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Abstract
The thalamus is a key element of sensory transmission in the brain, as it gates and selects sensory streams through a modula-
tion of its internal activity. A preponderant role in these functions is played by its internal activity in the alpha range ([8–14] 
Hz), but the mechanism underlying this process is not completely understood. In particular, how do thalamocortical connec-
tions convey stimulus driven information selectively over the back-ground of thalamic internally generated activity? Here 
we investigate this issue with a spiking network model of feedforward connectivity between thalamus and primary sensory 
cortex reproducing the local field potential of both areas. We found that in a feedforward network, thalamic oscillations in 
the alpha range do not entrain cortical activity for two reasons: (i) alpha range oscillations are weaker in neurons project-
ing to the cortex, (ii) the gamma resonance dynamics of cortical networks hampers oscillations over the 10–20 Hz range 
thus weakening alpha range oscillations. This latter mechanism depends on the balance of the strength of thalamocortical 
connections toward excitatory and inhibitory neurons in the cortex. Our results highlight the relevance of corticothalamic 
feedback to sustain alpha range oscillations and pave the way toward an integrated understanding of the sensory streams 
traveling between the periphery and the cortex.

Keywords Thalamocortical system · Information transmission · Neural networks · Parametrical analysis · Collective 
dynamics

Introduction

During the past decades several key features of sensory pro-
cessing in the primary sensory cortex have been discovered, 
but much less is known about sensory information process-
ing and transmission in the thalamus (Rikhye et al. 2018). 
The majority of sensory signals are conveyed by the thala-
mus to the cortex in the form of spiking patterns propagating 
along different pathways (Kandel et al. 2000). Thalamocor-
tical relay neurons in the thalamus receive sensory inputs 
and in turn project them to particular areas of the cortex 
through thalamocortical synapses. For decades, the thalamus 
has been described as a relay station where little computa-
tion takes place. However, more recently, experimental and 
theoretical findings have shown a prominent role of the thal-
amus in both pre-processing of sensory stimuli (Roth et al. 
2016) and modulation of cortical activity even in absence 
of external stimulation (Steriade et al. 1993; Constantinople 
and Bruno 2013; Reinhold et al. 2015). Here we investigate 
the interplay of these two functions of the thalamus, using a 
novel spiking network model of the two areas.
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Several brain structures exhibit oscillatory activity at 
different timescales related to various cognitive functions 
such as memory consolidation (Diekelmann and Born 2010), 
attention (Gray and Singer 1989; Lakatos et al. 2008) and 
information transmission (Klimesch 2012). State-of-the-
art techniques in systems neuroscience provides a detailed 
description of anatomical and electrophisiological structures 
of thalamic and cortical systems. However, a rigorous analy-
sis of the role of thalamic and cortical oscillations in infor-
mation transmission is missing. During sleep or anesthesia, 
slow-waves [0.1–1 Hz or 1–4 Hz] are present in both tha-
lamic and cortical activities and seem to coherently organ-
ize the dynamics of both networks (Sherman 2007). On the 
other hand, fast rhythms in different frequency bands char-
acterize the activity of the thalamocortical system during 
states of awakeness or REM sleep. The thalamus also shows 
rhythmic activities in the [8–12 Hz] range. These oscilla-
tions are present during sleep in an intermittent way (Steri-
ade et al. 1993) and they are called spindle oscillations. In 
the awake state different biophysical mechanisms originate 
more continuous oscillations in a very similar range, called 
alpha rhythms (Neuronal Mechanisms 2011). Both these 
oscillations tend to co-occur in the cortex, but it is unclear to 
which extent this co-occurrence is due to a cortical entrain-
ment to external input and/or modulation of cortical circuits 
with similar resonances, and/or generated through cortico-
thalamic feedback (Da Silva et al. 1973). Shedding light on 
these mechanisms would also clarify why these frequencies 
are sometimes dissociated between cortex and thalamus in 
the awake state (e.g., Bastos et al. (2014)). Here we focus 
on investigating the first mechanism, i.e, on understanding 
to which extent frequencies in the alpha range [8–12] Hz are 
transmitted from thalamus to cortex in a feedforward way. 
Indeed, the joint thalamocortical system includes neural 
rhythms at different frequencies, which will have differen-
tial impact on the frequency bands that are known to carry 
different information in the cortex (Mazzoni et al. 2008).

Information throughout the brain is mainly transferred by 
excitatory populations through synaptic connections between 
different areas. In the thalamus, links from sub-cortical areas 
to the cortex are driven by AMPAergic thalamocortical relay 
(TC) neurons. These excitatory neurons are surrounded by 
a shell of GABAergic reticular neurons (RE) which do not 
receive sensory input directly (see Fig. 1A) and are supposed 
to modulate the information flow (Steriade 2005). They 
receive afferents from TC neurons and send inhibitory inputs 
back to them, creating a closed-loop between thalamic popu-
lation. Therefore, the activity of TC neurons does not convey 
a faithful reproduction of sensory information, but rather a 
pre-processed version of them in function of internal states 
of the thalamus. Intrinsic features of thalamocortical feed-
forward connectivity are indeed crucial in shaping this infor-
mation transmission. However, a complete understanding of 

anatomical and functional connectivity from TC neurons to 
the cortex is missing.

In this scenario, we aim to shed new light on thalamic and 
cortical spindle oscillations basing our investigations on a 
recently developed integrate-and-fire network model (Saponati 
et al. 2019) able to reproduce network oscillations on a wide 
range of timescales.

