey matter of the 
Montreal Neurological Institute (MNI) template using the 
LSMAC head model adapting the scalp conductivity (Hoe-
kema et al., 2003; Latikka et al., 2001) to the mean age of 
our sample (69 years old) with a solution space of 5000 
nodes (Brunet et al., 2011).

In the Patients, source localization was performed using 
individual MRI scans. Each patient’s structural MRI was 
segmented with Cartool software that allowed to extract the 
grey matter and to obtain the full model of the head (the 
scalp, the skull, and white and gray matters). Electrodes’ 
position was co-registered on each subject’s scalp. The 5000 
solution points were selected within the extracted grey mat-
ter, and the lead field with the LSMAC model was calculated 
by adapting the scalp conductivity with each subject’s age 
using Cartool. One subject in the Patients group was elimi-
nated from this analysis due to bad MRI imaging data.

To avoid spatial leakage and activation biases each 
solution point was standardized across time (Michel & 
Brunet, 2019). The estimated current densities of inverse 
solution points were then extracted and averaged per par-
ticipant and condition in the periods showing significant 

main effects of Condition in the waveform analyses. The 
averaged signal over time periods of interest was then 
compared statistically between experimental conditions 
with rmANOVA with Group as between-subjects factor, 
and Condition as within-subjects factor. Only effects sig-
nificant at p < 0.01 and with clusters of minimum 20 nodes 
were retained (Knebel & Murray, 2012).

Results

Behavioural Results

Behavioral results are summarized in Table 1. Age was 
similar in both groups; years of education were signifi-
cantly higher in Controls (19 ± 6  years) than Patients 
(12.5 ± 3.3 years). Compared to Controls, Patients had 
significantly lower total MMSE score, and lower scores 
in two MMSE subdomains: orientation and recall of three 
words. Digit span did not significantly differ between the 
groups.

Performance in the Tasks

Learning Task

Response accuracy is shown in Fig. 2. A repeated-meas-
ures ANOVA with Group and Condition (New, Rep3, 
N-back) revealed significant main effects of Condition 
(F (1.44, 59.06) = 9.77, p = 0.001, ɳp

2 = 0.192) and Group (F 
(1, 41) = 7.48, p = 0.009, ɳp

2 = 0.154) in the LT. Accuracy was 
higher in Controls than Patients (p = 0.009). The group effect 
was essentially driven by worse performance on New items 
in Patients than Controls (p = 0.011): Patients incorrectly 
endorsed almost 8% of New items as seen before, Controls 
only 2%.

Patients recognized Rep3 items more accurately 
(99.8 ± 0.39%) than New (92.1 ± 9.1%, p < 0.005) and 
N-back items (91.2 ± 11.6%, p < 0.005). In Controls, 
response accuracy did not differ significantly between 
stimuli (New: 97.8 ± 2.28%; Rep3: 99.9 ± 0.32%; N-back: 
95.2 ± 4.69%). The interaction between group and condition 
did not reach significance.

Response latencies in Controls were the longest in 
response to Catch (1002 ± 253), N-back (998 ± 179), and 
New stimuli (995 ± 136), and decreased gradually with 
each immediate consecutive repetition (Rep1: 739 ± 138; 
Rep2: 582 ± 126; Rep3: 536 ± 145; Rep4: 531 ± 117). The 
Rep3 were recognized faster (rmANOVA, F (2, 36) = 147.88, 
p < 0.005, ɳp

2 = 0.891) than New and N-back pictures, con-
firming the high familiarity effect elicited by Rep3 items.
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Delayed Recognition Task

There were significant main effects of Condition (F 
(1.33, 54.87) = 22.13, p < 0.005, ɳp

2 = 0.351) and Group (F 
(1, 41) = 15.22, p < 0.005, ɳp

2 = 0.271). The interaction 
between group and condition was not significant. Over-
all, Controls performed better than Patients (p < 0.001). 
The group effect was again due to worse performance of 
Patients in correctly rejecting novel stimuli than Controls 
(false positives: Patients 23%; vs Controls 9%). Catch 
items, which were presented only once in the LT, were rec-
ognized worse (Controls: 70,6 ± 15,1; Patients: 66,1 ± 16) 
than Novel (91.2 ± 6.9, p < 0.005) and Repeated (91.3 ± 7.6, 
p < 0.01) items by Controls and worse than Repeated items 
(84.7 ± 13.1, p < 0.005) by the Patients.

