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Abstract
A single-column turbulence model for stratified atmospheric boundary layer (ABL), which
solves the transport equations of turbulence probability density function (PDF) using a
Lagrangian stochastic modeling (LSM) approach, is proposed in this study. This study adopts
previously developed stochastic differential equations (SDEs) for particle velocity and tem-
perature and extends the LSM to simulate inhomogeneous turbulence. The proposed LSM
is tested for its ability to fully simulate statistics of inhomogeneous stratified turbulence. In
the model, particles evolve by SDEs, and turbulence statistics are calculated by averaging
the properties of particles. The model provides a full representation of turbulence PDF and
simulates turbulent transport without any modeling assumption. The model performance is
evaluated against large-eddy simulation (LES) results in the simulations of convective and
stable ABL cases. For the convective ABL, LSM realistically simulates the entrainment pro-
cess with the temperature and heat flux profiles that closely match with LES. The joint PDF
simulated by LSM reproduces a curved and highly skewed shape, and some distinct fea-
tures, like the asymmetric distribution of vertical velocity and the separation of the PDF in
the entrainment zone, are simulated. LSM also reproduces the entrainment enhancement by
wind shear in the simulation of sheared convective ABL. The LSM simulation of stable ABL
predicts realistic turbulence intensity and mean field profiles, where Gaussian-like PDFs are
simulated both in LSM and LES.

Keywords Atmospheric boundary layer · Lagrangian stochastic modeling · Stratified
turbulence

1 Introduction

The Reynolds stress and scalar flux equations emerge when the Navier–Stokes and scalar
conservation equations are Reynolds-averaged, respectively, and are the complete set of equa-
tions that model the time evolutions of turbulent fluxes. The second-moment closure (SMC)
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and higher-order closure models are designed to close the unknown terms in the Reynolds
stress and scalar flux equations. The moment closure assumption is unavoidable because,
in any n-th order moment transport equation, there are higher order terms in the equation.
The number of prognostic equations and unknowns rapidly increases as the order of moment
increases. To limit the number of equations and unknowns, SMC and higher-order closure
models solve prognostic equations only for the first several orders of moments (typically up
to third moments), and higher-order moments are closed by appropriate assumptions. The
moment closure limits the probability density function (PDF) of turbulence to be represented
by several orders of moments.

In the atmospheric modeling community, there is an emerging need for PDF-based sub-
grid turbulence models capable of simulating non-local turbulent transport and various types
of clouds when coupled with microphysics. For instance, stratus-type clouds can be repre-
sented by a PDF in which a large fraction is saturated and has a small vertical velocity, and
cumulus-type clouds can be represented by a PDF in which a small fraction is saturated and
has a large vertical velocity. This category of models has the potential to be used as unified
parameterizations of the boundary layer and moist convection. A widely-used application
for numerical atmospheric models is the assumed PDF higher-order turbulence closures. The
method assumes a functional form of PDF, and the parameters of the PDF are diagnosed
using prognosed turbulent moments. The Cloud Layers Unified By Binormals (CLUBB;
Golaz et al. 2002; Bogenschutz et al. 2013), which assumes a double Gaussian PDF, has been
implemented in Community AtmosphericModel version 6 (CAM6) and shows improvement
in the simulation of boundary layer clouds (Danabasoglu et al. 2020; Li et al. 2022). The
double Gaussian PDF well represents the observed PDF of boundary layer turbulence and
clouds in many cases (Bogenschutz et al. 2010). However, the assumed PDFs have funda-
mental limitations in that they can not represent more complex distribution, like when strong
convective downdrafts exist (Fitch 2019). Reconstructing an arbitrary distribution from a
finite number of its moments is an ill-posed inverse problem from a mathematical viewpoint
(Schmüdgen 2017). Therefore, getting the correct PDF from higher-order turbulence closures
is not possible.

The most comprehensive methods to model turbulence are so-called “PDF methods"
that directly solve a transport equation for a joint PDF (Pope 2000). The exact trans-
port equation for PDF can be derived from the Navier–Stokes equation, but it contains
unclosed terms related to fluctuating pressure and viscosity. The transport equation for PDF
is typically modeled and numerically solved using the generalized Langevin equation (Pope
1983). The Langevin equation is a stochastic differential equation (SDE) that describes the
Lagrangian motion of a particle in turbulent flows. The PDF transport equation is essen-
tially the Fokker–Planck equation corresponding to the Langevin equation. In addition, Pope
(1994) demonstrated that the second moment of the Langevin equation is the Reynolds stress
closure. On this basis, PDFmethods have been widely adopted in engineering applications of
complex turbulent flows like combustion and reactive flows. The joint PDFs of these applica-
tions are high dimensional (velocity, dissipation, and chemical components), so Monte Carlo
techniques have been employed where an ensemble of Lagrangian particles represents the
PDF. Therefore, PDF methods are mostly developed in the form of Lagrangian stochastic
modeling (LSM) of turbulence.

In the atmospheric modeling community, LSM is commonly used to model passive scalar
dispersion (e.g., air pollutants) rather than to model turbulence. Historically, the Lagrangian
stochasticmodelwas originally introducedbyTaylor (1922) tomodel atmospheric dispersion.
Since then,much effort has beenmade to simulate turbulence statistics of complex flows using
LSM approaches. Thomson (1987) investigated necessary criteria for LSMs to simulate the
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statistics of inhomogeneous or unsteady turbulence correctly.After Pope (1994) demonstrated
that any generalizedLangevin equation corresponds to a uniqueReynolds stressmodel, LSMs
have been developed into PDF methods to fully compute the statistics of inhomogeneous
turbulence. It is natural to extend PDF methods to stratified turbulence, which will be useful
for PDF modeling of the atmospheric boundary layer (ABL). A number of studies have
proposed LSMs to model atmospheric dispersion in stratified conditions (Pearson et al. 1983;
Venkatram et al. 1984; Heinz 1997; Das and Durbin 2005). However, using LSMs as PDF
methods for stratified flows is an area that requires further research. Throughout this paper,
LSM refers to the LSM specifically being used as a PDF method.

Despite the relatively higher computational cost, testing the LSM approach for atmo-
spheric turbulent flows is important in the process of developing PDF-based subgrid
turbulence models. In LSM, convection is represented exactly without modeling assump-
tions, so the turbulence modeling problem reduces to modeling fluctuating pressure and
dissipation. As higher-order closure models and assumed-PDF methods give an incomplete
representation of PDF, LSM can be served as a reference model; the joint PDF simulated
from LSM can be used to evaluate statistical moments calculated from SMC models.