Methods

Here we summarize the main features of the model: the net-
work is an extension of a thalamic network model introduced 
in Barardi et al. (2016) connected to a previously developed 
cortical network model Mazzoni et al. (2008, 2011).

Neural and Network Models

The thalamocortical network model consists of two structures, 
namely a thalamic network T and a cortical network Γ , see 
Fig. 1A for a graphical representation of network structure. 
Both networks are composed by an excitatory and an inhibi-
tory population. The thalamic network T is composed by 250 
thalamocortical relay (TC) neurons with AMPA-like synapses 
and 250 reticular (RE) neurons with GABA-like synapses. The 
cortical network Γ is composed by 4000 pyramidal (PY) neu-
rons with AMPA-like synapses and 1000 interneurons (INT) 
with GABA-like synapses. Thalamic and cortical structures 
are characterized by random and sparse connectivity schemes 
with different coupling probabilities. Any directed pair of 
cortical neurons are connected with a probability p = 0.02 
independently from the neuron type, while thalamic RE neu-
rons connect with TC neurons with a probability p = 0.04 and 
TC neurons connect to RE neurons with p = 0.01. Moreover, 
RE network structure shows recurrent connections with prob-
ability p = 0.04 on which we add a degree of clustering by 
starting from a ring network and then randomly rewiring with 
probability 0.25. This is necessary for the onset of sustained 
thalamic oscillations (Barardi et al. 2016). The model includes 
thalamocortical afferents by considering synaptic connections 
from TC neurons to cortical excitatory and inhibitory popula-
tions. Thalamocortical connectivity is random and sparse with 
a connection probability p = 0.07.

Neuronal dynamics is simulated with the Adaptive Expo-
nential Integrate-and-Fire model (Brette and Gerstner 2005)
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where the sub-threshold dynamics of i-th neurons of a cer-
tain population � (excitatory or inhibitory population of cor-
tical or thalamic network) is described by two coupled state 
variables 

(
vi,�(t),wi,�(t)

)
 , the membrane potential and the 

adaptation variable, respectively, endowed with discrete 
reset dynamics. In particular, �m is the membrane time con-
stant, El is the reversal membrane potential and gl is the 
membrane leak conductance. Table 1 contains all the values 
considered in this study for the parameters of the Adaptive 
Exponential Integrate-and-Fire model. The activity of the 
i-th neuron in population � is the collection of emitted spikes 
{ti,�} over time �i,�(t) =

∑
{ti,�}

�(t − ti,�) . The synaptic cur-
rent I�,�

ij
 represents the input to the i-th neuron of population 

� given by the activity of j-th pre-synaptic neuron belonging 
to the population � . This current is described with a double-
exponential conductance-based model

(2)�w
dwi,�

dt
= a(vi,� − El) − wi,�

where ḡ𝛼,𝛽 is the maximal conductance, E� is the synaptic 
reversal potential (which value is determined only by the 
population � of the pre-synaptic neuron), � is the propaga-
tion delay and �↑ and �↓ are the rise and decay time constant, 
respectively. Every neuron receives a total synaptic current 
which is the linear sum of such contributions. A coupling 
matrix C�� defines the connections from population � to pop-
ulation � . All parameter sets have been chosen accordingly 
with literature and recent experimental findings (Sedigh-
Sarvestani et al. 2017), for further details and parameter 
values used refer to Saponati et al. (2019). Table 2 contains 
the parameter values of the synaptic model considered in 
this study.

Every TC neuron receives an external excitatory input 
mimicking sensory signals. Every cortical neuron receives 
an external excitatory input mimicking ongoing activity 
from afferent cortical areas together with the thalamocor-
tical input. Both external inputs are simulated as Poisson 
spike trains with different rate parameters. In particular, 
stimulus unrelated activities from afferent cortical areas are 
given by different time-varying rates �0(t) following an Orn-
stein–Uhlenbeck process

where �(t) is a Gaussian white noise, �n is the characteristic 
time of the stochastic process and �̄�0 = 0.75 spk/ms and �n = 
0.5 spk/ms are the mean and standard deviation, respectively. 
The parameter values of the stochastic input rate have been 
chosen in order to match with experimental observations 
in V1 during external stimulation (Mazzoni et al. 2010). 
Inputs coming from the sensory system are simulated as 
homogeneous Poisson spike trains with different constant 

(3)
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Table 1  Single-neuron parameter set for every population considered 
in the model

We consider these values for all numerical simulations of the manu-
script, unless otherwise stated. The parameter values are adapted 
from Saponati et al. (2019)

Units PY INT TC RE

�m ms 20 10 25 25
�r ms 2 2 2.5 2.5
El mV − 60 − 60 − 70 − 70
Δ mV 2.5 2.5 2.5 2.5
Θth mV − 52 − 52 − 50 − 50
vreset mV − 59 − 59 − 60 − 60
gl nS 25 20 50 50
a nS 1 1 0.2 0.4
b nA 0.6 0 0 0.02
�w ms 600 600 600 600

Table 2  Synaptic parameter 
sets for every coupling between 
population considered

Recurrent connections between RE neurons are defined by random and sparse connectivity scheme super-
imposed on a small-network arrangement (Barardi et al. 2016). We will use this parameter set throughout 
this manuscript, unless otherwise stated. The parameter values are adapted from Saponati et al. (2019)

