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Abstract
Alterations of resting-state EEG microstates have been associated with various neurological disorders and behavioral states. 
Interestingly, age-related differences in EEG microstate organization have also been reported, and it has been suggested that 
resting-state EEG activity may predict cognitive capacities in healthy individuals across the lifespan. In this exploratory 
study, we performed a microstate analysis of resting-state brain activity and tested allocentric spatial working memory per-
formance in healthy adult individuals: twenty 25–30-year-olds and twenty-five 64–75-year-olds. We found a lower spatial 
working memory performance in older adults, as well as age-related differences in the five EEG microstate maps A, B, C, 
C′ and D, but especially in microstate maps C and C′. These two maps have been linked to neuronal activity in the frontal and 
parietal brain regions which are associated with working memory and attention, cognitive functions that have been shown to 
be sensitive to aging. Older adults exhibited lower global explained variance and occurrence of maps C and C′. Moreover, 
although there was a higher probability to transition from any map towards maps C, C′ and D in young and older adults, this 
probability was lower in older adults. Finally, although age-related differences in resting-state EEG microstates paralleled 
differences in allocentric spatial working memory performance, we found no evidence that any individual or combination of 
resting-state EEG microstate parameter(s) could reliably predict individual spatial working memory performance. Whether 
the temporal dynamics of EEG microstates may be used to assess healthy cognitive aging from resting-state brain activity 
requires further investigation.

Keywords  Microstates · Electroencephalography · Spontaneous brain activity · Healthy aging · Working memory 
performance

Introduction

Despite the on-going debate on the relevance of studying 
brain activity under resting-state conditions (Buckner and 
Vincent 2007; Campbell and Schacter 2017; Davis et al. 

2017; Morcom and Fletcher 2007), several studies have 
shown important age-related differences in spontaneous 
EEG oscillations recorded when individuals are at rest 
(for a recent review see Anderson and Perone 2018). An 
alternative to the analysis of resting-state EEG in terms of 
frequency power modulation are EEG microstates, which 
represent short-lasting periods of synchronized activity of 
large-scale brain networks (Khanna et al. 2015; Koenig et al. 
2005; Lehmann and Michel 2011; Michel and Koenig 2018). 
EEG microstates are characterized by a stable topography of 
the global scalp potential field within a millisecond resolu-
tion (Khanna et al. 2014). EEG microstates have been pro-
posed to reflect the building blocks of information process-
ing (Lehmann and Michel 2011; Michel and Koenig 2018). 
Accordingly, distinct microstate maps have been associated 
with visual imagery or abstract thinking (Lehmann et al. 
1998), divergent beliefs (Schlegel et al. 2012), object/spatial 
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visualization or verbalization (Milz et al. 2016a), perception 
of bodily signals (Pipinis et al. 2017), fluid intelligence (San-
tarnecchi et al. 2017; Zappasodi et al. 2019), and autobio-
graphic memory retrieval or arithmetic processing (Brechet 
et al. 2019).

In addition, several studies have reported that resting-
state EEG microstates are altered in neuropsychiatric and 
neurodegenerative disorders, such as Alzheimer’s disease 
(Musaeus et al. 2019; Smailovic et al. 2019), Parkinson’s 
disease (Chu et al. 2019), schizophrenia (Andreou et al. 
2014; Baradits et al. 2020; da Cruz et al. 2020; de Bock 
et al. 2020; Giordano et al. 2018; Kindler et al. 2011; Koenig 
et al. 1999; Lehmann et al. 2005; Murphy et al. 2020a; 
Nishida et al. 2013; Soni et al. 2018; Strelets et al. 2003; 
Tomescu et al. 2014; Tomescu et al. 2015), multiple scle-
rosis (Gschwind et al. 2016), fibromyalgia (Gonzalez-Villar 
et al. 2020), panic disorder (Kikuchi et al. 2011), bipolar dis-
order (Damborska et al. 2019; Vellante et al. 2020), obses-
sive–compulsive disorder (Yoshimura et al. 2019), depres-
sive disorder (Murphy et al. 2020b), narcolepsy (Drissi et al. 
2016; Drissi et al. 2019), stroke (Zappasodi et al. 2017) or 
autism (D’Croz-Baron et al. 2019; Jia and Yu 2019; Port-
nova et al. 2020). EEG microstate analyses might therefore 
provide another tool for the development of a non-invasive 
assessment of healthy cognitive aging.

Healthy or normal cognitive aging is difficult to charac-
terize and is essentially defined by exclusion, as the absence 
of evidence of mild cognitive impairment (MCI) or demen-
tia, such as Alzheimer’s disease (Fabiani 2012; Jagust 2013; 
Rowe and Kahn 1987). Normal aging is associated with a 
variety of changes in cognitive capacities, one of which is 
an overall decline in working memory performance (Fabiani 
2012; Jagust 2013). However, few studies have investigated 
age-related differences in EEG microstate maps across nor-
mal development and aging, and only one study has inves-
tigated the possible links between resting-state EEG micro-
states and non-pathological, age-related cognitive decline 
(Zanesco et al. 2020). There is to date no published study 
investigating the possible links between resting-state EEG 
microstates and spatial working memory performance in 
healthy individuals.

Koenig et al. (2002) analyzed the eyes-closed resting-
state EEG of 496 participants (230 females) from 6 to 80 
years of age. They computed three temporal parameters 
(mean duration, frequency and the percentage of time 
covered by each state) of the four canonical microstate 
maps (A, B, C, D), and showed that several microstate 
parameters followed distinct developmental trajectories. 
Although graphical data representations suggested distinct 
changes of the four maps from 21 to 80 years of age, the 
focus of the paper was on developmental stages, not aging, 
and no analyses comparing young and older adults were 
reported. Tomescu et al. (2018) analyzed the eyes-closed 

resting-state EEG of 179 participants (90 females) from 6 
to 87 years of age. They computed three temporal param-
eters (mean duration, occurrence and map transitions) 
of the four canonical microstate maps (A, B, C, D), and 
reported age-related differences in the mean duration of 
map C. Specifically, they found a lower mean duration of 
map C in 61–87-year-olds, as compared to 31–60-year-
olds. They also found lower transition probabilities from 
map C to map D, and from map D to map C in 61–87-year-
olds, as compared to 31–60-year-olds. However, they did 
not compare young adults (20–30-year-olds) and older 
adults (61–87-year-olds). Zanesco et al. (2020) analyzed 
the eyes-open and eyes-closed resting-state EEG of 153 
young participants (20–35 years of age; 45 females) and 
74 older participants (59–77 years of age; 37 females). 
They computed three temporal parameters (GEV, mean 
duration, and occurrence) of five data-driven microstate 
maps (A, B, C, D, E) and assessed several cognitive, 
personality and mood traits using a standardized testing 
battery. They found age-related differences in GEV (in 
older participants: higher GEV for maps A and B, and 
lower GEV for maps C and E), mean duration (an overall 
increase with age) and occurrence (an overall decrease 
with age). They also found higher transition probabilities 
towards maps A and B and lower transition probabilities 
towards map C and from map C to map E in 59–77-year-
olds, as compared to 20–35-year-olds. In addition, they 
showed that age and gender predicted more reliably the 
temporal dynamics of microstates than personality, mood 
or attentional performance.