This study implementsLSMas a single-column turbulencemodel and tests its performance
in simulating stratified ABL. We adopt the LSM equations for stratified flows proposed by
Das and Durbin (2005), which exactly reproduce SMC equations that have been widely used
to model stratified ABL. Das and Durbin (2005) tested their LSM to simulate dispersion in
homogenous turbulence, where Reynolds stresses, heat flux, and dissipation are computed
from an SMC model. This study extends the LSM of Das and Durbin (2005) to simulate
inhomogeneous stratified turbulence by including pressure transport and the stochastic dis-
sipation model designed for inhomogeneous turbulence. Also, we test an application of the
LSM as a PDF method for ABL modeling. For this purpose, we adopt some techniques from
several PDF-solving algorithms for turbulence (Muradoglu et al. 2001; Jenny et al. 2001;
Wild 2013), extend them to simulate stratified turbulence, and propose a PDF-solving algo-
rithm that is appropriate for atmospheric applications. The model is tested for three idealized
cases: the Dry Convective Boundary Layer (DCBL), DCBL with shear (DCBL-S), and the
first Global Energy and Watercycle Experiment (GEWEX) Atmospheric Boundary Layer
Study (GABLS1) cases. The various statistics from the model are compared with large-eddy
simulation (LES) results. We also discuss the future extension of the model to improve model
performance, reduce computational cost, and simulate clouds.

2 TurbulenceModel Equations

2.1 Second-Moment Closure Corresponding to Lagrangian Stochastic Model

The Reynolds stress and heat flux equations with the anelastic approximation are read as:

Du′
i u

′
j

Dt
= T t

i j + T p
i j + Πi j + Pi j + Gi j − εi j , (1)

Du′
iθ

′
Dt

= T t
θ i + T p

θ i + Πθ i + Pθ i + Gθ i − εθ i , (2)

respectively, where D/Dt ≡ ∂/∂t + uk∂/∂xk is the material derivative, and the other terms
are defined as:
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T t
i j ≡ −∂u′

i u
′
j u

′
k

∂xk
, T t

θ i ≡ −∂u′
iθ

′u′
k

∂xk

T p
i j ≡ − 1

ρ0

∂u′
i p

′
∂x j

− 1

ρ0

∂u′
j p

′

∂xi
, T p

θ i ≡ − 1

ρ0

∂θ ′ p′
∂xk

Πi j ≡ p′
ρ0

(
∂u′

i

∂x j
+ ∂u′

j

∂xi

)
, Πθ i ≡ p′

ρ0

∂θ ′
∂xi

Pi j ≡ −u′
i u

′
k
∂u j

∂xk
− u′

j u
′
k
∂ui
∂xk

, Pθ i ≡ −u′
i u

′
k

∂θ

∂xk
− u′

kθ
′ ∂ui
∂xk

Gi j ≡ − 1

θ0

(
giu′

jθ
′ + g ju′

iθ
′
)

, Gθ i ≡ − gi
θ0

θ ′2

εi j ≡ 2ν

(
∂u′

i

∂xk

∂u′
j

∂xk

)
, εθ i ≡ (λ + ν)

(
∂u′

i

∂xk

∂θ ′
∂xk

)

(3)

and represent (from top to bottom) the turbulent transport, pressure transport, pressure–rate-
of-strain correlation, shear (or mean-field) production, buoyancy production, and dissipation
tensors. ui = {u, v, w} = ui + u′

i is the velocity component, θ = θ + θ ′ is the potential
temperature, and p = p + p′ is the pressure, where they are decomposed into the mean
and perturbation components by Reynolds averaging. gi is the component of gravitational
acceleration, ν is the kinematic viscosity, λ is the thermal diffusivity, and ρ0 and θ0 are the
basic state density and potential temperature, respectively, which are only functions of z.

The equations for turbulent kinetic energy (TKE) (essentially half the trace of (1)), k =
1
2u

′
k
2, and half potential temperature variance are written as:

Dk

Dt
= T t + T p + P + G − ε, (4)

1

2

Dθ ′2

Dt
= T t

θ + Pθ − εθ , (5)

respectively, where the terms in (4) are half the trace of the terms in (1) and T t
θ =

−∂u′
kθ

′2/∂xk , Pθ = −u′
kθ

′∂θ/∂xk , and εθ = λ(∂θ ′/∂xk)2 are the turbulent transport,
production, and dissipation of half temperature variance, respectively.

The LSM formulation of Das and Durbin (2005) is based on the general linear formation
of SMC. This SMC formulation is widely used for modeling the stratified ABL. The dissi-
pation anisotropy is neglected (εi j ≈ (2/3)εδi j ) with an assumption of local isotropy at high
Reynolds numbers, and the pressure–rate-of-strain (also known as pressure redistribution)
is modeled with the standard isotropization of production from Launder et al. (1975). The
SMC formulation is:

Du′
i u

′
j

Dt
= T t

i j + T p
i j

− c1
ε

k

(
u′
i u

′
j − 2

3
kδi j

)
− c2

(
Pi j − 2

3
Pδi j

)

− c3

(
Di j − 2

3
Pδi j

)
− cskSi j − c5

(
Gi j − 2

3
Gδi j

)

+ Pi j + Gi j − 2

3
εδi j , (6)
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Du′
iθ

′
Dt

= T t
θ i + T p

θ i

− c1θ
ε

k
u′
iθ

′ − (1 − c2θ ) u′
kθ

′ ∂ui
∂xk

+ c3θu′
kθ

′ ∂uk
∂xi

− (1 − c4θ ) u′
i u

′
k

∂θ

∂xk
− (1 − c5θ )

gi
θ0

θ ′2, (7)

1

2

Dθ ′2

Dt
= T t

θ − u′
kθ

′ ∂θ

∂xk
− R

2

εθ ′2

k
, (8)

where Si j = (1/2)(∂ui/∂x j + ∂u j/∂xi ), Di j = −u′
i u

′
k∂uk/∂x j − u′

j u
′
k∂uk/∂xi , δi j is the

Kronecker delta, and c1, c2, c3, c5, c1θ , c2θ , c3θ , c4θ , c5θ , cs and R are constants.

2.2 Lagrangian Stochastic Model

2.2.1 Stochastic Differential Equations for Velocity and Scalar

Das andDurbin (2005) derived LSMequations corresponding to the above SMC formulation.
We choose a simplified form of LSMwhich can be derived if the values of c2θ , c3θ , and c5θ as
equal to c2, c3, and c5, respectively, and cs = 0. The LSM for a general case is also available,
but the formulation is more complicated. The simplified form of LSM is just a special case of
the general form, where both forms reproduce the above SMC formulation. The simplified
form of LSM is:

dxi = uidt, (9)

dui = −c1
2

ε

k
u′
i dt + c2θu

′
k
∂ui
∂xk

dt + c3θu
′
k
∂uk
∂xi

dt

− (1 − c5θ ) gi
θ ′

θ0
dt + Cpt

(
u′
ku

′
k

2k
− 1

)
∂k

∂xi
dt︸ ︷︷ ︸

pressure transport

+√
c0εdWi ,

(10)

dθ = −
(
c1θ − c1

2

) ε

k
θ ′dt + c4θu

′
k

∂θ

∂xk
dt + √

cθdWθ . (11)

Here, dW is the increment of Wiener process and ε is the Reynolds-averaged dissipation
rate. The coefficients c0 and cθ are specified as:

c0 = 2

3

[
c1 − 1 + (c2 + c3)

P
ε

+ c5
G
ε

]
,

cθ = −2c4θu′
kθ

′ ∂θ

∂xk
+ ε

k
(2c1θ − c1 − R) θ ′2.