Units PY,PY INT,PY PY,INT INT,INT RE,TC TC,RE RE,RE PY,TC INT,TC

p 0.2 0.2 0.2 0.2 0.01 0.04 0.04* 0.07 0.07
ḡ nS 0.178 0.233 2.10 2.70 0.2 0.3 0.3 3.28 4.44
�↑ ms 0.4 0.2 0.25 0.25 0.4 0.4 0.4 0.4 0.2
�↓ ms 2 1 5 5 5 10 10 2 1
E mV 0 0 − 80 − 80 0 − 80 − 80 0 0
� ms 1 1 1 1 1 1 1 1 ÷ 2 1 ÷ 2



7Brain Topography (2022) 35:4–18 

1 3

rate values �ext ranging from 0 to 1 spk/ms. We consider two 
different regimes: one without sensory inputs ( �ext = 0 spk/
ms) and one with TC neurons receiving external inputs of 
different rates ( �ext > 0 spk/ms). All synaptic currents from 
external sources are modeled with a double-exponential con-
ductance-based model as in (3). We used the same parameter 
values of the intra-network excitatory synapses (see Table 2) 
for the external excitatory inputs to the respective thalamic 
and cortical network.

Computation of Simulated LFP and Network Firing 
Rate

We define a field quantity related to experimentally 
recorded mesoscopic LFP signals (Buzsáki et al. 2012; 
Einevoll et  al. 2013; Pesaran et  al. 2018). Following 
(Saponati et al. 2019), we compute cortical LFPΓ(t) and 
thalamic LFPT(t) as linear combinations of all synaptic 
intra-network currents. In particular, we sum the absolute 
values of all synaptic currents to pyramidal (PY) neurons 
for cortical LFP, and the absolute values of all synaptic 
currents between TC and RE neurons for thalamic LFP

This simple method of computing LFPs from spiking net-
work models is robust and efficient under the assumption 
of homogeneous extracellular medium, as shown in Maz-
zoni et al. (2015). We compute the firing rate of each neural 
network as the mean of firing rates of all neurons from both 
excitatory and inhibitory populations

(5)LFPΓ(t) =

NPY∑

i=1

NPY∑

j=1

||Iij(t)||
PY ,PY

+

NPY∑

i=1

NINT∑

j=1

||Iij(t)||
PY ,INT

(6)

LFPT(t) =

NRE∑

i=1

NTC∑

j=1

||Iij(t)||
RE,TC

+

NTC∑

i=1

NRE∑

j=1

||Iij(t)||
TC,RE

+

+

NRE∑

i=1

NRE∑

j=1

||Iij(t)||
RE,RE

Fig. 1  Network design and dynamics. A Representation of the net-
work structure. The thalamocortical model is composed by a thalamic 
network T and a cortical network Γ . Both networks are divided into 
an excitatory and an inhibitory population, in red and blue respec-
tively. Arrows with triangle-shaped and circle-shaped heads represent 
excitatory and inhibitory connections, respectively. Arrows with dia-
mond-shaped heads represent excitatory connections between differ-
ent areas (External Stimuli to TC population, TC population to corti-
cal populations). The cortical network receives background excitatory 
stimulation simulating ongoing activity of afferent cortical areas. B 
Temporally aligned cortical LFPΓ (green) and thalamic LFPT (purple) 
from a numerical simulation in the absence ( �ext = 0 spk/ms) or pres-
ence ( �ext = 0.5 spk/ms) of external stimuli (see “Methods”)

▸
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where � runs over both excitatory and inhibitory popula-
tions. We express thalamic and cortical firing rates in num-
ber of spikes per millisecond (spk/ms). We also performed 
spectral analysis of the firing rate to focus on the output of 
neuron sets, as the LFP primarily reflects the synaptic input 
in our model (Mazzoni et al. 2015).

Spectral Analysis

LFP power spectral densities are estimated from a data-
set of 40 different simulations of length T = 10 s, each 
generated with different noise realisations. We compute 
the power spectral density (PSD) with a FFT using Welch 
method (pwelch function in MATLAB). To that end, 
the LFP signal is split up into 8 sub-windows with 50% 
overlap. The overlapping segments are windowed with 
an Hamming window. The periodogram is calculated by 
computing the discrete Fourier Transform, and then cal-
culating the square magnitude of the result. The modified 
periodograms are then averaged to obtain the power spec-
tral density estimate. We compute the magnitude-squared 
coherence between the thalamic and cortical LFP signals 
estimated from the same dataset again using the Welch’s 
method (mscohere function in MATLAB)

where PSDΓ,T(f ) is the estimated cross-spectrum, PSDΓ,Γ(f ) 
and PSDT,T(f ) are respectively the estimated cortical and 
thalamic PSDs and ⟨ ⟩ is the average over the dataset. We 
also analyze the distribution of phase lags in frequency-
bands of interest, to investigate possible synchronizations 
of the two networks activities. The phase relation between 
Fourier-transformed signals LFP∗

T
(f ) and LFP∗

Γ
(f ) at a given 

frequency f is quantified as the angle of the estimated com-
plex-value cross-spectrum, similarly to (Womelsdorf et al. 
2007). We compute phase-lags Δ�i(f ) for every i-th simu-
lation in the dataset, and average over frequency-bands of 
interest. The frequency bands of interest are: � [1–4] Hz, 
� [8–12] Hz, � [13–30] Hz, � [30–80 Hz]. Please note that 
the � band includes in its range both proper � oscillations, 
present in the thalamus in the awake state (Neuronal Mecha-
nisms 2011) and the intermittent spindle oscillations, present 
in the thalamus in sleep state (Contreras et al. 1997), and it 
is therefore very relevant to assess the properties of spectral 
thalamocortical transmission of this band. We interpret the 
estimated phase relations as directional data and, for every 