Here, we aimed to explore potential differences in resting-
state EEG microstates between healthy 20–30-year-old and 
65–75-year-old adults and evaluate whether EEG micro-
states could be used to predict age-related differences in 
spatial working memory performance. To extend previous 
findings (Custo et al. 2017; Zanesco et al. 2020), we used a 
data-driven approach to provide a comprehensive descrip-
tion of the microstate maps that best explained resting-state 
brain dynamics. We measured allocentric spatial working 
memory performance, a capacity dependent on the integrity 
of the hippocampal formation (Banta Lavenex et al. 2014; 
Burgess 2006), which has been shown to decline with age 
(Klencklen et al. 2017a, b). We adapted standard EEG meth-
ods to record brain activity in mobile participants in a non-
shielded environment, in both eyes closed and eyes open 
conditions. Consistent with previous studies, we found age-
related differences in EEG microstates and spatial working 
memory performance. However, no individual or combina-
tion of resting-state EEG microstates parameter(s) could be 
used to predict individual spatial working memory perfor-
mance in young or older adults.
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Materials and Methods

Participants

Twenty young adults between 20 and 30 years of age (M 
26.29, SD 3.57; 11 women) and 25 older adults between 
65 and 75 years of age (M 71.75, SD 3.36; 8 women) were 
included in this study. Three other participants (one young 
and two older adults) were excluded due to the presence 
of too many residual artifacts in the EEG recordings. Par-
ticipants were recruited via personal connections, social 
networks and flyers distributed through local senior organi-
zations. Care was taken to recruit participants from all edu-
cation levels. Exclusion criteria were subjective memory 
complaints and a history of learning disabilities, visual 
perception disabilities, left-handedness, birth complica-
tions, neurological medication, a history of neurological or 
psychiatric disease and trauma. All participants (except one 
young and one older adult) participated in previous studies 
(Klencklen et al. 2017a, b) and were screened at the time 
(2 years prior to the current experiment) for dementia by a 
neuropsychologist (G.K.), using a battery of tests: general 
cognitive status with the Mini Mental State Examination 
(MMSE; Folstein et al. 1975); the Progressive Matrice-12 
(Raven et al. 2003); the Vocabulary, Digit Spans, Arithme-
tic and Similitude sub-tests from the Wechsler Adult Intel-
ligence Scale-III (WAIS-III; Wechsler 1997); color vision 
with the Ishihara test (Ishihara 1917); and the Corsi Block-
Tapping test Forward and Backward (Corsi 1972). For each 
test, older participants were found to be within 1.75 standard 
deviations of the norm for age-matched controls (Klencklen 
et al. 2017a, b). At the time of the present study, normal 
cognitive capacities were inferred using participants’ self-
report, as well as by comparing the spatial working memory 
performance of older individuals who were tested in both the 
present study and the study 2 years prior (Klencklen et al. 
2017a; paired t-tests: CBE: t(22) = 1.664, p = 0.110; NET: 
t(22) = 1.811, p = 0.084). We also compared the results of all 
the older participants tested in the current study with those 
of all the older participants tested previously (Klencklen 
et al. 2017a; unpaired t-tests. CBE: t(57) = 0.508, p = 0.613; 
NET: t(57) = 0.757, p = 0.452). Participants were tested for 
approximately 2 h between 8 a.m. and 8 p.m. All partici-
pants gave written informed consent prior to beginning the 
study and were compensated monetarily for their participa-
tion. Human subjects research was approved by the Cantonal 
Ethics Committee (Vaud, Switzerland, Protocol No. 384/15).

Spatial Working Memory Task

We measured allocentric spatial working memory perfor-
mance, the ability to encode and recall on a trial-unique 

basis three locations defined with respect to their position 
relative to the environment, a capacity dependent on the 
integrity of the hippocampal formation (Banta Lavenex 
et al. 2014; Burgess 2006). Participants were tested at the 
University of Lausanne in a large square room (8 m × 8 m; 
Fig. 1a) containing many polarizing features such as a 
door, a table, chairs and folding room-dividing screens.

Detailed description of the testing facility and pro-
cedure has been published previously (Klencklen et al. 
2017a, b). Briefly, within the room a 3.64 m × 3.64 m test-
ing arena contained 18 visually identical, circular gray foot 
pads equipped with LED lights. Foot pads designated as 
goals by the experimenters would illuminate when touched 
lightly with the foot, but the light would extinguish as 
soon as the foot was removed from the pad. All testing 
was videotaped with a video camera located in front of 
the testing arena. Participants were given 10 trials during 
which they had to learn three predetermined goal locations 
on each trial. Each trial consisted of two phases: during the 
first encoding phase, participants had to explore the arena 
to discover the three goal locations, touching each disk 
in order to identify, learn and remember the locations of 
the illuminating disks. During a 90-s inter-phase interval, 
participants were required to mentally count backward by 
one from a predetermined number. This interference task 
was intended to suppress verbal rehearsal of the goal loca-
tions to be remembered, as working memory performance 
depends on the ability of individuals to resist interference 
to remember and use trial-unique information that must be 
distinguished from information acquired on previous trials 
(Banta Lavenex et al.2014; Bizon et al. 2012; Engle et al. 
1999; Spellman et al. 2015). After the inter-phase interval, 
the recall phase began: participants were asked to indicate 
the three goal locations, in no particular order, by walking 
to each disk and stepping on it to illuminate it. In order 
to preclude participants from using an egocentric strategy 
to solve the task, they entered and exited the arena from 
different, pseudo randomly predetermined doors on every 
trial, as instructed by an experimenter during the task 
(Ribordy et al. 2013). Our task can thus test allocentric 
spatial learning and memory in a controlled, real-world 
laboratory environment in which participants have access 
to all sensory information, including vestibular and pro-
prioceptive information, normally available when moving 
about in everyday life (in contrast to experiments carried 
out on a tabletop, a computer screen or in virtual environ-
ments).The same procedure was repeated for 10 trials with 
three new and non-adjacent goal locations predetermined 
pseudo-randomly for each trial.
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EEG Resting‐State Recordings and Analyses

Recordings

A 128-channel Biosemi Active Two system (Biosemi, 
Amsterdam, Netherlands) was used to record spontane-
ous resting-state brain activity just minutes before the spa-
tial working memory task began. We used surgical caps 
designed following the BioSemi equiradial electrode place-
ment system (‘ABC’ layout). Participants wore a backpack 
to carry the recording system, which allowed them to move 
freely and perform the spatial working memory task imme-
diately after recording (Fig. 1b). A Sony tablet running the 
ActiView software (version 7.05) was fixed to the front side 
of the backpack, allowing constant monitoring of the EEG 
recording. For resting-state recording, participants were 
seated on a stool on the left side of the arena, where ambient 
electrical noise was minimal. Participants were instructed to 
relax and move as little as possible, fixing a cross made of 
tape on the back of a chair during the eye open condition. 

Six 1-min baseline recordings, alternating eyes-closed and 
eyes-open for 1 min each, were performed at a sampling rate 
of 2048 Hz before the spatial working memory task. The 
level of DC offset was checked (± 20 mV) before data col-
lection. Right, left, and middle-orbital flat electrodes were 
used to monitor eye movements and blinks.