(12)

In order to satisfy the realizability condition that c0 and cθ are non-negative, c1 and c1θ are
replaced by:

c1,new = max

[
c1, 1 − (c2 + c3)

P
ε

− c5
G
ε

]
,

c1θ,new = max

[
c1θ , 0.5

[
2

k

εθ ′2
c4θu′

kθ
′ ∂θ

∂xk
+ (

c1,new + R)]]
.

(13)
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The standardmodel constants for LSMare listed in Table 1. Using the simplified formof LSM
constrains the choice of the values of constants. However, the constants are calibrated using
a bunch of experimental and numerical data in Das and Durbin (2005), and the calibrated
model has the correct critical Richardson number at approximately 0.25, which justifies the
use of the simplified form. cs = 0 is used in the standard isotropization of production model.
Note that different values for the constants have been used in the literature. In addition to
the original LSM formulation, the pressure transport is parameterized following Van Slooten
et al. (1998)with amodel constant,Cpt (default value: 0.2). The pressure transport ismodeled
as an additional force exerted on high-energy particles towards a kinetic energy gradient. The
pressure transport is neglected or jointly modeled with turbulent transport in SMC models.
Das and Durbin (2005) did not include any pressure transport parameterization as they tested
their model for homogeneous turbulence.

2.2.2 Stochastic Differential Equation for Dissipation

Information on the dissipation is required to close the LSM formulation. In most atmospheric
turbulence models, the turbulent length scale is modeled algebraically to calculate eddy
viscosity or dissipation. In this study, theSDEfor dissipation is adopted fromVanSlooten et al.
(1998),where the source of dissipation ismodeled as the standard k–εmodel.Compared to the
standard k–ε model, the SDEhas advantages in that inhomogeneity of dissipation is simulated
in a natural fashion as every particle has its dissipation value. It is possible to compute
dissipation using the standard k–ε model, but we adopt the SDE to fully accommodate the
advantages of PDF methods. The SDE is expressed in terms of turbulence frequency, and
the turbulence frequency is defined as a stochastic variable, ω = ε∗/k, where ε∗ is the
local dissipation rate. Here, the asterisk indicates the local value (value of each particle)
to distinguish it from the Reynolds-averaged value ε. Therefore, ε = ε∗ holds. The SDE
is constructed to model the intermittency of turbulence. Kolmogorov (1962) hypothesized
that instantaneous dissipation is log-normally distributed at high Reynolds numbers. The
stationary PDF from the SDE is a gamma distribution, which is similar to a log-normal
distribution. The SDE also treats the entrainment of nonturbulent fluid. The model equation
from Van Slooten et al. (1998) is:

dω = −C3(ω − ω)Ωdt − ΩωSωdt + √
2C3C4ωΩωdW , (14)

where Ω ≡ CΩ 〈ω | ω ≥ ω〉 (CΩ ≈ 0.6893) is the conditional-mean turbulence frequency,
C3 and C4 are constants, and the (negative) source of turbulence frequency, which is related
to the k–ε model, is:

Sω = (Cε2 − 1) − (Cε1 − 1)
P
ε

− (Cε3 − 1)
G
ε

, (15)

where Cε1, Cε2, and Cε3 are model parameters. Cε1 = 1.44 is the commonly used value,
and different values for Cε2 and Cε3 are proposed in studies of stratified turbulence (Pereira
and Rocha 2010; Goudsmit et al. 2002; Venayagamoorthy et al. 2003; Želi et al. 2020). In
this study, Cε2 = 1.82 and Cε3 = 0 are chosen following Želi et al. (2020). The value of
Cε3 exhibits large uncertainty depending on flow regime (Venayagamoorthy et al. 2003), so
further investigation is required to parameterize the buoyancy effect on dissipation rate.

Following Van Slooten et al. (1998), the mean time scale of turbulence (ε/k) in LSM is
specified using the conditional-mean turbulence frequency Ω rather than ω, in the sense that
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Table 1 Standard model
constants

Constant Value Constant Value

c1 1.8 c1θ 2.5

c2 0.6 c2θ 0.6

c3 0.0 c3θ 0.0

c5 1/3 c4θ 0.0

R 1.5 c5θ 1/3

Cε1 1.44 C3 1.0

Cε2 1.82 C4 0.25

Cε3 0.0 Cpt 0.2

the turbulence time scale is mainly determined by turbulent region. Therefore, the Reynolds-
averaged dissipation is computed as:

ε = Ωk. (16)

Van Slooten et al. (1998) demonstrated that using Ω as turbulence time scale instead of ω

substantially improves their model performance.

3 Numerical Implementation

This section explains detailed numerical methods to implement LSM as a single-column
turbulence model: how the particles evolve in a model grid and how the turbulence statistics
are calculated from the particles. In this study, a particle-in-cell method, which is greatly
motivated by the work of Jenny et al. (2001), is adopted to get the turbulence statistics from
the particles.

3.1 Overview

Figure 1a summarizes the algorithmof the single-column turbulencemodel.At each time step,
particle properties and positions are advanced with the LSM equations, and an appropriate
boundary condition is applied to the particles. The vertical turbulent fluxes (w′u′

i and w′θ ′)
are calculated by averaging particle properties onto a vertical model grid. Then, the time
evolutions of mean fields (ui and θ ) are calculated as the convergence of the turbulent fluxes.
This approach (predicting turbulent fluxes) is consistent with other atmospheric turbulence
models in which the transports of mean fields are simulated by a host dynamic model.

A one-dimensional vertical grid is considered, where zk (k = {1, ..., Nz}) represents the
height of grid midpoints and zk+ 1

2
(k = {0, ..., Nz}) represents the height of grid interfaces

(Nz is the number of grid cells). A staggered grid configuration is adopted, where the mean
fields (ui and θ ) are located at grid midpoints and the vertical fluxes (w′u′

i and w′θ ′) are
located at grid interfaces. Other turbulence statistics (k, ω, Ω , P , and G) are assumed to be
located at grid midpoints (Fig. 1b).
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Fig. 1 a Schematic of the algorithmof the single-columnLagrangian stochastic turbulencemodel.bSchematic
of the vertical grid system and kernel functions

3.2 Numerical Integration of Particles

The particle properties and positions are advanced by numerically integrating the LSM
equations, where horizontal derivatives in the LSM equations are neglected following the
single-column model framework. The numerical integration method used in this study is
adopted from Jenny et al. (2001). The particle position is integrated using a mid-point rule
to achieve second-order accuracy. In the first half step, the particle is moved to:

z∗n+ 1
2 = z∗n + Δt

2
w∗n, (17)

where superscript n denotes the old time level and n + 1 is the new time level. Then, u∗
i
n+1,

θ∗n+1, and ω∗n+1 are obtained with the coefficient evaluated at z∗n+(1/2). The particle posi-
tion at the new time level is:

z∗n+1 = z∗n + Δt

2

(
w∗n + w∗n+1

)
. (18)

The SDE for velocity (10) can be written as:

du∗
i (t) = aidt + bi j u

∗
j dt + c1/2i dWi . (19)

A second-order scheme is used to integrate the Langevin equation:

Δu∗
i =

(
ai + bi j u

∗
j
n
)

Δt + (ciΔt)1/2ξi ,

u∗
i
n+1 = u∗

i
n + Δu∗

i + 1

2
bi jΔu∗

jΔt,
(20)

where ξ is a random variable with standard normal distribution. The SDE for potential
temperature (11) is integrated with the same scheme.