(7)FR(t) =
∑

�

1

N�

N�∑
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FRi,�(t) =
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1
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∫
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t

�i,�dt

(8)CΓ,T(f ) = ⟨
��PSDΓ,T(f )

��
2

PSDΓ,Γ(f )PSDT,T(f )
⟩

frequency-band considered, we compute the circular vari-
ance (Mardia and Jupp 2009)

that is, the mean resultant vector modulus of the set. We test 
the presence of a preferred phase-lag in a certain frequency 
band with a Rayleigh test between a uniform distribution 
hypothesis H0 and a non-uniform distribution hypothesis H1 , 
considering the approximated p-value (Zar 2013)

where N is the number of sample in dataset and rn = rN  . 
With such a method we quantify if phase-lag values are 
given by random fluctuations, or whether they belong to a 
certain non-uniform distribution (Berens 2009). We compute 
filtered Local Field Potential signals in the � and � ranges by 
means of a digital filter (designfilt function in MATLAB). 
In particular, we consider the cut-off frequencies to be 1 Hz 
and 4 Hz for the �-range, 8 Hz and 12 Hz for the �-range. We 
use the MATLAB function filtfilt, which processes the input 
data in both the forward and reverse directions to eliminate 
the phase lag.

Numerical Methods

All scripts are written in MATLAB. The dynamical equa-
tions of the system are solved numerically with a second-
order Runge–Kutta method with mid-point scheme and time 
step h = 0.05 ms. Some scripts have been implemented with 
the DynaSim Toolbox (Sherfey et al. 2018).

Results

We investigated in silico the properties of thalamocortical 
information transmission through our local network model 
of the thalamus receiving external stimuli (Barardi et al. 
2016) and projecting to the primary cortex, which receives 
also stimulus-unrelated excitatory inputs (Mazzoni et al. 
2011) (Fig. 1A). We computed the cortical LFPΓ(t) and the 
thalamic LFPT(t) (Mazzoni et al. 2015) (Fig. 1B, see “Meth-
ods” for details) as main outputs of the system.

Frequency‑Dependent Transmission 
in Thalamocortical Connections

To capture the mechanisms underlying the relationship 
between spectral content in the thalamus (both input 
driven and internally generated) and in the cortex, we first 

(9)r =
||||
1

N

N∑

i=1

�i

||||
=
||||
1

N

N∑

i=1

[
cos(Δ�i)

sin(Δ�i)

] ||||

(10)p = exp

(√
1 + 4N + 4(N2 − r2

n
) − (1 + 2N)

)
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compared the thalamic PSDT and the associated cortical 
PSDΓ from the respective LFPs both without external 
stimuli and during external stimulation, see “Methods” 
and (Barardi et al. 2016). In the former case both tha-
lamic and cortical networks are associated to prominent � 
[1–4 Hz] fluctuations, but display several secondary peaks, 
in the �-band [8–12 Hz] and �-band [30–80 Hz] respec-
tively (Fig. 2A). When introducing external inputs, the 
gamma peak becomes more pronounced (Mazzoni et al. 
2008) in the cortex, while a secondary peak in the beta 
range [13–30] Hz appears in the thalamus (Fig. 2B). The 
corticothalamic ratio, that is, the ratio of the cortical and 
the thalamic spectra across the stimulation range (see 

“Methods”), shows that both the �-peak and the �-peak are 
weaker in the cortex (Fig. 2B), consistently with experi-
mental observations (Bastos et al. 2014). This suggests 
that these bands are specifically suppressed by thalamo-
cortical transmission. We observe that this suppression is 
poorly modulated by external inputs (Fig. 2B). Likewise, 
external inputs do not affect thalamocortical coupling 
in slower �-rhythms, which seem to be an intrinsic fea-
ture of the system, unrelated to stimuli. External inputs 
modulation is visible, instead, in the cortical �-band activ-
ity, which is increasing proportionally to the input rate 
(Fig. 2B) (Henrie and Shapley 2005; Mazzoni et al. 2008, 
2011). This modulation happens through enhancement of 

Fig. 2  Modulation of thalamocortical LFP spectrum by external 
input. A Estimated power spectral densities PSDT and PSDΓ of tha-
lamic and cortical LFP for different external stimulation (the different 
input intensities are indicated in the legend). The results are averaged 
over 40 simulations with different noise realisations and normalized. 
Each synaptic input is simulated as an homogeneous Poisson spike-

train with rate �ext (see “Methods”). The blue and purple stripes rep-
resent � [1–4 Hz] and � [8–12 Hz] frequency range, respectively. B 
Ratio between cortical and thalamic PSD as a function of input rate. 
Right plot shows a zoom in the 0–25 Hz range of the same ratio 
between cortical and thalamic PSDs
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thalamic activity as shown in Fig. 2B. The local origin of 
gamma oscillations in cortical networks is a well known 
phenomenon (Sohal 2016). Lower cortical frequencies are 
instead supposed to be phase-locked to thalamic stimuli 
(Lakatos et al. 2005; Mazzoni et al. 2008; Lakatos et al. 
2008; Mazzoni et al. 2011), as is the case in this model 
(see Fig. 3). However, the lack of entrainment of the cor-
tical network to the thalamic inputs between the � and 
the � bands is a less obvious phenomenon with important 
consequences for information transmission. In fact, while 
�-fluctuations are an important component of thalamic 

activity and they can convey information about the exter-
nal world during stimulus-driven regimes (Schroeder and 
Lakatos 2009; Mazzoni et al. 2011) or about the inter-
nal brain state during sleep or anesthesia (Steriade et al. 
1993; Lewis et al. 2015), �/spindle-oscillations are locally 
originated in the thalamus (Steriade et al. 1985; Bazhenov 
et al. 2000) and hence do not carry information about the 
external world. Actually, thalamic spindle-rhythms inter-
pose to information transmission and therefore contrib-
ute to the gating role of the thalamus (Sherman 2001). 
Therefore, our results shown in Fig. 2 suggest that there 