Correlations

In Patients, there was a positive correlation between response 
accuracy to New items and the MMSE total score (r = 0.428, 
p < 0.05) and the MMSE recollection score (r = 0.462, 
p < 0.05). Correct rejections of New items in the LT cor-
related positively with response accuracy to Novel and 
Catch items in DRT (r = 0.425, p < 0.05, r = 0.739, p < 0.005 
respectively). Hits to N-back items in LT correlated with hits 
to repeated items in DRT (r = 0.54, p < 0.05). In Controls 
only hits to N-back in the LT correlated significantly with 
the MMSE recollection score (r = 0.616, p < 0.01).

ERP Waveform Analysis

The effects retained with time-wise one-way ANOVAs 
(p < 0.01, ≥ 20 ms; ≥ 6 neighboring electrodes) on ERP 
amplitudes over all scalp electrodes are displayed in Fig. 3A. 
In Controls, a main effect of condition was observed at 
180–260  ms post-stimulus onset over extended scalp 
regions, and at around 285–400 ms following stimulus onset 
on fewer electrodes over varied scalp areas. In Patients, the 

main condition effect fell at around 180–280 ms after stimu-
lus onset over extensive scalp areas, and brief effects on few 
electrodes at 380–430 ms.

ERP Peak Analysis

ERP waveforms on the frontal, central and parietal ROIs 
are shown in Fig. 3B-D. This illustration suggests that dif-
ferences observed in the general waveform analysis might 
partly reflect temporal shifts of waves, in particular acceler-
ated processing of R3 stimuli, as also indicated by the faster 
reaction times in controls. Figure 4 depicts comparison of 
peak amplitudes, independent of the time of peak, within 
and between the two groups in frontal, central and parietal 
ROIs (Fig. 4 A, B and C respectively).

Frontal Cluster

rmANOVA on positive peaks at 150–250 ms after stimulus 
onset yielded no significant Group x Condition interaction or 
group effect. There was a significant main effect of condition 
(F (1.71, 70.09) = 3.99, p = 0.029, ɳp

2 = 0.08), driven by over-
all peak differences between N-back and New (p = 0.019) 
and Rep3 (p = 0.045). This effect did not differ significantly 
within each group. Negative peaks at 225–360 ms signifi-
cantly differed between groups (F (1, 41) = 5.44, p = 0.025, 
ɳp

2 = 0.117), with Rep3 peaks being more negative in 
Patients than Controls (p = 0.017).

Central Cluster

Analyses on the positive peaks at 150–250 ms in the central 
ROI revealed no significant group x condition interaction 
or main effect of group. There was a significant main effect 
of condition (F (1.56, 63.84) = 4.49, p = 0.022, ɳp

2 = 0.099) 
driven by less positive Rep3 amplitude as compared to New 
(p = 0.021) and N-back (p = 0.037) in the Control group. At 

Fig. 2  Subjects’ performance 
in experimental task. Error 
bars show standard error of the 
mean. **p < 0.01, ***p < 0.005
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225–360 ms, there was a significant main effect of condition 
(F (1.64, 67.61) = 4.34, p = 0.023, ɳp

2 = 0.096).