The SDE for turbulence frequency (14) can be rewritten as:

dω∗ = Adt − Bω∗dt + (
Cω∗)1/2 dW , (21)
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where A = C3ωΩ , B = (C3 + Sω)Ω , and C = 2C3C4ωΩ . The time integration can be
done analytically assuming A, B, and C are invariant for a single time step:

X = ω∗ne−BΔt + A

B

(
1 − e−BΔt

)
,

σ 2 = CΔt

2(1 + BΔt)

(
X + ω∗n) ,

ωn+1 = max(0, X + σξ).

(22)

3.3 Boundary Condition

A simple reflective boundary condition is imposed for the upper boundary. For a lower
boundary, an appropriate boundary condition needs to be imposed on the particles so that
the particle properties are modified by surface momentum and heat fluxes. We adopted the
wall function for particle methods suggested by Dreeben and Pope (1997). The particles are
reflected at the specified height zs in the log-law region so that the model equations do not
need to be solved below zs . In our model, zs is set as the height of the midpoint of the lowest
model layer. The reflected particle properties are specified as:

w∗
R = −w∗

I , (23)

u∗
R = u∗

I −
2

(
u′w′

)
s(

w′2
)
s

w∗
I , (24)

v∗
R = v∗

I −
2

(
v′w′

)
s(

w′2
)
s

w∗
I , (25)

θ∗
R = θ∗

I −
2

(
w′θ ′

)
s(

w′2
)
s

w∗
I , (26)

where the subscript s denotes the value at zs and the subscripts I and R are for incident and
reflected, respectively. With the constant flux approximation in the surface layer, (u′w′)s ,
(v′w′)s , and (w′θ ′)s are specified as surface fluxes. (w′2)s is specified as the vertical velocity
variance in the lowest model layer.

Dreeben andPope (1997) also proposed awall function for turbulence frequency.However,
the wall function is ill-defined when turbulence frequency near the wall is close to 0, so an
alternate boundary condition is used for this study. The mean turbulence frequency at zs is
calculated with the approximation that TKE production and dissipation are balanced in the
surface layer,

εs ≈ Ps + Gs = u3∗
κzs

+ g

θ0

(
w′θ ′

)
s
, (27)

ωs = εs

ks
, (28)

where κ is the von Karmann constant, u∗ is the frictional velocity, and ks is specified as k in
the lowest model layer. Then, the reflected particles are randomly distributed with a gamma
distribution in which the shape and scale parameters are 1/C4 and C4ωs , respectively.
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The surface momentum and heat fluxes need to be determined to evaluate (24)–(26) and
(32). The surface fluxes can be either diagnosed from the similarity theory or specified as
forcing. In this study, the surface fluxes are diagnosed with the particles in the lowest model
layer with the Businger-Dyer similarity functions (Businger et al. 1971; Dyer 1974).

3.4 Calculation of Turbulence Statistics

Similar to Jenny et al. (2001), a linear kernel function, ĝ(z), is used to estimate grid mean
values from particles or interpolate grid mean values to particles. The kernel function can be
located at either grid midpoints or interfaces, denoted as ĝk(z) or ĝk+ 1

2
(z), respectively. The

kernel function is defined as:

ĝk(z) =

⎧⎪⎨
⎪⎩

(zk+1 − z)/(zk+1 − zk) zk+1 > z ≥ zk,

(z − zk−1)/(zk − zk−1) zk > z ≥ zk−1,

0 otherwise.

(29)

Figure1b shows an example of the kernel functions. The statistics located at grid midpoints
(interfaces) are calculated by averaging particles with ĝk(z) (ĝk+ 1

2
(z)) kernel. For example,

w′θ ′ is calculated as:

(w′θ ′)k+ 1
2

=
∑Np

n=1

(
ĝk+ 1

2
(z∗) w′∗θ ′∗

)
n∑Np

n=1

(
ĝk+ 1

2
(z∗)

)
n

, (30)

where the asterisk (∗) denotes particle value, n is the particle index, and Np is the total number
of particles.

The interpolation of grid mean values to particle positions can also be done using the
kernel functions. The weights for the interpolation are specified as ĝk(z) or ĝk+ 1

2
(z). For

example, θ is interpolated to a particle position as:

θ
∗ = ĝk(z

∗) · (
θ
)
k + ĝk+1(z

∗) · (
θ
)
k+1 , (31)

when the particle is located between zk and zk+1. The interpolation is essentially a linear
interpolation between the two grid mean values.

3.5 Time Evolutions of Mean Fields

The time evolutions of mean fields in our model are calculated as:

∂u

∂t
= − 1

ρ0

∂ρ0u′w′
∂z

− f
(
Vg − v

)
,

∂v

∂t
= − 1

ρ0

∂ρ0v′w′
∂z

+ f
(
Ug − u

)
,

∂θ

∂t
= − 1

ρ0

∂ρ0w′θ ′
∂z

,

(32)

where f is the Coriolis parameter andUg and Vg are the components of geostrophic wind in
the x and y directions, respectively. Equation (32) is solved numerically using a combination
of central differencing for spatial derivatives and forward differencing for time derivatives,
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with a time step of Δt . The mean fields are calculated by (32) rather than averaging particle
values because stochastic noise would violate the conservations of momentum and energy if
particle-averaged values are used.

3.6 Consistency Constraints

As LSM uses a Monte Carlo approach to represent turbulence statistics, some evaluated
statistics may have deviated from Eulerian statistics. Therefore, some numerical measures
need to be taken to satisfy the consistency between them. The first requirement is that the
mean fields calculated from (32) need to be consistent with the particle averaged values. To
satisfy the requirement, themean deviations (u′∗, v′∗,w′∗, and θ ′∗ ) are subtracted from every
particle at each time step. The second requirement is that the particle density is consistent
with the basic state density. Particles can be accumulated at certain positions (e.g., near the
surface) due to numerical errors, and this is a common issue in other Lagrangian particle
dispersion models. A particle density correction algorithm from Wild (2013) is adopted, as
explained in Appendix 1.

4 Case Description andModel Setup

4.1 Case Description

The DCBL case is forced with a constant sensible heat flux of 0.1Kms−1 and the initial
potential temperature profile with a constant gradient of ∂θ/∂z = 3K km−1 and 300K
at the surface. The surface pressure, Coriolis parameter, and roughness length are set to
1015 hPa, 0 s−1, and 0.01m, respectively. We additionally test the DCBL case with wind
shear (namely DCBL-S case) to test whether LSM simulates changes in the convective
boundary layer by wind shear. The DCBL-S case is identical to the DCBL case, but a steady
geostrophic wind profile of (Ug, Vg) = (z/100, 0)m s−1 is imposed, similar to the case of
Conzemius and Fedorovich (2006). The initial wind profile is the same as the geostrophic
wind profile. The DCBL and DCBL-S cases are integrated for 4h.