EEG Microstate Analyses

Signal pre-processing was performed with BrainVision Ana-
lyzer software 2.1 (Brain Products, München, Germany). A 
1-Hz high-pass filter (IIR Filter Butterworth, order 2) and 
a 50-Hz Notch filter were applied. Data were then visually 
inspected and segments containing residual artifacts (except 
blinks and eye movement artifacts) were manually removed. 
Independent Component Analysis (ICA) was performed to 
correct eye movements, blinks and cardiac artifacts. Topo-
graphic interpolation (3D spherical spline) was used to cor-
rect channels that were noisy throughout the recording (max. 
10). Then, a 40-Hz low pass filter (IIR Filter Butterworth, 

Fig. 1   Testing environment. a Schematic, aerial view of the arena 
(3.64 × 3.64  m) within the experimental room (8 × 8  m). At each of 
the four near and far corners of the curtained arena was a 50 cm gap 
that served as one of the four different entry points (arrows) through 
which participants must pass in order to enter and exit the testing 

arena. Eighteen foot pads were regularly arranged on the floor of 
the arena. b Picture of the arena with a participant carrying the EEG 
backpack and touching an illuminating foot pad during the allocentric 
spatial working memory task
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order 2) was applied. Data were average-referenced and 
downsampled to 128 Hz. Eyes closed and eyes open pre-
processed data were then segmented and exported for further 
analysis.

Microstate analyses were performed using the freely 
available software Cartool, version 3.60 (https://​sites.​
google.​com/​site/​carto​olcom​munity/ Brunet et al. 2011). 
The Global Field Power (GFP), i.e., the spatial standard 
deviation of EEG signal across all electrodes, is associ-
ated with a stable EEG topography around its peak and 
therefore shows an optimal signal-to-noise ratio in the 
EEG (Khanna et al. 2015; Koenig et al. 2005; Michel and 
Koenig 2018; Michel et al. 2009). Therefore, the EEG 
signal was extracted at the GFP peaks and submitted to 
a modified k-means cluster analysis (Brunet et al. 2011; 
Pascual-Marqui et al. 1995). This procedure allows the 
identification of the microstate map topographies that 
best contribute to the global explained variance. The 
cluster analysis was first applied at the individual level 
and then at the group level. In a first step, using a data-
driven approach, we computed the dominant cluster maps 
using optimal clustering criterion for the young and older 
groups, and for the eyes closed and eyes open conditions, 
separately. We identified five maps that best explained our 
data and compared them across age groups and eye condi-
tions using a topographic ANOVA (Koenig et al. 2014). 
We did not find consistent differences between eye condi-
tions or between groups. Clustering solutions and statistics 
for each condition and group are provided in Supplemen-
tary Material 1. In a second step, and for further analysis 
as these maps did not differ between eye conditions or 
between groups, we computed the dominant cluster maps 
using optimal clustering criterion for all participants com-
bined in the eyes closed condition (Fig. 2). This was a 
conservative choice simplifying comparisons with previ-
ous findings reported in the literature, which have been 

most often obtained in the eyes closed condition. The five 
microstate maps identified (A, B, C, C′, D) explained 78% 
of the global variance of the individual data, before the 
backfitting process performed next. Finally, every time 
point of the individual data was assigned to the one map 
of the five microstate maps with which it correlated best 
(backfitting process) (Brunet et al. 2011).

Following this backfitting process, we extracted three 
parameters for each microstate map: (1) the global explained 
variance (GEV), which is the sum of the explained variance 
of a given map weighted by the global field power. GEV 
represents how well a map explains the data both in terms 
of strength and in terms of frequency of occurrence; (2) the 
mean duration (mDur), which is the averaged amount of time 
in milliseconds that a given map was present without inter-
ruption; and (3) the occurrence (Occ), which is the number 
of times a given microstate occurred per second. The transi-
tion probabilities between each of the five maps were also 
analyzed using a Markov chain approach (Lehmann et al. 
2005). For each subject and transition pair (for example AB), 
we computed the number of transitions from A towards B 
and normalized it by the number of transitions towards all 
possible maps from A (e.g., towards B, C, C′, and D). The 
transition probabilities were calculated for 20 pairs of maps 
(AB, AC, AC′, AD, BA, BC, BC′, BD, etc.). In order to 
establish that the observed differences in microstate map 
transitions between eyes-open and eyes-closed conditions in 
young and older individuals cannot be reduced to differences 
in map occurrences, a randomized procedure was used, as 
described in (Lehmann et al. 2005; Nishida et al. 2013). 
For each group (young and older) and condition (eyes open 
and eyes closed), observed and expected (i.e., based on the 
occurrence of the microstate maps) transitions were aver-
aged across subjects and their difference evaluated with the 
Chi square distance. This distance was statistically compared 
to a null model distribution of Chi square distances obtained 

Fig. 2   Five dominant cluster maps from all participants in the eyes closed condition optimally described the data (maps A, B, C, C′, and D, fol-
lowing the description of Michel and Koenig 2018)

https://sites.google.com/site/cartoolcommunity/
https://sites.google.com/site/cartoolcommunity/
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by random permutation (5000 times) of the observed and 
expected transitions at the subject level. A significant result 
(p < 0.05) indicates that the transition from one microstate 
map to another does not occur randomly, and therefore is not 
simply based on microstate map occurrences.

Statistical Analyses

General Linear Model analyses with repeated-measures, 
t-tests and Pearson’s correlations were performed using IBM 
SPSS Statistics for Macintosh, version 25.0 (IBM Corp., 
Armonk, NY). Principal component analyses and multiple 
regression analyses were performed with the R software, 
version 3.3.3 (R Core Team, 2016). Descriptive statistics 
are provided as Supplementary Material 2.

Microstates

For each microstate parameter (GEV, mDur, Occ), we per-
formed a GLM analysis (ANOVA) with age as a between-
subjects factor, and five microstate maps (A, B, C, C′, D) and 
two eye conditions (closed, open) as repeated measures. We 
also performed a GLM analysis with age as a between-sub-
jects factor, and microstate transition probabilities (20 pairs) 
and two eye conditions (closed, open) as repeated measures. 
Independent samples t-tests were used as post hoc analyses 
to compare map variables and transition probabilities 
between young and older adults in each eye condition. Paired 
samples t-tests were used to compare maps parameters 
between eye conditions, within age groups. As we found 
only marginal effects of sex on microstate parameters [sex 
effect for mDur: F(1,41) = 7.361, p = 0.010, η2

p = 0.152; inter-
action between map ×  eye condition × sex for Occ: 
F(3.270,134.057) = 3.280, p = 0.020, η2

p = 0.074], and no effect 
of sex on transition probabilities, data from men and women 
were combined. Statistical significance level was set at 
p < 0.05 for all analyses. For ANOVAs, we report effect size 
with η2

p [partial eta squared: SSeffect∕(SSeffect + SStotal ), as 
reported by SPSS 25.0]. We report effect size with Cohen’s 
ds ( ds = t ∗

√

1

n
1

+
1

n
2

 ) for independent samples t-tests, and 
Cohen’s dz for paired samples t-tests ( dz = t∕

√

n ) (Lakens 
2013).

Spatial Working Memory

The following two measures were used to characterize 
spatial working memory performance: (1) the number of 
goal disks visited before making an error (CBE: correct 
before error), an estimate of memory capacity; and (2) the 
number of errorless trials (NET), an estimate of perfect 

memory (Banta Lavenex et al. 2014). Independent sam-
ples t-tests were used to compare these measures between 
young and older adults. Statistical significance level was 
set at p < 0.05 and effect size was reported with Cohen’s 
ds, as described above.