Parietal Cluster

No significant effects were found on negative peaks at 
140–210 ms. Analyses in the time window of 225–400 ms 
on positive peaks revealed a significant main effect of condi-
tion (F (1.42, 58.39) = 9.11, p = 0.001, ɳp

2 = 0.18) due to more 
positive Rep3 response peaks in comparison to N-back 
(p = 0.001) and New (p = 0.018) in the Patient group. 
Patients expressed a higher response to Rep3 than Controls 
(p = 0.044).

Source Estimation

Within-group analysis: Fig.  5 displays post-hoc paired 
T-test (p < 0.01; with 20 adjacent voxels) on solution points 
averaged over the two periods of interest (180–260 ms and 
280–400 ms).

In the Patient group, there were no significant differences 
between conditions in either period of interest, suggesting 
similar generators of brain activity in response to all 3 stimu-
lus types.

In Controls source estimations revealed that in the early 
period (180–260 ms) New compared to Rep3 items more 
strongly activated left middle and superior gyri in the ante-
rior part of the temporal lobe (Fig. 5). N-Back in compari-
son to Rep3 items induced greater activation in extended 

left MTL region: left hippocampus, the anterior part of left 
temporal lobe, left inferior and superior temporal gyri, thala-
mus, and other areas: left insula, middle-frontal gyrus and 
superior medial frontal gyrus (Fig. 5). N-Back items more 
strongly than New items activated a small area in the middle 
frontal gyrus (Fig. 5).

In the later period (280–400 ms), New compared to Rep3 
stimuli more strongly activated the inferior frontal gyrus. 
N-back in comparison to Rep3 induced stronger activations 
in left middle frontal gyrus, bilateral superior frontal gyri, 
left hippocampus, the thalamus and cerebellum. N-back 
stimuli as compared to New induced greater activations in 
left angular gyrus.

Between Group Comparisons

Fig. 6 shows the comparisons between groups. In the early 
time window (180–260 ms) New stimuli more strongly acti-
vated the right posterior hippocampus, medial and inferior 
parts of occipital lobe and some areas in left cerebellum in 
Controls than in Patients. Conversely, in Patients, they more 
strongly activated the left post-central gyrus and superior 
temporal gyrus. N-back stimuli more strongly activated the 
right posterior hippocampus, right precuneus, left thalamus 
and medial and inferior areas in occipital lobe in Controls 
than Patients. Rep3 stimuli induced stronger activations in 
left superior temporal gyrus and left medial superior frontal 
gyrus in Patients as compared to Controls.

Fig. 3  ERP waveform analysis. A Amplitude differences over all 
electrodes across conditions revealed by one-way ANOVAs in con-
trols and patients. The y axes display the 128 electrodes. B–D Wave-
forms on Frontal (B), Central (C) and Parietal (D) clusters. The verti-
cal axes indicate the amplitude (in µV) The asterisks show significant 

differences between peak amplitudes; the line shows the time period 
where the peak analyses was performed. Amplitude peak analysis was 
performed for positive peaks at 150–250  ms and negative peaks at 
225–360 ms over frontal and central clusters, and negative peaks at 
140–210 ms and positive peaks at 225–400 ms over parietal clusters
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In the later time window (285–400 ms) Controls in 
comparison to Patients activated more the thalamus and 
middle cingulate gyrus in response to New stimuli, and 
middle and posterior cingulate gyrus in response to N-back 
stimuli. Rep3 activations did not differ between groups in 
this time window.

Discussion

Patients with early AD, in comparison to age-matched con-
trols, presented a deficit in novelty detection and encoding, 
reflected in significant early differences in electrocortical 
activity in the first 400 ms after stimulus presentation. While 
differences in peak amplitudes between groups were rela-
tively small, analysis of the cortical generators of activity 
using inverse solution revealed strikingly decreased acti-
vation of the MTL and extended cortical networks in AD 
patients. Activations appeared to be driven by encoding 
activity with no additional activations attributable to novelty.