The GABLS1 case setup is identical to Beare et al. (2006). This case is forced by a steady
geostrophic wind profile of (Ug, Vg) = (8, 0)m s−1 and a time-varying surface temperature.
The surface temperature is initialized as 265K and decreases with a constant cooling rate of
0.25K h−1. The initial potential temperature profile is constant at 265K from the surface up
to 100m and increases above it at a rate of 10K km−1. The initial wind profile is the same as
the geostrophic wind profile. The surface pressure, Coriolis parameter, and roughness length
are set to 1000 hPa, 1.39 × 10−4s−1, and 0.1m, respectively. TheGABLS1 case is integrated
for 9h.

4.2 Large-Eddy Simulation and Lagrangian Stochastic Model Setup

The simulations with the University of California, Los Angeles large-eddy simulation
(UCLA-LES) model (Stevens et al. 1999, 2005) are used to evaluate LSM. UCLA-LES
solves a set of anelastic equations with the turbulence model of Smagorinsky–Lilly. The
Smagorinsky coefficient and Prandtl number are set as 0.23 and 1/3, respectively. The LESs
of the DCBL and DCBL-S cases are run with the domain size of 5.12 × 5.12 × 2 km3 and
the grid size of 20× 20× 20m3. To initialize turbulence, the simulations are initialized with
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Fig. 2 Vertical profiles of a θ , b w′θ ′, and c TKE in the simulations of the DCBL case from LSM (solid) and
LES (dashed) at t = 0.5, 1, 2, and 4h

random temperature perturbation of 0.2K below 100 m height. The LES of GABLS1 case is
runwith the domain size of 400×400×400m3 and the grid size of 3.125×3.125×3.125m3,
and initialized with random perturbation of 0.1K below 50 m height. The model outputs are
saved with an interval of 30 s for all cases.

The LSMsimulations are conductedwith the same vertical domain and vertical grid size as
of LES. Also, the simulations are initialized with random temperature perturbations as done
in LES so that turbulence is initialized in a consistent way. All cases are run with the total
particle number of Np = 200000. The fixed time step of Δt = 5 s is used for the DCBL and
DCBL-S cases and Δt = 2.5 s for the GABLS1 case. The time step is determined to be less
than the maximum time step required by CFL condition and turbulence timescale (≈ Ω−1).
Using a smaller time step or grid spacing does not significantly change simulation results.
The model parameters in LSM are specified as standard values listed in Table 1. However, the
DCBL case simulation with Cε3 = 0 considerably underestimates mean dissipation because
no dissipation is generated from turbulence production. Thus, we useCε3 = 0.72 only for the
DCBL case. For the DCBL and DCBL-S cases, all statistics shown in the following section
are averages over ±15 minutes of the selected time level. For the GABLS1 case, statistics
are averages over the last simulation hour (t = 8–9 h).

5 Results

5.1 Dry Convective Boundary Layer (DCBL)

Figure 2 shows the vertical profiles of potential temperature, heat flux, and TKE in the
simulations of the DCBL case at different time levels. LSM reproduces the gradual growth
of the CBL and the formation of the inversion layer. The linear heat flux profile in the CBL
and negative heat flux in the entrainment zone (region of negative heat flux) are simulated
reasonably well in LSM, while the entrainment is slightly stronger in the LSM simulation.
The magnitude of negative heat flux increases with time both in LES and LSM, consistent
with the increasing inversion strength. Both models simulate negative heat flux peaks about
20% of surface heat flux at t = 4 h. The realistic simulation of the entrainment process in
LSM without any explicit modeling is noticeable. Eddy-viscosity models need additional
treatment of counter-gradient fluxes, and the entrainment in higher-order closure models is
very sensitive to the parameterization of turbulent transport (e.g., Nakanishi and Niino 2009).
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Fig. 3 Vertical profiles of various statistical moments in the simulations of the DCBL case from LSM (solid)

and LES (dased) at t = 3 h. The subgrid contributions are included in u′2, v′2, and w′2 for LES

The entrainment process in LSM is simulated very naturally in a Lagrangian framework,
where the overshooting and mixing of air parcels into the inversion are all tracked.

The increase of TKE over time and the location of the maximum TKE (100–250m) are
similarly simulated in LES and LSM. However, LSM underestimates the vertical gradient
of TKE near the inversion. This is related to the excessive TKE transport in the upper part
of the entrainment zone. A detailed analysis, along with the TKE budget, will be discussed
later. The one feature that LSM did not simulate well is the temperature gradient of the
unstable layer at the near surface (Fig. 2a). We consider two explanations for this problem.
One explanation is that it is due to the deficiency of the dissipation model. The unstable layer
is mainly formed in the early stage of CBL development. The dissipation model of LSM does
not work well when turbulence is initiated from zero turbulence. In (14), ω remains zero if
ω and ω are zero. The dissipation becomes non-zero only when the particles are reflected
at the lower boundary. Therefore, the dissipation in the early stage of CBL is substantially
underestimated, so strong turbulent mixing reduces the temperature gradient of the unstable
layer. Another explanation is given in Fig. 4.

Figure 3 shows the vertical profiles of several statistical moments simulated by LES and
LSM at t = 3 h. While the TKE profiles of LES and LSM are similar, the velocity vari-
ance components show noticeable differences between the two models. LSM overestimates

(underestimates) w′2 (u′2 and v′2) near the surface and near the CBL top. In LES, near-
surface turbulence is highly anisotropic in a way that the vertical component is damped and

approaches zero at the surface boundary. The overestimation of w′2 in LSM implies that the
parameterization of pressure redistribution has a deficiency near the surface. It should be
noted that LES also uses some modeling assumptions near the surface. Therefore, it can be
physically incorrect that the variance of the vertical velocity goes to zero in LES. The fluc-
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Fig. 4 Vertical distributions of the probability density of a, f u, b, g v, c, h w, d, i θ , and e, j local dissipation
rate ε∗ in the simulations of the DCBL case from LES (first row) and LSM (second row) at t = 3 h. At each
level, the integration of probability density equals 1. The solid and dotted lines in j denote ε = Ωk and ωk,
respectively, and solid lines in other panels denote the mean profile

tuating pressure at the near surface is largely affected by the presence of a wall (Gibson and
Launder 1978). The wall effect can be modeled either by damping functions (e.g., Hanjalić
and Launder 1976, ) or elliptic relaxation (Durbin 1991), which is a more advanced method.
The elliptic relaxation is a good candidate for LSM, as it can be applied to LSM approaches
as proposed by Dreeben and Pope (1998), and the elliptic relaxation for stratified flows has
been proposed recently (Das 2020). The simulation of turbulence anisotropy near the CBL
top also needs to be improved. One hypothesis is that the inversion layer acts like a wall,
modifying the pressure redistribution.

LSM reproduces the general shape of θ ′2 profile but overestimates θ ′2 by about a factor of
2 (Fig. 3d). LES and LSM simulate the bell-shaped profile of w′3 with similar magnitudes.

The realistic simulation of w′3 by LSM indicates that the turbulent transport of LSM is

working as expected. w′θ ′2 contributes to the turbulent transport of θ ′2. The strong gradients
of w′θ ′2 near inversion explain the peak of θ ′2 in the inversion, while LSM simulates larger
gradients.