Microstates and Spatial Working Memory

In order to test whether different resting-state microstate 
signatures may predict allocentric spatial working memory 
performance in young and older adults, we performed a 
Principal Component Analysis (PCA, no rotation; Abdi 
and Williams 2010) on all 70 microstate parameters (30 
variables and 40 transitions) for all participants. The same 
analysis was performed excluding the 40 microstate transi-
tion variables. As both analyses provided similar results 
and did not change any conclusions, we reported only the 
former. Results of Horn’s Parallel Analysis for component 
retention (2100 iterations, 95 centile estimate) revealed 
five components with an adjusted Eigenvalue > 1. These 
five components explained 77.37% of the total variance 
and were retained for further analysis. We then performed 
multiple regression analyses with the five microstate com-
ponents extracted from the PCA and the two measures of 
spatial working memory performance (CBE and NET). 
Finally, these five-component models were simplified 
using a step by step minimization of Akaike Information 
Criterion (AIC, Sakamoto et al. 1986). These parsimoni-
ous models described the data as well as the five-compo-
nent models [CBE: ΔR2 = 0.03, F(9, 33) = 0.354, p = 0.948; 
NET: ΔR2 = 0.05, F(9, 33) = 0.456, p = 0.893]. In addition, 
we performed two Bayesian multiple regressions analyses 
with the five microstate components extracted from the 
PCA and the two measures of spatial working memory 
performance (CBE and NET).

Results

Resting‐State EEG Activity

The five microstate maps from all participants in the eyes 
closed condition are shown in Fig. 2. These five maps are 
largely similar to the one described previously (Custo et al. 
2017; Michel and Koenig 2018; Zanesco et al. 2020) and 
labelled as maps A, B, C, C′ and D, following the nomen-
clature defined by Michel and Koenig (2018). In a recent 
review, these authors highlighted that in studies using the 
four canonical maps (A, B, C, D) microstate C is in fact a 
combination of two distinct maps as revealed by a combined 
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EEG-fMRI study (Custo et al. 2017). Note that map C′ in 
the current study seems to correspond to microstate 3 of 
Britz et al. (2010), map F of Custo et al. (2017) and map E 
of Zanesco et al. (2020).

Global Explained Variance: GEV

There was a main effect of microstate maps for GEV 
[Fig. 3; F(2.619, 112.624) = 70.604, p < 0.001, Greenhouse-
Geisser correction, η2

p = 0.621] and an interaction between 
maps and age groups [F(2.619, 112.624) = 5.912, p = 0.001, 
η2

p = 0.121]. Interestingly, we also found an overall lower 
GEV in older adults, as compared to young adults, across 
the five maps and the two eye conditions [age groups: 
F(1,43) = 17.966, p < 0.001, η2

p = 0.295], and no interaction 
between eye conditions and age groups [F(1, 43) = 0.096, 
p = 0.758, η2

p = 0.002].
In the eyes closed condition, map C best explained the 

data for both age groups. In contrast, in the eyes open 
condition, whereas map C best explained the data for 
older adults, maps C and C′ best explained the data for 
young adults (Supplementary Material 3). The GEV of 
map A was the lowest for both age groups. The GEV of 
map C was lower for older adults than for young adults 
[t(43) = -2.975, p = 0.005, ds =0.893] in the eyes open con-
dition, whereas the difference was marginal in the eyes 
closed condition [t(43) = − 1.956, p = 0.057, dz = 0.587]. 
The GEV of map C′ was lower for older adults than for 
young adults, in both the eyes open condition [t(43) = 
− 5.175 p < 0.001, dz = 1.553] and the eyes closed condi-
tion [t(35.466) = − 2.192, p = 0.035, ds = 0.658]. In sum, 
microstates C and C′, which have been linked to neuronal 

activity in frontal and parietal brain regions (Custo et al. 
2017), appeared to contribute less to GEV in older adults 
than in young adults. In other words, microstates C and C′ 
contributed less to overall resting-state brain dynamics in 
older adults.

We also found an overall lower GEV (including maps A, 
B, C, C′, and D) in the eyes open condition, as compared to 
the eyes closed condition, for both young and older adults 
[Fig. 3; F(1, 43) = 78.763, p < 0.001, η2

p = 0.647; eye condi-
tions × age groups: F(1, 43) = 0.096, p = 0.758, η2

p = 0.002]. 
We found an interaction between eye conditions and maps 
[F(1.781, 76.581) = 23.506, p < 0.001, η2

p = 0.353], but no 
interaction between maps, eye conditions, and age groups: 
F(1.781, 76.581) = 1.244, p = 0.291, η2

p = 0.028. The GEV of 
map B was lower in the eyes open condition than in the 
eyes closed condition for both young adults [t(19) = 2.814, 
p = 0.011, dz = 0.629] and older adults [t(24) = 3.245, 
p = 0.003, dz = 0.649]. In addition, the GEV of map C was 
lower in both young and older adults in the eyes open con-
dition, as compared to the eyes closed condition [young: 
t(19) = 5.070, p < 0.001, dz = 1.134; older: t(24) = 3.827, 
p = 0.001, dz = 0.675].

Mean Duration: mDur

There was a main effect of maps for mDur [Fig.  4; 
F (2.647,  113.826) = 43.673,  p  < 0.001,  η2

p = 0.504] 
and an interaction between maps and age groups 
[F(2.647, 113.826) = 4.121, p = 0.011, η2

p = 0.087]. In the 
eyes closed condition, map C exhibited the longest mDur 
for both age groups. In contrast, in the eyes open condi-
tion, map C exhibited the longest mDur for older adults, 

Fig. 3   Global explained variance. GEV, measured across the scalp, 
was overall lower for maps C and C′ in 65–75-year-old adults (Older) 
than in 20–30-year-old adults (Young), in the eyes closed (a) and eyes 
open (b) conditions. Dark grey plots: young adults; light grey plots: 
older adults. Lower and upper box boundaries represent the 25th and 

75th percentiles, respectively; the line and the empty circle inside the 
box represents the median and the mean, respectively; the lower and 
upper error lines represent the 10th and the 90th percentiles, respec-
tively; finally, the filled gray circles are data points falling outside the 
10th and 90th percentiles
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whereas maps C and C′ exhibited the longest mDur for 
young adults (Supplementary Material 3). The mDur 
of map A was the shortest for both age groups. There 
were no age group differences in overall mDur in either 
eye condition [F(1,43) = 0.106, p = 0.747, η2

p = 0.002; 
eye conditions × age groups: F(1,43) = 0.063, p = 0.803, 
η2

p = 0.001], revealing that the average amount of time 
maps were present without interruption during resting-
state was similar in 65–75-year-old adults, as compared 
to 20–30-year-old adults.

The mDur of microstate maps was shorter in the 
eyes open condition than in the eyes closed condi-
tion [F(1,43) = 56.143, p < 0.001, η2

p = 0.566], for both 
young and older adults [eye conditions × age groups: 
F(1,43) = 0.063, p = 0.803, η2

p = 0.001]. However, there 
was an interaction between eye conditions and maps 
[F(1.978, 85.040) = 17.625, p < 0.001, η2

p = 0.291], but no 
interaction between maps, eye conditions and age groups 
[F(1.978, 85.040) = 1.294, p = 0.279, η2

p = 0.029]. The mDur 
of map A was shorter in the eyes open condition as com-
pared to the eyes closed condition, in both young adults 
[t(19) = − 3.925, p = 0.001, dz = 0.878] and older adults 
[t(24) = − 3.909, p = 0.001, dz = 0.782]. The mDur of map 
B was also shorter in the eyes open condition as compared 
to the eyes closed condition, in both young adults [t(19) 
= − 4.757, p < 0.001, dz = 1.064] and older adults [t(24) 
= − 5.216, p < 0.001, ds = 1.043]. The mDur of map C 
was shorter in the eyes open condition as compared to 
the eyes closed condition, in both young adults [t(19) = 
− 4.892, p < 0.001, dz = 1.094] and older adults [t(24) 

= − 4.112, p < 0.001, dz = 0.822]. In contrast, the mDur 
of map C′ was shorter in the eyes open condition than in 
the eyes closed condition for older adults [t(24) = − 2.147, 
p = 0.042, dz = 0.429], but not for young adults [t(19) = 
− 0.812, p = 0.427, dz = 0.182].