Fig. 3  Phase relation between the cortical and thalamic LFPs. A 
Magnitude squared coherence (see “Methods”) between thalamic and 
cortical networks during external stimulation �

ext
 = 0.5 spk/ms. B 

Circular scatterplot of phase-lags between cortical and thalamic LFP 
signals in the � (1–4 Hz, blue) frequency band and in the � (8–12 Hz, 
purple) frequency band. Circles are datasets of 30 different simula-
tions during external stimulation �

ext
 = 0.5 spk/ms. Lines in the center 

of the figures are the resultant vector lengths estimated from the data-
set. C) Signal trajectory in the ( LFPΓ , LFPT ) space for two frequency 
bands of interest. The blue and purple trajectories represent filtered 
LFP in the � and � ranges, respectively. Both filtered signals are 
obtained from the same raw LFP signal in a time-window of length T 
= 1 s during external stimulation �

ext
 = 0.5 spk/ms
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are mechanisms in the thalamocortical transmission that 
implicitly select the informative frequency bands. In the 
following we will investigate possible mechanisms under-
lying this selection. 

Phase Relationship Between Thalamocortical LFP

We asked then whether thalamic inputs regulate cortical 
activity by influencing its spectral content. We performed 
a band-wise coherence analysis (see “Methods”), focusing 
on the frequency bands of interest. We found that �-oscilla-
tions are coherent between the thalamic and cortical LFPs 
(Fig. 3A), in agreement with experimental analysis (Maz-
zoni et al. 2008), while the system does not show significant 
coherence in any other frequency bands. Moreover, phase 
lags in the � band from different simulations tend to cluster 
around a mean-value, showing that the � oscillations in the 
cortex are locked to those in the thalamus (Fig. 3B). We 
quantified this observation by computing the resultant vector 
lengths (see “Methods”): R� = 0.27 and R� = 0.11 (vectors 
in Fig. 3B). We tested the uniformity of the sample distribu-
tions with a Rayleigh test (p = 0.05, see “Methods”): p� < 
0.01 and p� = 0.78. We then investigated the thalamic and 
cortical LFP signals filtered in the � and � bands to qualita-
tively illustrate the different relationship between thalamus 
and cortex in the two bands (see “Methods”). The thalamic 
and cortical LFPs show a certain level of phase coupling in 
the � range while they behave independently in the � range 
(Fig. 3C). These results show a strong � coupling between 
the thalamic and cortical networks, while the spectral con-
tent in any other frequency band is not coherent within the 
thalamocortical system. In particular, intermediate � and � 
rhythms in the thalamus do not entrain the corresponding 
bands in the cortex. We observe then that in the local patch 
of the cortex that we are simulating, alpha range oscillations 
are weaker than in the thalamus and do not have any phase 
relationship with the oscillations in the same range present 
in the thalamus. This strongly suggests that cortical input 
to reticular nucleus is necessary to ensure coherence in the 
alpha frequency range (Bollimunta et al. 2011). As before, 
this suggests that entrainment in � band and filtering of � 
rhythms is a prominent characteristic of the thalamocortical 
system. Such role of slow thalamic rhythms in modulating 
cortical activity is a recurrent experimental finding (Lewis 
et al. 2015; Crunelli et al. 2018).

Alpha Range Oscillations in TC Neurons

The different behaviors of the frequency bands in thalamo-
cortical transmission necessarily depends on mechanisms 
at the thalamocortical projection level or inside cortical 
network dynamics. We focused in understanding these 
mechanisms by firstly characterizing alpha range ([8–12] 

Hz) oscillations in the subset of thalamic neurons projecting 
to the cortex, rather than in the overall thalamus dynamics. 
The LFP of a given network is determined by synaptic inputs 
(Buzsáki et al. 2012; Einevoll et al. 2013) and is simulated in 
our model accordingly (Mazzoni et al. 2015). Consequently, 
thalamic LFP is mainly composed of synaptic currents of 
RE inputs into TC neurons and recurrent RE-RE connec-
tions, because of their higher connection probabilities with 
respect to TC inputs (see “Methods”). However, thalamic 
inputs to the cortex are given only by the output of TC neu-
rons. We compared the spectral features of thalamic LFPT 
and TC neurons firing at a rate FRtc (Fig. 4A, see “Meth-
ods”). Specifically, we computed the power spectral den-
sity of the thalamic LFP and the TC population firing rate, 
observing that the � component is much less pronounced in 
the latter than in the overall LFP. This suggests that part of 
the discrepancy between thalamic and cortical PSD in the 
� range (Bastos et al. 2014) is that only a weak component 
of thalamic spindle oscillations is transmitted to the cortex, 
as these oscillations are stronger in the RE than in the TC 
population (Barardi et al. 2016). Still, even considering the 
actual input to the cortex, the � band is transmitted in a much 
more faithful way than the � oscillations (Fig. 4B). The ratio 
between the activities of the overall thalamic network and 
the TC population only shows increasing discrepancy in the 
� range, and particularly in the � range, for increasing input 
rate. These discrepancies in the spectral content of network 
activities rely then on the thalamic connection scheme. The 
cortical spectrum, in the low frequency range, is indeed 
much more similar to the cortical input spectrum than to 
the overall thalamic LFP (Fig. 2A). The thalamus modulates 
cortical activity in the low � rhythms in the absence and 
in the presence of external sensory stimulation, while pro-
cessing the sensory input with internal spindle oscillations 
driven by RE inhibition, in agreement with experiments 
(Lewis et al. 2015).