Figure 4 shows the vertical distributions of the probability density of several variables. The
PDFs of LSM are directly obtained from Lagrangian samples. The PDFs of LES are com-
puted using LES grid values, so only resolved variabilities are taken into account. Therefore,
any quantitative analysis with the PDFs needs caution, although the subgrid contribution is
relatively small. A noticeable feature of the DCBL case is the asymmetric distribution of
vertical velocity (Fig. 4c, h). The distribution of w is skewed, where downdrafts are gener-
ally weaker than updrafts. LSM reproduces the asymmetric distribution of w. However, the
detailed distribution of w differs from LES. As demonstrated earlier, the variance of w is
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overestimated near the bottom and top of CBL. In addition, the downdrafts in LSM are more
energetic than in LES. LSM simulates downdrafts that are stronger than−2m s−1, which are
absent in LES. LSM still reproduces some important aspects of the w distribution; updrafts
are strongest in the middle of CBL, and downdrafts accelerate from the top to the bottom of
CBL. Both models simulate the symmetric and near-Gaussian distributions of u and v, but
LSM simulates smaller variances of u and v near the bottom and top of CBL.

The PDFs of the potential temperature exhibit the convective overshooting in the inversion
layer for both models (Fig. 4d, i). At 1100–1200m heights, a bulge of air parcels originating
from lower levels is observed. The convective overshooting of LSM is stronger and extends
higher than LES. LES exhibits a strong unstable layer and highly skewed distribution near
the surface, but LSM shows a less pronounced unstable layer and skewness. The boundary
condition (26) indicates that particles are heated by surface heat flux after reflection. As the
vertical velocities of the reflected particles in LSM are high, the heated particles have less
time to be mixed with the environment. Therefore, the unstable layer is weakly developed in
LSM due to stronger vertical mixing of temperature. In contrast, in LES, heated air parcels
have a longer time to be mixed with the environment. Figure4d shows that the temperature
of heated air parcels rapidly decreases as they rise from the surface in LES. The PDFs of
local dissipation rate ε∗ are log-normally distributed for both models, showing intermittency
of turbulence. ε∗ of LES varies in a much wider range compared to LSM, but it should be
noted that the dissipation in LES is highly parameterized. The Smagorinsky–Lilly subgrid
model in LES does not account for backscatter, so there is a possibility that the variance of
dissipation is underestimated in LES.

Figure 5 shows the joint PDFs of vertical velocity and potential temperature at different
heights. In general, LSMwell reproduces the shapes of the joint PDFs simulated by LES. The
joint PDFs are highly skewed and exhibit a curved shape for the positive velocity region. The
curved-shape distributions are commonly observed in joint PDFs of turbulence and cloud
properties (Bogenschutz et al. 2010; Chinita et al. 2018). However, they are not easy to be
represented by assumed PDF methods, while double Gaussian can make an approximation.
In the entrainment zone (z = 1000m), the joint PDF is separated into two regimes: negatively
buoyant updrafts and compensating subsidence. LSM simulates the complex shape of joint
PDF in the entrainment zone reasonablywell. Nevertheless, some differences against LES are
observed, where LSM simulates larger variances of w and θ in the negative velocity region
for all heights and also simulates too strong updrafts and downdrafts in the entrainment zone.

Figure 6 shows the vertical profiles of TKE budget terms simulated by LES and LSM.
The balance of buoyancy production, transport, and dissipation is similarly simulated in
the two models. The negative and positive turbulent transports (Tt ) in the lower and upper
CBL, respectively, are reproduced in LSM. LSM simulates smaller negative Tt near the
surface because vertical gradients of vertical velocities are underestimated in LSM. The
turbulent transport of LSM in the upper entrainment zone is stronger than LES, so TKE in
the inversion layer is greater than LES (Fig. 2c). The pressure transport is explicitly modeled
in the LSM equations, playing a role in compensating turbulent transport. The pressure
transport term Tp simulated in LSM is substantially smaller than in LES. The dissipation of
TKE is also generally underestimated in LSM. The pressure transport and dissipation largely
affect simulation results, and they can be controlled by changing model parameters. The
control of these processes will be discussed in Sect. 6.1. The residuals of the TKE budgets
are not zero in LES and LSM, where the residual of LES is notably larger. The residuals are
expected to result from statistical errors in computing TKE budget terms. The budgets do not
add up to exactly zero as the budgets are computed from a limited number of samples.
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Fig. 5 Joint PDFs of vertical velocity and potential temperature in the simulations of the DCBL case from
LES (first column) and LSM (second column) at the heights of 150, 550, and 1000m at t = 3 h

Fig. 6 Vertical profiles of TKE budget terms in the simulations of the DCBL case from a LES and b LSM at
t = 3 h. res is the residual of the TKE budget calculation. The subgrid contributions to the budget terms are
included in LES
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Fig. 7 Vertical profiles of a θ , b w′θ ′, c TKE, d u, and e u′w′ in the simulations of the DCBL-S case from
LSM (solid) and LES (dased) at t = 0.5, 1, 2, and 4h

5.2 Dry Convective Boundary Layer with Shear (DCBL-S)

Figure 7 shows the vertical profiles of several statistics in the simulations of the DCBL-S
case. The gradual growth of CBL and the formation of the inversion layer are simulated
similarly to the DCBL case. The zonal wind profiles also exhibit the growth of the mixing
and inversion layer (Fig. 7d). The entrainment zone and inversion layer of the DCBL-S case
are substantially deeper than the DCBL case. The entrainment of CBL is enhanced by vertical
wind shear (Moeng and Sullivan 1994; Kim et al. 2003), and the enhancement of entrainment
is determined by the fraction of shear-generated TKE that contributes to the entrainment
process (Conzemius and Fedorovich 2006). LSM also simulates a deeper entrainment zone
and inversion layer compared to the DCBL case, while the entrainment is slightly weaker
than LES. The enhancement of entrainment in LSM is partially due to the change in the
value of Cε3 from 0.72 to 0. If the same value of Cε3 = 0 is used for the two cases, LSM
still simulates enhanced entrainment by shear production but to a smaller extent. Compared
to LES, LSM simulates slightly more stable stratification and stronger wind gradient in the
mixing layer. The temperature and wind gradients in the unstable layer are underestimated,
similar to the DCBL case, probably due to a large vertical velocity variance near the surface.