Occurrence: Occ

Occ differed between maps [Fig. 5; F(3.254, 139.940) = 51.020, 
p < 0.001, η2

p = 0.543] and there was an interaction between 
maps and age groups [F(3.254, 139.940) = 8.407, p < 0.001, 
η2

p = 0.164]. In both young and older adults map C exhib-
ited the highest Occ, whereas map A exhibited the lowest 
Occ. Interestingly, older adults exhibited an overall lower 
map Occ than young adults [F(1, 43) = 5.511, p = 0.024, 
η2

p = 0.114], which was influenced by eye condition 
[eye conditions × age groups: F(1, 43) = 6.921, p = 0.012, 
η2

p = 0.139].
Occ of map C was lower in older adults than in young 

adults, in the eyes open condition [t(36.602) = − 2.579, 
p = 0.014, ds = 0.774], and in the eyes closed condition [t(43) 
= − 2.356, p = 0.023, ds = 0.707]. Similarly, Occ of map C′ 
was lower in older adults than in young adults in the eyes 
open condition [t(43) = − 6.841, p < 0.001, ds = 2.052], and 
in the eyes closed condition [t(43) = − 2.563, p = 0.014, ds = 
0.769]. Finally, Occ of map D was lower in older adults than 
in young adults in the eyes open condition [t(43) = − 2.529, 
p = 0.015, ds = 0.759], but not in the eyes closed condition 
[t(43) = − 0.035, p = 0.972, ds = 0.011]. In sum, Occ of maps 
C, C′ and D, which have been linked to neuronal activity in 

Fig. 4   Mean duration. mDur of maps, measured across the scalp, was 
similar in 65–75-year-old adults (Older), as compared to 20–30-year-
old adults (Young), in the eyes closed (a) and eyes open (b) condi-
tions. Dark grey plots: young adults; light grey plots: older adults. 
Lower and upper box boundaries represent the 25th and 75th percen-

tiles, respectively; the line and the empty circle inside the box rep-
resents the median and the mean, respectively; the lower and upper 
error lines represent the 10th and the 90th percentiles, respectively; 
finally, the filled gray circles are data points falling outside the 10th 
and 90th percentiles
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the frontal and parietal brain regions (Custo et al. 2017), 
was lower in 65–75-year-old adults than in 20–30-year-old 
adults.

There was no main effect of eye conditions for Occ 
[F(1, 43) = 0.616, p = 0.437, η2

p = 0.014]. There was, how-
ever, an interaction between eye conditions and maps 

Fig. 5   Occurrence. Occ of maps C and C′ was lower in 65–75-year-
old adults (Older) than in 20–30-year-old adults (Young), in the eyes 
closed (a) and eyes open (b) conditions. Occ of map D was lower 
in older adults in the eyes open condition. Dark grey plots: young 
adults; light grey plots: older adults. Lower and upper box bounda-

ries represent the 25th and 75th percentiles, respectively; the line and 
the empty circle inside the box represents the median and the mean, 
respectively; the lower and upper error lines represent the 10th and 
the 90th percentiles, respectively; finally, the filled gray circles are 
data points falling outside the 10th and 90th percentiles

Fig. 6   The probability to transition toward maps C and C′ was lower 
in 65–75-year-old adults (Older) than in 20–30-year-old adults 
(Young), in the eyes closed condition (a). The probability to transi-
tion toward maps C, C′ and D was lower in 65–75-year-old adults 
(Older) than in 20–30-year-old adults (Young), in the eyes open con-

ditions (b). Black and red arrows: statistically significant decrease 
in older adults (p < 0.05; numerical values are provided in the main 
text). Red arrows highlight differences between eyes closed and eyes 
open conditions (Color figure online)
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for both age groups [F(3.416, 146.883) = 5.522, p = 0.001, 
η2

p = 0.114; maps × eye conditions ×  age groups: 
F(3.416, 146.883) = 2.543, p = 0.051, η2

p = 0.056]. Whereas 
Occ of map B was marginally lower in the eyes open con-
dition than in the eyes closed condition [t(44) = − 2.024, 
p = 0.049, dz = 0.302], Occ of map D was higher in the 
eyes open condition than in the eyes closed condition 
[t(44) = 2.721, p = 0.009, dz = 0.508].

Microstates Transitions Probabilities

There were differences in the probability of transitions 
between different microstate maps [Fig. 6; Supplementary 
Material 3; F(4.434, 190.681) = 47.704, p < 0.001, η2

p = 0.526], 
with overall higher transition probabilities toward maps 
C, C′ and D. There was also a main effect of age groups 
[F(1, 43) = 9.478, p = 0.004, η2

p = 0.181], which was consist-
ent across eye conditions [eye conditions × age groups: 
F(1, 43) = 1.748, p = 0.193, η2

p = 0.039]. However, there 
was an interaction between transitions and age groups 
[F(4.434, 190.681) = 7.068, p < 0.001, η2

p = 0.141].
In the eyes closed condition (Fig. 6a), the probability to 

transition from any map toward maps C and C′ was overall 

lower in older adults than in young adults. In the eyes open 
condition (Fig. 6b), the probability to transition from any 
map toward maps C, C′ and D was overall lower in older 
adults than in young adults. Altogether, these analyses 
revealed that the network dynamics differed between age 
groups. There were lower transition probabilities towards 
maps C, C′ and D, which have been linked to neuronal activ-
ity in frontal and parietal brain regions (Custo et al. 2017), in 
65–75-year-old adults than in 20–30-year-old adults.

There were lower transition probabilities in the 
eyes open condition than in the eyes closed condi-
tion [F(1, 43) = 70.478, p < 0.001, η2

p = 0.621], for both 
young and older adults [eye conditions × age groups: 
F(1, 43) = 1.748, p = 0.193, η2

p = 0.039]. There was an 
interaction between eye conditions and transitions 
[F(4.145, 178.246) = 8.629, p < 0.001, η2

p = 0.167], but no 
interaction between transitions × eye conditions × age 
groups [F(4.145, 178.246) = 0.723, p = 0.582, η2

p = 0.017]. 
There were lower transition probabilities toward maps A, 
B, C and C′ in the eyes open condition than in the eyes 
closed condition. In addition, the transition probabili-
ties from maps B and C toward map D were lower in the 
eyes open condition than in the eyes closed condition. In 

Fig. 7   Allocentric spatial working memory performance was lower in 
65–75-year-old adults (Older) than in 20–30-year-old adults (Young). 
a Number of correct choices before erring (CBE). b Number of error-
less trials (NET). Dark grey plots: young adults; light grey plots: 
older adults. Lower and upper box boundaries represent the 25th and 

75th percentiles, respectively; the line and the empty circle inside the 
box represents the median and the mean, respectively; the lower and 
upper error lines represent the 10th and the 90th percentiles, respec-
tively
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contrast, the transitions probabilities from maps A and C′ 
toward map D did not differ between eye conditions.