Modulation of Frequency Response by Internal 
Cortical Dynamics

The fact that � oscillations are less prominent in the thalamic 
input to the cortex compared to the whole thalamic LFP 
(Fig. 4) does not account for the whole extent of the filtering 
of oscillations in the � range in the cortex. We investigated 
then if the internal cortical dynamics plays a role in shaping 
the spectral response properties of the cortex as well. To 
that end, we consider the dynamics of the cortical network 
receiving only excitatory inputs from the mimicked ongo-
ing activity of afferent cortical areas (see “Methods”) and 
from a designed set of inhomogeneous Poisson spike train 
inputs whose rates �(t) were composed by the superimposi-
tion of three elements: a baseline constant input, a sinusoidal 
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modulation in the � band, and another one in the � band, as 
follows

where b is the baseline, a� and a� the amplitudes of the two 
modulations considered, and �� = 3 Hz and �� = 9 Hz their 
frequencies. To preserve the thalamocortical dynamics stud-
ied so far, every cortical neuron receives the same amount of 
thalamocortical inputs as every thalamocortical connection 
is substituted by an inhomogeneous Poisson process with 
the rate given in (11) and the same parameter values for the 
thalamocortical synaptic current model as listed in Table 2. 
This artificial input is designed to test the sensitivity of the 

(11)�(t) = b + a� cos(2���t) + a� cos(2���t)

cortical network to specific spectral contents and allowed 
us to analyze the cortical response in function of the ratio Λ 
between the amplitudes of the two sinusoidal modulations

We studied how the cortical spectral response changes 
with respect to parameter variations in the 2D space (b,Λ) 
(Fig. 5A). We found that spectral transmission was symmet-
ric only in the lack of external stimulus, while it favoured 
� respect to � components for any non-zero value of the 
external stimulus. For instance , for b = 0 and Λ = 0.5 the � 
component dominates in the cortical activity, while for b > 0 

(12)Λ =
a�

a�

Fig. 4  Spectral analysis of thalamic LFP and TC firing rate. Thalamic 
spectral features in function of different external stimulations (see 
legend). Blue and purple stripes represent � [1–4 Hz] and � [8–12 Hz] 
frequency range, respectively. A Estimated power spectral densities 

PSDT and PSDFR,tc of thalamic LFP (left) and TC firing rate (right). 
Results are averaged over 40 simulations with different noise realisa-
tions and normalized. B Ratio between thalamic LFP and TC firing 
rate PSDs
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the � component is almost as strong as � oscillations, and the 
opposite does not occur. Overall, the stronger the baseline 
activity, the higher the peak in the � range and the larger the 
interval in which the � activity dominates in the cortex, even 
if injected with a smaller amplitude than �-activity (Fig. 5B). 
These results show that filtering of the � spectral compo-
nents depends on the cortical sensitivity, and is more evident 
when the input baseline is strong, and hence the cortical 
spectrum is dominated by � activity.

Spectral Role of the Relative Weight of Thalamic 
Inputs to Cortical Populations

It can be observed that when the PSD of the cortical activ-
ity contains a high component in the � range, the � compo-
nent within the thalamic input is substantially, whereas the 
� component is still present. We investigated whether the 
cortical response depended on ongoing cortical rhythms also 
during actual thalamic stimulation rather than the simpli-
fied external stimulus described in the previous subsection. 
In particular, we examined the dependence of the cortical 
spectrum on the relative weight of thalamocortical inputs to 
cortical populations. First we defined �0 as the ratio of the 

Fig. 5  Frequency transfer as a function of network inputs. A Corti-
cal power spectral density PSDΓ peaks in the � (blue surface) and � 
(purple surface) when injected with input described in Eq. (11) as a 
function of baseline b and ratio Λ between relative amplitudes of the 
two frequencies of the artificial input. Red arrow represents higher 
� rhythms increasing in the direction of increasing b. The frequency 
spectrum peaks are in arbitrary units and normalized. B Top plot: 

Projection on the Λ-b plane of intersection between � and � surfaces, 
in blue and purple colormap respectively. The intersection between 
the surfaces is highlighted in black. Bottom plot: Cortical power 
spectral density PSDΓ for different values of both b and Λ as reported 
on the plots. Results are averaged over 20 different simulations. Dur-
ing all simulations we consider �� = 3 Hz and �� = 9 Hz (Color figure 
online)



14 Brain Topography (2022) 35:4–18

1 3

thalamocortical synaptic conductances considered so far in 
the study

in particular, ḡpy,tc = 3.28 nS and ḡint,tc = 4.44 nS (see 
Table 2). To examine the effect of the relative weights of 
thalamocortical inputs, we varied the values of the thalamo-
cortical synaptic conductances, and we investigated how this 
affected the spectral characteristics of cortical LFP signal. 
To this end, we defined a control parameter � as the inverse 
of the previously defined �0 multiplied by the ratio of the 
new thalamocortical synaptic conductances

where we let the parameters gpy,tc and gint,tc vary. We com-
puted the peaks of cortical PSDΓ in the � , � and � bands as a 
function of the control parameter � (Fig. 6A). We found that 
changes in the input balance have a profound effect on the 
propagation of the different frequency bands from thalamus 
to cortex observed so far. When INT neurons receive most of 
the inputs ( � < 1), the cortex becomes progressively closer 
to a faithful reproduction of the thalamic activity (includ-
ing the � spectral component), up to the disappearance of 
� component in the spectrum. When PY neurons receive 
most of the input ( � > 1) the cortex becomes progressively 