The simulated profiles of TKE are top-heavy as the shear production is strong near the
entrainment zone (Fig. 7c). LSM simulates an increase of TKE in the upper CBL but fails
to reproduce an increase of TKE in the lower CBL. This is because the shear production is
underestimated near the surface (Fig. 8), as the wind gradient is weakly simulated in LSM.
The two models calculate similar momentum fluxes near the surface, but LSM substantially
underestimates momentum fluxes at upper levels (Fig. 7e). The momentum flux can be
enhanced if more momentum of the free atmosphere is entrained into the CBL.
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Fig. 8 Vertical profiles of TKE budget terms in the simulations of the DCBL-S case from a LES and b LSM
at t = 3 h. res is the residual of the TKE budget calculation. The subgrid contributions to the budget terms
are included in LES

The TKE budget of the DCBL-S case (Fig. 8) is much more complex than the non-
sheared case. In the entrainment zone, the turbulent transport is considerably smaller than in
the DCBL case. This is because the upward transport of buoyancy-generated TKE is offset
by the downward transport of shear-generated TKE (Conzemius and Fedorovich 2006).
The turbulent transport shows a bimodal profile in the entrainment zone, indicating that the
shear-generated TKE is transported upward and downward and consequently deepens the
entrainment zone. LSM reproduces the relatively small and bimodal turbulent transport in the
entrainment zone. However, LSM simulates too strong turbulent transport and time tendency
of TKE in the upper part of the entrainment zone. In LES, TKE is strongly transported
downward in the CBL by pressure transport, but LSM lacks pressure transport in the CBL. In
the sheared CBL, the interaction of updrafts/downdrafts and vortical structures can generate
strong pressure transport (Lin 2000). Unfortunately, this kind of pressure fluctuation is hard
to be modeled with Reynolds stress modeling approaches. The profile of dissipation in LSM
is somewhat more top-heavy compared to that in LES, as TKE is more top-heavy in LSM.

5.3 Stably Stratified Atmospheric Boundary Layer (GABLS1)

AstableABL (SABL) is a case inwhich turbulencemodels are difficult to simulate. The result
of GABLS1 intercomparison of turbulence closure models demonstrated large variations
among models and overpredicted mixing (Cuxart et al. 2006). Figure9 shows the vertical
profiles of some statistics in the simulations of the GABLS1 case. The results from the LES
intercomparison of the GABLS1 case (Beare et al. 2006) are also plotted. LSM simulates
realistic mixing intensity (Fig. 9e), and the simulated statistics are comparable to that of LES.
LSM also reproduces the low-level jet and wind-turning effect (Fig. 9b, c). The height of
the SABL in LSM is similar to UCLA-LES but slightly lower than the LES ensemble mean.
LSM simulates a larger gradient of θ and a sharper lower-level jet profile near the SABL top,
which may indicate a weaker mixing with the free atmosphere.

The profiles of gradient Richardson numbers are plotted to see whether turbulent fluxes
in LSM have correct Richardson number dependency (Fig. 9d). In the LES ensemble, the
Richardson numbers in the SABL are measured in the range from 0 to the critical Richardson
number of about Ric ≈ 0.25, and TKE becomes zero when Ri → Ric. UCLA-LES exhibits
high Ri in the SABL, largely deviating from the LES ensemble. The Ri profile of LSM
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Fig. 9 Vertical profiles of a θ , b u, c v, d gradient Richardson number Ri , e TKE, f w′3, g u′θ ′, and h v′θ ′
in the simulations of the GABLS1 case from LSM (solid), UCLA-LES (dashed), and LES ensemble (shaded)
averaged over t = 8–9 h. The shade denotes one standard deviation range of LES ensemble members from
Beare et al. (2006)

is relatively well matched with the LES ensemble profiles and shows a critical Richardson

number of about Ric ≈ 0.2. The magnitude of w′3 (and skewness of w) is small in GABLS1

as turbulent transport is not important as in theCBL. LSMoverpredictsw′3 about a factor of 2.
Unlike eddy viscosity models, Reynolds stress models have the ability to simulate horizontal
heat fluxes as well as vertical heat flux. LSM predicts horizontal heat fluxes reasonably
(Fig. 9g, h), but due to weaker mixing with the free atmosphere, the negative v′θ ′ in the
upper SABL in the LES ensemble is not predicted in LSM.

LSM well reproduces the PDF of the GABLS1 case simulated in LES (Fig. 10). The
turbulence statistics are close to Gaussian in the GABLS1 case, so there are no additional
merits for using LSM over SMC models. However, it is noticeable that LSM shows compa-
rable performance to sophisticated Reynolds stress models in the simulation of SABL (e.g.,
Želi et al. 2020). LSM predicts symmetric Gaussian distributions with similar variances as
LES. The simulated variances of velocity components and temperature decrease with height,
according to the decreasing TKE with height. The notable deficiency of LSM is the overesti-
mated vertical velocity variance near the surface and the slight overestimation of temperature
variance.

The TKE budget of the GABLS1 case (Fig. 11) shows that transport terms are very small
compared to production and dissipation terms. The shear production, buoyancy production,
and dissipation are in balance, where the magnitude of buoyancy production is relatively
small. LSM accurately reproduces the budget balance. Due to the balance, the simulation of
GABLS1 is highly sensitive to the modeling of dissipation. Želi et al. (2020), who adopted
a k–ε based dissipation model to simulate the GABLS1 case, demonstrated that the model
performance increases when the parameters in the dissipation model (Cε2 and Cε3) are
parameterized as a function of stability.
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Fig. 10 Vertical distributions of the probability density of a, f u, b, g v, c, h w, d, i θ , and e, j local dissipation
rate ε∗ in the simulations of the GABLS1 case from LES (first row) and LSM (second row) averaged over
t = 8–9 h. At each level, the integration of probability density equals 1. The solid and dotted lines in j denote
ε = Ωk and ωk, respectively, and solid lines in other panels denote the mean profile

Fig. 11 Vertical profiles of TKE budget terms in the simulations of the GABLS1 case from a LES and b LSM
averaged over t = 8–9 h. res is the residual of the TKE budget calculation. The subgrid contributions to the
budget terms are included in LES

6 Discussion

6.1 Sensitivity to Model Parameters

The simulation results suggest that the model performance is sensitive to the parameteri-
zation of dissipation and pressure transport. In the dissipation model of (14) and (15), the
buoyancy effect is the largest source of uncertainty. In this section, LSM simulations with
different values of Cε3 and Cpt , which control the buoyancy-generated dissipation and pres-
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Fig. 12 Vertical profiles of the LSM simulations of the DCBL case with different values of (first row) Cε3
and (second row) Cpt at t = 3 h. The dashed line denotes the profile from LES

sure transport, respectively, are tested. Figure12 shows the result of the sensitivity test for
the DCBL case. As the value of Cε3 increases, the entrainment gets weaker because the
dissipation in the CBL is enhanced. The potential temperature and heat flux profiles indicate
that the optimal value of Cε3 is between 0.72 and 1.44. However, if Cε3 is larger than 0.72,
TKE is considerably underestimated in the CBL due to strong dissipation. Cpt controls the
strength of entrainment too, but in a different way than Cε3 does. Cpt does not change TKE
in the CBL but changes the gradient of TKE in the inversion layer. The pressure transport
effectively controls convective overshooting as it exerts a force on high-energy particles in
the direction of the TKE gradient. The LSM with Cpt = 0.5 simulates profiles that match
the LES profiles very well, with a realistic TKE gradient in the inversion layer.