Randomization tests comparing the observed transi-
tions probabilities and the expected probabilities based 
on the occurrence of the five maps showed that the 
observed transition probabilities were not significantly 
different from the expected ones in the eyes open and eyes 
closed conditions for the older and younger individuals 
(p > 0.3). Thus, it is possible that the age-related differ-
ences in observed transitions reported here may simply be 
explained by differences in the occurrence of the maps.

Allocentric Spatial Working Memory Performance

The two behavioral measures revealed a lower spatial 
working memory performance in older adults. Older 
adults made fewer correct choices before erring than 
young adults [Fig. 7a; CBE: t(43) = − 7.180, p < 0.001; 
ds = 2.154]. Similarly, older adults completed fewer 
errorless trials than young adults [Fig. 7b; NET: t(43) = 
− 6.141, p < 0.001; ds = 1.842].

Principal Component and Multiple Regression 
Analyses

In order to determine whether some resting-state microstates 
signatures might predict allocentric spatial working mem-
ory performance in young or older adults, we performed 

Table 1   Microstate parameters that contributed to the five components retained from the Principal Component Analysis (PCA)

GEV global explained variance is the sum of the explained variance of a given map weighted by the global field power, mDur mean duration is 
the averaged amount of time in milliseconds that a given map was present without interruption, Occ occurrence is the number of times a given 
microstate occurred per second

Eyes closed condition Eyes open condition

Variables Transition toward Variables Transition toward

Comp. 1
 Map A GEV mDur Occ – GEV mDur Occ – B C Cp D
 Map B A – mDur Occ A – C Cp D
 Map C A – mDur Occ A B – Cp D
 Map Cp A – mDur Occ A B C – D
 Map D A – mDur A B C Cp –

Comp. 2
 Map A – B Cp GEV – Cp
 Map B GEV Occ – Cp GEV Occ – Cp
 Map C – Cp – Cp D
 Map Cp GEV Occ C – GEV mDur Occ – D
 Map D Cp – Occ Cp –

Comp. 3
 Map A – C –
 Map B – C –
 Map C GEV mDur B – –
 Map Cp C – D –
 Map D GEV mDur Occ C – –

Comp. 4
 Map A – Cp –
 Map B – Cp D –
 Map C – Cp D –
 Map Cp GEV mDur Occ – –
 Map D GEV Cp – GEV –

Comp. 5
 Map B mDur – –
 Map Cp B – –
 Map D B – –
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a Principal Component Analysis (PCA) including the 70 
microstates parameters reported above (30 microstates 
variables and 40 microstates transitions variables). Horn’s 
Parallel Analysis revealed five components, which explained 
77.37% of the total variance. The variables that contributed 
to each of the five components retained in the PCA analysis 
are listed in Table 1.

Multiple regression analyses revealed that none of the 
PCA components accounted for spatial working memory 
performance (Table 2), as assessed by the number of cor-
rect choices before erring (CBE) or the number of errorless 
trials (NET). Moreover, there was no interaction between 
PCA components and age groups, for either measure of 
spatial working memory performance. No interactions 
between EEG components and age groups were retained in 
the simplified models. Bayesian multiple regression analy-
ses equally showed the absence of association between the 
spatial working memory task parameters and the microstates 
predictors (Supplementary Material 4).

In sum, the present data did not reveal resting-state micro-
state variables that could be linked and therefore predict 
spatial working memory performance in healthy young or 
older adults.

Discussion

Age‐Related Differences in Resting‐State Brain 
Activity

Consistent with previous studies (Koenig et  al. 2002; 
Tomescu et al. 2018; Zanesco et al. 2020), we found age-
related differences in resting-state brain microstate dynam-
ics. Moreover, we found age-related differences in resting-
state microstates, which were dependent on the conditions of 
EEG recordings (eyes open versus eyes closed). Specifically, 
in the eyes closed condition, we found a lower occurrence of 
map C, and a lower GEV and occurrence of map C′ in older 
adults than in young adults. In the eyes open condition, we 
found a lower GEV and occurrence of maps C and C′, and 
a lower occurrence of map D in older adults than in young 
adults. In addition, while there was a higher probability to 
transition from any map towards maps C, C′ and D across 
age groups, the probability to transition toward maps C and 
C′ (and map D in the eyes open condition) was lower in 
older adults than in young adults. Thus, the most consistent 
age-related differences were observed for maps C and C′, 

Table 2   Multiple regression analyses investigating the possible links between the microstate components extracted using PCA and allocentric 
spatial working memory performance (CBE, NET)

P values in bold are considered statistically significant

CBE NET

      β       t       p       β       t       p

5-Component model
 Age group − 1.54 − 4.994 < 0.001 − 1.48 − 4.548 < 0.001
 Comp. 1 0.11 0.799 0.430 0.18 1.292 0.205
 Comp. 2 − 0.11 − 0.726 0.473 − 0.17 − 1.075 0.290
 Comp. 3 − 0.05 − 0.453 0.653 − 0.06 − 0.502 0.619
 Comp. 4 − 0.14 − 1.220 0.231 − 0.12 − 0.946 0.351
 Comp. 5 − 0.08 − 0.673 0.505 − 0.05 − 0.425 0.674
 Age × Comp.1 − 0.18 − 0.683 0.500 − 0.09 − 0.319 0.752
 Age × Comp.2 0.21 0.703 0.487 0.18 0.563 0.577
 Age × Comp.3 0.01 0.028 0.978 − 0.03 − 0.118 0.907
 Age × Comp.4 − 0.02 − 0.085 0.933 0.20 0.809 0.424
 Age × Comp.5 − 0.02 − 0.080 0.937 0.02 0.100 0.921
 F(11, 33) 4.59 < 0.001 3.83 0.001
 Adj. R2 0.47 0.41
 R2 0.60 0.56

Simplified model
 Age group − 1.44 − 7.113 < 0.001 − 1.27 − 5.764 < 0.001
 Comp. 1 – – – 0.20 1.826 0.075
 Comp. 4 − 0.15 − 1.437 0.158 – – –
 F(2, 42) 27.45 < 0.001 21.54 < 0.001
 Adj. R2 0.55 0.48
 R2 0.57 0.51
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two microstates which have been linked to neuronal activity 
in the frontal and parietal brain regions (Custo et al. 2017). 
However, none of the microstate parameters measured in the 
current study were correlated with, and could therefore be 
used to predict, allocentric spatial working memory perfor-
mance in either young or older healthy adults.

Eyes Open Versus Eyes Closed

To our knowledge, only two prior studies described micro-
state differences between eyes closed and eyes open condi-
tions at rest. These studies provided somewhat contrast-
ing results. In the current study, we reported lower GEV 
(driven by maps B and C) and mDur (driven by maps A, 
B, C and C′) in the eyes open condition as compared to the 
eyes closed condition, and no main effect of eye condition 
for Occ (but marginally lower Occ for map B and higher 
Occ for map D).