A potential caveat of our study lies in the fact that patients 
responded verbally, while controls responded by pressing 
a button. Given that the ERP effects occurred very early, 
well before motor reactions (of controls), but also consider-
ing the MTL activations observed, we think that the results 
reflect novelty and memory processing with no interference 
by response modality.

Both in the learning and delayed recognition task, 
patients failed to discriminate new from old stimuli; they 
had an increased false alarm rate. The severity of this failure 
correlated with the total score and the recollection score (the 
3 words) in the MMSE. At first sight, this result would be 

Fig. 4  ERP peak analysis. Results of repeated-measures ANOVA on 
amplitude peaks over A Frontal, B Central and C Parietal clusters 
between controls and patients. Error bars show standard error of the 
mean. *p < 0.05, **p < 0.01, ***p < 0.005

Fig. 5  Neural source estimations in controls. Figure displays the post-
hoc paired T-test (with p < 0.01, controlling for cluster of 20 contigu-
ous nodes) comparing New, Rep3 and N-back conditions in two peri-
ods of interest: 180–260 ms and 285–400 ms
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compatible with a response bias to say “yes” to any stimulus. 
Such a bias was previously observed in AD patients (Budson 
et al., 2000; Pillon et al., 1993) and might be explained by 
frontal executive dysfunction (Baddeley et al., 2001). In our 
patients, however, this explanation appears unlikely because 
they also failed to normally recognize picture recurrences, 
that is, they also had a low hit rate in both tasks. A possi-
ble interpretation of the increased false positive rate might 
be that, due to inefficient encoding our patients relied on 
overly broad gist memory (Schacter et al., 1998) rather than 
on item-specific recollection. Regardless of the underlying 
mechanism, these findings demonstrate deficient novelty 
detection and impaired encoding in our group of patients 
with early AD.

Throughout the analyses of the EEG, New and N-back 
stimuli (repetitions after intervening items), evoked very 
similar responses, while both differed from the Rep3 stimuli 
(presentations after 3 immediate repetitions). In the wave-
form analyses, there were two early time periods of ampli-
tude differences between the stimuli, with most significant 
effects occurring at 180–260 ms in controls and patients, 
and to a lesser extent at 280–400 ms after stimulus onset 
in controls. These time periods largely overlap with find-
ings of a previous study using a similar paradigm, which 
showed MTL-mediated responses to new stimuli, in com-
parison to highly familiar stimuli, at 200–300 ms in healthy 
subjects (Raynal et al., 2020). In the present study, controls 
had higher peak amplitudes when processing New and 
N-back items than Rep3 pictures over central electrodes at 
150–250 ms. The time range of this peak corresponds to the 
positive fronto-central component (P2) which is believed 
to signify modulations of perceptual processing, atten-
tion (Luck & Hillyard, 1994) or working memory (Lefeb-
vre et al., 2005). A stronger positivity in response to New 

and N-back than Rep3 items is therefore compatible with 
encoding-related processing, which requires recruitment of 
attention and working memory. Interestingly, similarly to 
a previous study (Li et al., 2016) patients did not express 
this potential difference at central electrodes, suggesting 
impaired processing of new items or items repeated after 
several intervening stimuli.

The most obvious ERP difference in patients occurred 
over parietal electrodes (Fig. 3D), where Rep3 induced a 
more positive peak amplitude than New and N-back items 
at 225–400 ms. The time-range of this peak corresponds to 
the P300 component, thought to reflect stimulus relevance 
and novelty (Azizian & Polich, 2007; Patel & Azzam, 2005; 
Polich, 2007; Sur & Sinha, 2009). Studies using the odd-
ball paradigm have shown an enhanced P300 in response to 
novel stimuli (Ranganath & Rainer, 2003). In AD patients, 
the P300 amplitude is typically attenuated and its latency 
is increased (Hedges et al., 2016; Olichney et al., 2011). In 
contrast to the oddball task, our paradigm requires differenti-
ating between new and repeated items, rather than detecting 
an outstanding stimulus. As such, this increased amplitude in 
our patients might reflect more attentional effort required to 
process massed item repetitions. This is the contrary of what 
would be expected from the processing of repeated stimuli, 
namely facilitated processing.