𝜒0 =
ḡpy,tc

ḡint,tc

(13)𝜒 =
ḡint,tc

ḡpy,tc

gpy,tc

gint,tc
=

1

𝜒0

gpy,tc

gint,tc

dominated by the � oscillations, due to the interplay with 
the INT neurons disrupting lower frequency oscillations 
(Brunel and Wang 2003). In the balanced condition ( � ∼ 1), 
it is possible to observe the presence of both the � spectral 
component and the � one, with a clear reduction of the PSD 
component in the � range (Fig This indicates that a bal-
anced input to the thalamus is the optimal way to selectively 
block only the non-informative � component generated by 
the thalamic internal activity (Steriade et al. 1993; Belitski 
et al. 2008), so that � rhythms are thus the decisive factor of 
this mechanism.

Discussion

Our in-silico investigation shows that thalamocortical con-
nectivity modulates spectral transmission between the two 
areas in a way that optimizes spectral information transmis-
sion. We observed that thalamic oscillations in the � band 
[1–4 Hz] and in the � band [8–12 Hz] have remarkably dif-
ferent effects on cortical activity. In fact, the latter embodies 
slower � with respect to thalamic � rhythms while showing 
another frequency-peak in the higher � band [30–80 Hz]. 
Under external stimulation, the cortex reproduces the tha-
lamic � band and locally generates � rhythms proportionally 
to the input intensity, while the thalamic spectra show an 
enhancement in the � band [20–30 Hz]. This model repro-
duces well-known cortical � peaks in response to increasing 
external inputs (Brunel and Hakim 1999; Brunel 2000), but 
it also differentiates functional roles of thalamic spectral 
components in transmitting information to the cortex. In 
particular, it suggests that thalamic � rhythms act as a local 
clock conveying information about internal thalamic states 
through the activity of the reticular nucleus, in agreement 
with experimental findings (Lewis et al. 2015). Our results 
suggest that external stimulation modulates high-frequency 
activities over a low-frequency background activity, keeping 
� rhythms as a communication channel, similarly to what 
happens during non-REM sleep (Dang-Vu et al. 2011). On 
the other hand, thalamic activity in the � band play a minor 
role in communication to the cortex (Belitski et al. 2008), as 
they are locally generated in the thalamus. By investigating 
the mechanisms behind spectral selectivity, we found that 
both thalamocortical afferents and cortical responsiveness 
play a role in shaping spectral information transmission, as 
we dissect in what follows.

Firstly, thalamocortical afferents are composed only by 
projections from thalamocortical relay (TC) neurons to 
cortical populations. However, the thalamic LFP is mainly 
contributed by reticular (RE) projections, which embody 
stronger � rhythms (Barardi et al. 2016) arising from an 
inhibition-driven interplay between RE and TC cells, as 
observed experimentally (Steriade et  al. 1993, 1987). 

Fig. 6  Spectral cortical and thalamocortical architecture. Modula-
tion of the cortical PSDΓ as a function of control parameter � . Lines 
indicate power peaks for different frequency bands (see legend). Light 
green indicates the reference region. Power under the grey dashed 
line are not associated to peaks. The spectrum peaks are in arbitrary 
units. Results are averaged over 20 simulations with different noise 
realisations
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Consequently, the spectral composition of thalamocorti-
cal inputs reveals that only a fraction of � rhythms is really 
conveyed to cortical populations. Our results strengthen the 
hypothesis that spindles, commonly observed in the thala-
mus (Steriade et al. 1993) are a localized feature of the tha-
lamic network which serve as modulators of information 
trasmission from sensory input to the cortex through tuning 
of thalamocortical relay modes (Sherman 2001). Indeed, 
spindles are locally generated in the thalamus and typically 
arise from the interplay between TC and RE neurons (Ste-
riade 2005). In particular, RE neurons shape the computa-
tional capabilities of the thalamus through the low-threshold 
bursting behavior of TC neurons. Reticular neurons hyper-
polarize TC neurons leading to de-inactivation of T-type 
calcium channels, what switches TC activity from tonic to 
bursting (Sherman 2001), leading to spindle oscillations. 
Many attempts have been made in order to reproduce spin-
dle activity in computational models of thalamic circuitry. 
One of the first works on TC-RE was developed more than 
20 years ago (Destexhe et al. 1993). Recent works describe 
spike-wave discharges in sleeping thalamus by means of 
neural field models (Fan et al. 2017). Other late works are 
based on modeling thalamic cells using single-compartment 
conductance-based model with several ionic currents. One 
example is (Li et al. 2017), in which the authors suggest that 
intrinsic thalamic activities are able to generate oscillations 
at different timescales, from slow waves to gamma rhythms. 
However, state-of-the-art modelling of thalamic oscillations 
lacks simpler yet efficient integrate-and-fire network models. 
Apart from our work (Barardi et al. 2016) we are only aware 
of a single previous work regarding Up-Down oscillatory 
activity in thalamus and cortex (Destexhe 2009).