Seitzman et  al. (2017), considering four canonical 
microstates (A, B, C, D) in adults from 18 to 35 years of 
age also found overall lower GEV and mDur in the eyes 
open condition as compared to the eyes closed condition, 
but found an overall higher Occ in the eyes open condition 
(particularly for map B). In contrast, Zanesco et al. (2020), 
considering five data-driven microstates (A, B, C, D, E) in 
20–35- and 59–77-year-old adults, mainly reported lower 
GEV, mDur and Occ of map C in the eyes open condition 
as compared to the eyes closed condition, and higher GEV, 
mDur, and Occ of map E (corresponding to our map C′) 
in the eyes open condition as compared to the eyes closed 
condition. In addition, we found lower transition probabili-
ties in the eyes open condition, whereas Seitzman et al. 
(2017) did not report differences in microstate transitions 
between eyes open and eyes closed conditions. Zanesco 
et al. (2020) found a lower transition probability towards 
maps C and D in the eyes open conditions, and a higher 
transition probability toward map E (corresponding to our 
map C′) in the eyes open condition.

As previously discussed by Seitzman et al. (2017), such 
differences between experimental studies may depend on the 
activation of the visual system. Thus, studies using slightly 
different instructions in any particular eye condition may not 
be directly comparable. For example, whereas we instructed 
our participants to sit quietly during recording, and to fix a 
cross taped on the back of a chair in a lit room during the 
eyes open condition, Seitzman et al. (2017) asked their par-
ticipants to let their mind wander and fix a cross on a com-
puter screen, and Zanesco et al. (2020) asked participants 
to sit still and fix a black cross on a white background on a 
computer screen. Similarly, it is well established that EEG 
activity will depend on the state of wakefulness (Cantero 
et al. 2002). Whereas we collected 6 × 1 min EEG record-
ings in alternating eyes open and eyes closed conditions, 

Seitzman et al. (2017) used three separate 2-min trials for 
each eye condition with a short break between each trial, 
and Zanesco et al. (2020) recorded 16 contiguous 1 min 
blocks alternating eyes closed and eyes open conditions. 
Based on these differential findings, it is clear that a thor-
ough description of experimental procedures and a system-
atic comparison of EEG resting-state activity in different 
recording conditions will be necessary to provide a coherent 
view. Unsurprisingly, simply stating that recordings were 
performed with the eyes closed or the eyes open does not 
appear to be sufficient.

Microstates A and B

We found no age-related differences of map A and B 
parameters (GEV, mDur and Occ) in either eye condition. 
Accordingly, Tomescu et al. (2018) reported the mean dura-
tion and occurrence of the four canonical microstates (A, 
B, C and D) and did not find any differences for maps A 
or B between 20–30-year-old and 31–60-year-old adults, or 
between 31–60-year-old and 61–87-year-old adults; they did 
not compare 20–30-year-old and 61–87-year-old adults. In 
contrast, Zanesco et al. (2020) found higher GEV and mDur, 
and a lower Occ for maps A and B in 59–77-year-old as 
compared to 20–35-year-old adults (with both eye condi-
tions combined). They also found higher transition prob-
abilities toward maps A and B in the older group. Zanesco 
et al. (2020) recorded 16 continuous 1-min blocks in 153 
young adults and 74 older adults. They reported important 
intra-individual variation and suggested that longer record-
ings of resting EEG should be used to obtain reliable esti-
mates of microstate dynamics when comparing microstates 
between individuals. However, using test–retest over two 
consecutive days, Liu et al. (2020) showed high reliabil-
ity and individual specificity of microstate characteristics 
(GEV, mean duration, coverage, occurrences and transition 
probabilities of the 4 canonical maps) with a duration of 
data collection between only 2 and 5 min. As mentioned 
above, longer recording durations may lead to fatigue which 
might impact microstate dynamics (potentially differentially 
between young and older adults) and might therefore explain 
discrepancies between studies. Interestingly, it has been 
reported that vigilance level is negatively associated with 
occurrence of map A and B and positively associated with 
duration of map C and D in 39 adults (mean age 43.7 ± 9.8) 
and 20 young adults (mean age 26.8 ± 7.6) (Krylova et al. 
2020). Detailed comparisons of experimental procedures 
in various populations will be essential to provide a better 
understanding of these differences.

Map A has been linked to activity in the left temporal 
lobe and left insula, whereas map B has been linked to activ-
ity in the left and right occipital cortex, which contribute 
respectively to auditory and visual processing (Custo et al. 
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2017). It has been shown that brain networks involved in 
sensory processing exhibit increased functional connectivity 
with age, whereas higher order processing networks exhibit 
decreased functional connectivity with age (Geerligs et al. 
2015; Tomasi and Volkow 2012). As aging seems to differ-
entially impacts distinct functional networks, some authors 
have suggested that it might reflect age-related functional 
reorganization or compensatory mechanisms (Reuter-Lorenz 
and Park 2010). Although we found age-related decreases 
in microstates associated with higher order processing net-
works (see below), we did not find significant differences in 
microstates A and B, associated with sensory processing.

Microstate C

We found a lower occurrence of map C, as well as a lower 
GEV in the eyes open condition, for older adults as com-
pared to young adults. Similarly, Zanesco et al. (2020) found 
a lower occurrence and a lower GEV of map C for older 
adults when both eye conditions were combined. In contrast, 
Tomescu et al. (2018) did not report age-related differences 
in the occurrence of map C. Because their global ANOVA 
did not reveal significant differences between the five age 
groups tested, they did not specifically test possible differ-
ences between 20–30-year-old and 61–97-year-old adults, 
which might have revealed results similar to Zanesco et al. 
(2020) and the present report.

We did not find age-related differences for mean dura-
tion of map C. In contrast, Tomescu et al. (2018) using the 
four canonical microstates (A, B, C, D) reported a longer 
mean duration of map C (which might be a combination 
of maps C and C’ when more maps are computed, Michel 
and Koenig 2018) in 31–60-year-old adults as compared to 
20–30-year-olds, and no difference between 31–60-year-old 
and 61–97-year-old adults. Similarly, Zanesco et al. (2020) 
using a data-driven approach and computing five maps (A, 
B, C, D, E), also reported a longer mean duration of map 
C in 59–77-year-old adults as compared to 20–35-year-old 
adults. Although some discrepancies exist between studies 
considering map C mean duration across ages, both the cur-
rent study and Zanesco’s study, using a data driven approach, 
showed a lower occurrence and GEV of map C in older 
adults as compared to young adults, suggesting a decreased 
activity in its underlying networks.

Map C, as computed in our study (Michel and Koenig 
2018), has been linked to neuronal activity in parietal brain 
regions, in particular the precuneus (PrC) and the posterior 
cingulate cortex (PCC), which are core regions of the default 
mode network (DMN; Custo et al. 2017). Interestingly, 
Seitzman et al. (2017) showed that microstate C decreases 
in duration and occurrence during a mental arithmetic 
task as compared to rest. Milz et al. (2016b) showed that 
microstate C decreases in duration during object or verbal 

visualization tasks compared to rest. Brechet et al. (2019) 
showed that whereas microstate C duration and occurrence 
decrease during an arithmetic task as compared to rest, it 
does not change between an autobiographic memory task 
and rest, supporting the assumption that self-relevant mem-
ory retrieval may also predominate during spontaneous mind 
wandering (Brechet et al. 2019). Furthermore, it has been 
shown that the PCC and PrC connections within the DMN 
network exhibit decreased functional connectivity with age 
(Klaassens et al. 2017). Changes in DMN functional con-
nectivity have been linked to cognitive decline and working 
memory impairments (Cieri and Esposito 2018). The lower 
GEV and lower occurrence of map C in older adults might 
therefore reflect decreased functional connectivity within the 
PCC/PrC node and contribute to cognitive decline with age. 
However, we did not find a direct link between age-related 
changes in resting-state map C characteristics and spatial 
working memory decline (see Sect. 4.2).