Modulations in waveform amplitudes do not necessarily 
indicate different neural generators (Murray et al., 2008). 
In this study neural source estimations revealed stronger 
differences in the involved brain regions than expected on 
the basis of the relatively subtle differences observed in the 
waveforms. At 180–260 ms, controls activated wider regions 
when processing New and N-back than Rep3 items (Fig. 5): 
MTL, thalamus and some frontal areas in response to N-back 
items, anterior part of left temporal lobe in response to New 

Fig. 6  Comparison of reconstructed sources between groups. Figure 
shows the results of post-hoc unpaired T-tests (with p < 0.01, con-
trolling for cluster of 20 contiguous nodes) in two periods of interest 

(180–260 ms and 285–400 ms). The scale indicates colour meanings. 
HC, healthy controls; AD, Alzheimer’s disease patients. A, B, C and 
D letters show the level at which different brain sections are displayed
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items. New and N-back items generated almost indistin-
guishable activity, suggesting that novelty does not induce 
more wide-spread brain activity than already seen pictures. 
Rep3 did not activate any region beyond the other stimuli. 
These activations are coherent with previous studies showing 
that the hippocampus and other structures within the MTL 
are essential for processing novel information (de Chaste-
laine et al., 2017; Köhler et al., 2005; Kumaran & Maguire, 
2009; Ranganath & Rainer, 2003; Strange et al., 2005) and 
for encoding (Habib et al., 2003; Stern et al., 1996; Tulving 
et al., 1996). MTL activity related to encoding was even 
shown to predict enhanced subsequent recognition (Habib 
et al., 2003; Kirchhoff et al., 2000). Based on these findings 
it is remarkable that source estimations in patients revealed 
no activation differences between the three stimulus types 
in this early time window. This suggests less distinguish-
able processing of novel and repeated stimuli in patients by 
similar underlying neural generators.

In the subsequent period, at 285–400 ms, amplitudes in 
the waveforms differed over various scalp regions between 
stimulus types in controls, but, except for some short differ-
ences on few parietal electrodes, not in patients (Fig. 3A). 
Similarly, source estimations showed strong inter-stimulus 
differences in controls, but not in patients. While new stimuli 
induced stronger activation than Rep3 in a restricted lateral 
frontal area, N-back induced stronger activations in a large 
area including frontal regions, left hippocampus, thalamus 
and cerebellum. These activations might reflect an ongo-
ing stimulus appraisal and evaluation process. As argued 
by Kafkas and Montaldi 2018, the thalamus might mediate 
integration of information about the stimulus, by combin-
ing MTL-sensible novelty signals with familiarity-related 
information from prefrontal cortex.

Thus, in striking contrast to controls, patients failed in 
both periods to activate different brain regions in response to 
the three stimulus types. While this may be due to a failure to 
activate structures critical for encoding, novelty detection, or 
both, an alternative interpretation might be that patients fail 
to appreciate the multiple repetitions leading up to the Rep3 
stimulus presentation. Repetition suppression – the decrease 
of neural activity to repeated presentation of regions special-
ized for a specific stimulus attribute – occurs in occipito-
temporal cortex and the MTL (Grill-Spector et al., 2006; 
Henson et al., 2003; Yassa & Stark, 2008). In MCI and AD 
patients, it has been found to be impaired (Golby et al., 2005; 
Pihlajamäki et al., 2008, 2011), which is also in line with 
the increased ERP amplitudes associated with Rep3 stimuli 
in our AD patients.