Secondly, we characterized an intrinsic mechanisms of 
frequency selection as a function of the cortical dynami-
cal state. Previous works report that cortical � oscillations 
respond in a resonant manner, implying the proximity of 
cortical dynamics to a Hopf-bifurcation (Xing et al. 2012; 
Barbieri et al. 2014). We extend this by showing that the 
absence/presence of � rhythms shape the responsiveness of 
cortical network with respect to external modulation in the 
� and the � band. In particular, the presence of strong stimu-
lus-driven � oscillations seems to dampen cortical resonance 
in the � range while acting as a slow envelope in the � range. 
When � rhythms are absent, the cortical network behaves in 
the asynchronous irregular (AI) (Brunel 2000) state and thus 
shows a symmetrical frequency-response portrait.

Finally, we also investigated the role of cortical synap-
tic parameters in shaping the cortical response, focusing on 
thalamocortical synaptic conductances. We showed that, in 
our modeling description, a kind of democratic thalamo-
cortical relay to both cortical population through TC neu-
rons activity is optimal for information routing. This input 
balancing reflects the balanced-network approach used in 

modeling cortical networks, which is able to reproduce 
sub- and supra-threshold fluctuations similar to recordings 
in vivo (Haider et al. 2006; Buzsáki and Wang 2012), and 
is thus a promising theoretical framework to study cogni-
tive processes in the cortex (Shew et al. 2011; Denève and 
Machens 2016). In fact, cortical � rhythms arise from such a 
balance scheme as a collective phenomenon resulting from 
the interplay between excitation and inhibition (Brunel 
and Hakim 1999). In our case, balanced inputs correspond 
to thalamocortical afferents sending stronger inputs to 
interneurons respect to pyramidal neurons in order to main-
tain their internal balance. Such scheme is in agreement with 
recent experimental observations (Sedigh-Sarvestani et al. 
2017; Mazade and Alonso 2017). Seminal works by Sher-
man such as (Murray Sherman and Guillery 1996) highlight 
that thalamocortical inputs to the cortex are characterized by 
large and sparse connectivity, able to send powerful infor-
mation throughout the highly interconnected cortical cir-
cuitries. Moreover, thalamocortical relays seem to account 
for 5–25% of the excitatory connections within the cortex 
(Mazade and Alonso 2017). In vivo recordings suggest that 
thalamocortical afferents seem to target in equal numbers 
to both the cortical excitatory and inhibitory populations 
(Sedigh-Sarvestani et al. 2017). To the best of our knowl-
edge, our work is the first effort in modelling the mesoscopic 
activity arising from such a sparse but symmetric architec-
ture by means of a simple spiking neural network.

Investigations of thalamocortical activity have been done 
by Bazhenov et al. Bazhenov et al. (2002) with a model 
based on in vivo recordings, which was able to reproduce 
Up-Down oscillations. However, the authors considered few 
neurons with complex Hodgkin–Huxley models and fixed 
connectivity scheme. Later, Izhikevich and Edelman Izhik-
evich and Edelman (2008) developed a large-scale model of 
remarkable complexity with several cortical layers, synap-
tic plasticities and anatomical features. This model is based 
on the powerful-and-sparse approach for thalamocortical 
feedforward afferents and on a simple (integrate-and-fire) 
Izhikevich model for single neuron dynamics (Izhikevich 
2003). By using mean-field approaches, important work has 
been done in understanding the effects of brain stimulation 
on cortical alpha rhythms (Hutt et al. 2018; Lefebvre et al. 
2017) and the interaction between the basal ganglia and the 
thalamocortical system (van Albada and Robinson 2009). 
Such mean-field approximations are useful to understand the 
role of the spectral thalamo-cortical interactions to improve 
brain stimulation and shed light on the mechanisms of gen-
eral anesthesia (Hutt 2019). Recently, higher levels of detail 
have been reached in modeling thalamic and cortical oscil-
lations (Ching et al. 2010) and local field potentials with 3D 
distribution models (Hagen et al. 2017). Despite of these 
relevant works, a simple and manageable model able to test 
novel experimental findings such as (Mazade and Alonso 
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2017; Sedigh-Sarvestani et al. 2017) is a necessary step to 
have a shot at describing thalamocortical dynamics while 
easily investigating different parameter settings.

Computing local field quantities from the activity of 
spiking network models gives a wider view of the relation-
ship between neuronal interactions and collective phenom-
ena such as oscillations and synchronization (Buzsáki and 
Draguhn 2004). In this respect, it would be of interest to 
test experimentally the relationship between cortical bal-
ance and spectral content transmission by means of cortical 
stimulations and LFP recordings. As we focused on par-
ticular thalamic input emerging from our thalamic model 
(Barardi et al. 2016), a possible further development would 
be to design different artificial inputs and analyze the cor-
responding cortical response as a function of both stimuli 
features and the internal dynamical state of the network. We 
stress that here we have focused on a purely feedforward 
model of interaction from a local thalamic area to a primary 
cortical circuitry of the related sensory system to investi-
gate feedforward transmission of oscillations (as in Brown 
et al. (2020)). Therefore, one relevant limitation of the model 
discussed in the present work is the inability to generate 
proper intermittent sleep spindle oscillations. This is due 
to the fact that we adopted a purely feedforward thalamo-
cortical model with no corticothalamic feedback, which is 
necessary to generate sleep spindle oscillations. This work 
focuses on thalamocortical spectral transmission, and we 
aimed at assessing the way the different frequency bands 
are filtered independently from the way they are generated. 
However, in follow-up studies we will include feedbacks, as 
these are likely to reinforce transmission in the alpha range 
and compensate to some extent the mechanisms highlighted 
in in the present work.
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