Microstate C′

We found a lower GEV and occurrence of map C′ in older 
adults as compared to young adults. Similarly, Zanesco et al. 
(2020) found a lower GEV and occurrence of map E, which 
largely corresponds to our map C′, in 59–77-year-old adults 
as compared to 20–35-year-old adults. In addition, they 
found that even though map E occurred less often, its mean 
duration was longer in older adults than in young adults (see 
Sects. 4.1.2 and 4.1.3 for similar results and methodological 
considerations).

Microstate C′ (as defined by Michel and Koenig 2018; 
see Sect. 3.1) has been linked to neuronal activity in the 
dorsal anterior cingulate cortex (dACC), the superior and 
middle frontal gyrus and the insula (reported as microstate 
3 in Britz et al. 2010; map F in Custo et al. 2017; and map 
E in Zanesco et al. 2020). The fronto-insular cortex and the 
dACC have been linked to the salience network (SN; Seeley 
et al. 2007), whose purported function is to identify the most 
relevant internal and extrapersonal stimuli (Seeley et al. 
2007), engaging the brain’s attentional, working memory 
and higher-order control processes, while disengaging irrel-
evant systems, to modulate reactivity (Menon and Uddin 
2010). In line with the decreased activity of map C′ with age 
revealed in our study, it has been shown that the structures 
comprising the SN exhibit a smaller grey matter volume and 
a lower functional connectivity in healthy older adults than 
in young adults (He et al. 2014).

Microstate D

We found no age-related differences in map D in the eyes 
closed condition. Similarly, Tomescu et al. (2018) showed 
no differences of occurrence or mean duration for map D 
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between 20–30-year-old and 31–60-year-old adults, or 
between 31–60-year-olds and 61–87-year-olds. In contrast, 
we found a lower occurrence of map D in older adults in 
the eyes open condition. Zanesco et al. (2020) also found 
a lower occurrence of map D in 59–77-year-old adults as 
compared to 20–35-year-old adults, with both eye condi-
tions combined. In addition, they found that although map 
D occurred less often, its mean duration was longer in older 
adults than in young adults (see Sects. 4.1.2 and 4.1.3 for 
similar results and methodological considerations).

Map D has been linked to neuronal activity in the right 
superior and middle frontal gyri, the right inferior parietal 
lobe and the right insula (Custo et al. 2017) and the attention 
network (Britz et al. 2010; but see also Seitzman et al. 2017). 
In addition, it has been shown that microstate D strongly 
increases in duration and occurrence during an arithmetic 
task involving working memory and attentional processes 
(Brechet et al. 2019). Although there are some inconsisten-
cies in the literature, an age-related decrease in functional 
connectivity within the attention network has generally been 
observed (for a review see Damoiseaux 2017). Our results 
are thus consistent with a decreased activation of the atten-
tional and working memory network in older adults at rest 
with the eyes open, as compared to young adults. Neverthe-
less, we did not find a direct link between age-related differ-
ences in resting-state map D occurrence and spatial working 
memory performance.

Maps Transitions

We found lower transition probabilities towards map C and 
C′ in older adults as compared to young adults, in both eye 
conditions, and lower transition probabilities toward map D 
in older adults in the eyes open condition. However, these 
data might be dependent on the occurrence of map C, C′ 
and D, which were also lower in older adults. In the eyes 
closed condition, Tomescu et al. (2018) found lower transi-
tion probabilities from maps C to D, and from maps D to 
C in 61–87-year-old adults as compared to 31–60-year-old 
adults (findings that were independent of the occurrence of 
the four maps studied). Their data, however, did not reveal 
lower transition probabilities between any other map toward 
map C in 61–87-year-old adults as compared to 31–60-year-
old adults, or between 20–30-year-olds and 31–60-year-
olds. They did not test differences between 20–30-year-old 
and 61–87-year-old adults. Consistent with our findings, 
Zanesco et al. (2020) found lower transition probabilities 
towards map C and lower transition probabilities from map 
C towards map E (corresponding to our map C′) in older 
adults as compared to young adults with both eye conditions 
combined. In contrast to our findings, Zanesco et al. (2020) 

also found higher transition probabilities towards maps A 
and B.

Several studies described above have shown that rest-
ing state functional dynamics differ between age groups. 
As suggested by others, such differences might reflect the 
changes from a structured functional organization of dif-
ferent brain networks in young adults to a more random 
functional organization in older adults (Damoiseaux 2017; 
Geerligs et al. 2015; He et al. 2014; Klaassens et al. 2017; 
Tomasi and Volkow 2012). Accordingly, Petti et al. (2016) 
analyzed the EEG of 71 participants between 20 and 63 
years of age and showed that network communication and 
global strength tends to decrease with age suggesting that 
the functional organization of brain networks becomes less 
organized and more random during normal aging (Petti 
et al. 2016). Knyazev et al. (2015), using graph-theoretical 
analysis on the EEG data of 76 young (18–35 years) and 70 
older (51–80 years) participants, showed a lower connectiv-
ity in beta and gamma band networks in older adults. This 
observation also suggested that brain networks become more 
random with age (Knyazev et al. 2015). Our data showing 
lower probabilities of transitions toward maps C, C′ and D 
in older adults similarly need to be further investigated as we 
cannot rule out the possibility that this effect is dependent 
on map occurrence. However, in line with findings of others 
it suggests that changes in the functional dynamics between 
the salience detection and attention networks potentially 
contribute to spatial working memory performance.

Resting‐State EEG Microstates and Spatial Working 
Memory Performance

Our PCA and multiple regression analyses did not reveal 
any link between resting-state microstates and allocentric 
spatial working memory performance in young or older 
adults. In contrast, it has been suggested that age-related 
differences in resting-state brain activity in the frequency 
domain may reflect cognitive decline (Anderson and Per-
one 2018), although no individual measures of resting-state 
theta, alpha, beta or gamma activity have been clearly iden-
tified that reliably predict individual working memory per-
formance (Anderson and Perone 2018). Interestingly, data 
in rodents (Ash et al. 2016; Pereira et al. 2015) and humans 
(Rondina et al. 2016) have shown that the neurobiological 
basis of allocentric or egocentric spatial working memory 
performance may differ between young and older adults. 
Here, however, we did not find this difference to be reflected 
in resting-state EEG microstates. Accordingly, Zanesco et al. 
(2020) did not find reliable correlations between microstate 
parameters and measures of personality, mood or cognitive 
functions.
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Conclusions

This exploratory study provides a systematic evaluation 
of age-related differences in resting-state microstates and 
allocentric spatial working memory performance between 
healthy young (20–30 years) and older (65–75 years) adults. 
In line with most previous findings (Koenig et al. 2002; 
Tomescu et al. 2018; Zanesco et al. 2020), we found age-
related differences in resting-state brain activity dynamics. 
We also showed that age-related differences in EEG micro-
states depend on the recording conditions (Seitzman et al. 
2017; Zanesco et al. 2020). Importantly, we found consistent 
age-related differences in maps C and C′ (i.e., lower GEV, 
Occ and transition probabilities), which have been associated 
with frontal and parietal functional networks. In turn, these 
networks have been associated with a wide range of age-
sensitive cognitive functions such as working memory and 
attentional processes. However, using a principal component 
analysis, we did not find any link between PCA-extracted 
microstate components and spatial working memory per-
formance in young or older adults.
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