While the analysis of Rep3 suggests impaired, or even 
absent, repetition suppression the direct comparison between 
groups also provides clear evidence that AD patients fail 
to normally activate MTL and paralimbic areas when 
processing New and N-back items. In the early period of 

180–260 ms, controls more strongly activated the MTL 
in response to New and N-back stimuli than AD patients 
(Fig. 6). In patients, superior activity occurred in response to 
all 3 stimulus types in left temporo-parietal cortex. Given the 
importance of the MTL for processing novelty (de Chaste-
laine et al., 2017; Köhler et al., 2005; Kumaran & Maguire, 
2009; Ranganath & Rainer, 2003; Strange et al., 2005) and 
encoding (Habib et al., 2003; Kirchhoff et al., 2000; Stern 
et al., 1996; Tulving et al., 1996), this lack of early activation 
of the MTL may explain the memory deficits characteristic 
of beginning AD. Previous fMRI studies appeared to contra-
dict our observations: they showed enhanced MTL activa-
tion in early AD patients during the encoding of words or 
picture-word pairs (Hämäläinen et al., 2007; Kircher et al., 
2007). Accordingly, MCI patients’ activations of the hip-
pocampus plus posterior cingulate during encoding of words 
predicted better recognition (Papma et al., 2017). However, 
fMRI with its low temporal resolution probably also seizes 
activation reflecting the increased effort of the patients to 
explicitly store information. Conversely, our -effortless- con-
tinuous recognition paradigm and the brief period explored 
with EEG in this study likely reflect the automatic phase of 
novelty detection and encoding, not amenable to conscious 
compensation by effort.

In the second period, 285–400 ms, controls had greater 
activations in middle and posterior cingulate and the thala-
mus when processing New pictures or N-back items. The 
middle cingulate has been suggested to be involved in deci-
sion making (Apps et al., 2013; Bush et al., 2002) and atten-
tion control (Vogt, 2016). The posterior cingulate cortex is 
part of the default mode network, which preferentially acti-
vates at states of rest and deactivates during cognitive tasks 
demanding attention (Buckner, Andrews-Hanna, & Schacter, 
2008; Leech & Sharp, 2014). It is also part of an episodic 
memory network which encompasses the MTL, retrosplenial 
cortex and prefrontal areas (Greicius et al., 2009). It was 
shown to be disrupted in patients with AD (Greicius et al., 
2004). While the posterior cingulate is deactivated in most 
cognitive tasks (Buckner et al., 2008; Leech & Sharp, 2014), 
episodic memory tasks such as mnemonic search (Shapira-
Lichter et al., 2013) or recognition of 2-back visuospatial 
stimuli as opposed to immediate repetitions (Carlson et al., 
1998) appear to induce activation of this area. The present 
findings suggest dysfunction in the early phase of these pro-
cesses in beginning AD.

Notwithstanding its clear results, our study has limi-
tations. First, high-density EEG is capable of revealing 
activations of deep brain structures but does not have high 
spatial resolution. Thus, anatomical conclusions in this 
paper refer to regions (e.g., medial temporal area) rather 
than precise structures (e.g., hippocampus). Second, our 
results refer to patients with a clinical pattern of deficient 
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memory and positive biomarkers for Alzheimer’s disease 
(amyloid, hippocampal atrophy, PET). But histologically 
defined AD is heterogeneous (Jellinger, 2021). It appears 
unlikely that patients with a non-amnestic variant of AD, 
e.g., posterior cortical atrophy or logopenic progres-
sive aphasia, who lack the initial memory impairment 
observed in our patients (Whitwell et al., 2022), would 
present the same EEG alterations. It is also possible that 
non-AD amnesia (e.g., hypoxic encephalopathy) would 
induce similar results. Thus, our study reveals a princi-
ple of deficient memory processing in early AD, but with 
unknown specificity. Finally, as essential results of this 
study originated from sophisticated analyses and not from 
easily obtainable ERP waveforms, it would be difficult to 
apply our results as a marker of AD -or another form of 
amnesia- in clinical settings.
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