6.2 Computational Cost and Bias Error

The computational cost of PDF methods is in between LES and turbulence closure models
(Pope 2000). The computational cost of LSM is evaluated in the simulations of the DCBL
case with different total particle numbers Np . The code of LSM is written in the Julia
programming language (Bezanson et al. 2017), and the simulations are executed in a single
core of 2.9GHz Intel Xeon CPU. The simulation execution time increases almost linearly
with Np (Fig. 13a). The 4-hour DCBL case simulation takes 564s for Np = 200000 and
113s for Np = 50000. It is important to choose appropriate Np so that the computational
cost is not too high and errors of simulated statistics are small. Figure13b shows the heat
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Fig. 13 a Execution time as a function of total particle number Np from the LSM simulations of the DCBL
case. The simulations are integrated for 4 simulation hours (2880 time steps). bHeat flux profiles of the DCBL
case at t = 3 h, simulated by LSM with different Np

flux profiles of the simulations with different Np . The simulation results almost converge
when Np > 50000. The simulations with smaller Np have systematic biases with reduced
entrainment. Similar particle methods are known to have error scaling of N−1

p for bias error

and N−1/2
p for statistical error (random fluctuations in turbulence statistics) (Pope 1995;

Jenny et al. 2001).
Proper variance reduction techniques can significantly reduce biases and statistical errors

of LSM. As a result, a smaller particle number can be used, and computational cost can be
reduced. Popular variance reduction techniques for Monte Carlo simulation, such as impor-
tance sampling and control variate, can be adopted. The importance sampling can be used
to remove particles that have a small impact on the turbulent flux by preferentially sampling
particles with high vertical velocities. The temporal averaging of turbulence statistics can
also be used to reduce biases and statistical errors. One idea is to use different time steps for
particle evolution and turbulence statistics evaluation. For example, if particle evolution is
integrated with Δtsub = 2 s and turbulence statistics are evaluated with Δt = 2min, then 60
times more samples are available for Reynolds averaging. In this case, the Reynolds averag-
ing operator becomes the horizontal and temporal average for 2min. We expect that using
a larger time step as a mesoscale or larger-scale atmospheric model with a smaller particle
number is possible with this technique.

7 Summary and Conclusions

Due to themoment closure assumption, atmospheric turbulence closuremodels provide infor-
mation on turbulence statistics only for several orders of moments. In this study, we propose
a single-column turbulence model, which solves the transport equations of turbulence PDF
using a Lagrangian stochastic modeling (LSM) approach. The stochastic differential equa-
tions (SDEs) for particle velocity and temperature suggested by Das and Durbin (2005) are
adopted, which exactly reproduce the second-moment transport equations that are widely
used to model stratified ABL. To extend the LSM of Das and Durbin (2005) to inhomoge-
neous turbulence, a simple parameterization of pressure transport is included in the SDEs. In
addition, an SDE for dissipation is adopted, which is designed for inhomogeneous turbulence
and based on the k–ε model. In the proposed model, the properties and positions of particles
are evolved along SDEs, and the turbulence statistics are calculated as the ensemble mean
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of particles. Then, the time evolution of a mean field is calculated as the convergence of
turbulent flux. The model provides a full representation of turbulence PDF and simulates
turbulent transport without any modeling assumption. The model performance is evaluated
against LES results in the simulations of three idealized cases: the DCBL, DCBL with shear
(DCBL-S), and GABLS1 cases.

In the DCBL case, LSM simulates the gradual growth of the CBL, and the simulated
potential temperature, heat flux, and TKE profiles are in good agreement with the LES
profiles. Particularly, LSMsimulates a realistic entrainment process by trackingofLagrangian
particles, so the shape and magnitude of the time-dependent negative heat flux profile in the
entrainment zone are well simulated. A deficiency of LSM is the weak temperature gradient
in the near-surface unstable layer. This is likely due to the weak dissipation in the early
stage of CBL development and too large vertical velocity variance near the surface. LSM
overestimates (underestimates) vertical (horizontal) velocity variance near the bottom and
top of the CBL. The result implies that the current model needs to be improved to include
the wall effect, which accounts for the modification of pressure redistribution near the wall.
Both LSM and LES simulate a bell-shaped profile of triple moment of vertical velocity with
similar magnitudes, indicating that LSM simulates turbulent transport in a realistic way.

The PDF simulated by LSM reveals a detailed depiction of the CBL structure. LSM
reproduces the asymmetric distribution of vertical velocity and the separation of temperature
distribution by convective overshooting. LSM also reproduces the curved and highly skewed
shape of the joint PDF of vertical velocity and potential temperature. In the entrainment zone,
the joint PDF is separated into two regimes with a complex shape, and LSM successfully
reproduces the shape of the joint PDF. However, the PDF of LSM exhibits errors in tem-
perature variance and turbulence anisotropy. LSM with standard model parameters slightly
overestimates the magnitude of entrainment in the DCBL case because downward pressure
transport is underestimated. The magnitude of entrainment can be effectively controlled by
changing the model parameter related to pressure transport.

The DCBL-S case exhibits a deeper entrainment zone than the DCBL case because a
fraction of shear production contributes to the entrainment process. LSMpartially reproduces
the enhancement of entrainment by shear production. A TKE budget reveals that LSM can
simulate the modification of turbulent transport by shear but also reveals problems of LSM
in simulating shear production near the surface and pressure transport in the sheared CBL. In
the GABLS1 case, LSM is able to predict realistic mean and flux profiles along with distinct
features of the SABL, such as low-level jets andwind turning. The critical Richardson number
of LSM is measured as ≈ 0.2. The transport terms are relatively small in the SABL, so the
PDF is close to Gaussian. LSM reproduces the Gaussian PDF with comparable variances,
but the vertical velocity variance near the surface is overestimated.

In this study, LSM is tested with minimal modifications and with standard model param-
eters. LSM provides a full representation of turbulence PDF while having reasonable
performance in predicting mean fields. Some well-developed or well-calibrated turbulence
closure models (e.g., Nakanishi and Niino 2009) may produce better predictions on mean
fields and moments (not tested yet). The performance of LSM can be significantly improved
through calibrating parameters and better modeling of the pressure transport, wall effect on
pressure redistribution, and dissipation. In that case, LSM can be served as a tool to evaluate
higher-order closure models.

Most mesoscale and global atmospheric models calculate physics tendencies in each
atmospheric column, so the proposed LSM can be implemented in these models as a subgrid
turbulence parameterization. The computational cost of LSM is much larger than that of
turbulence closure models, so the use of LSM in 3D atmospheric models is currently limited.
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However, as previously discussed, the computational cost of LSM can bemanaged by various
variance reduction techniques, allowing the use of fewer particles by reducing biases and
statistical errors. A good example is the Monte Carlo radiative transfer modeling, which
successfully reduces its computational cost using variance reduction techniques (Räisänen
and Barker 2004; Iwabuchi 2006). LSM has the benefit that the dispersion of passive scalars
can be computed natively inside LSM. Moreover, LSM can be extended to simulate subgrid
moist turbulence and convection in a unified frameworkwhen it is coupledwithmicrophysics.
The use of turbulence and convection schemes in an atmosphericmodel implies the separation
of subgrid vertical transport by the two schemes. However, the separation is not precisely
defined, resulting in missing or double-counted vertical transport. In LSM, every transport
is Lagrangian, so local and non-local mixing can not be distinguished. One can notice that
the LSM equations are similar to the transport equations in convection schemes and the
turbulence frequency (ω = ε/k) is closely related to the convective entrainment rate. A
stochastic parameterization of the convection mixing process will allow a realistic simulation
of the variability of convective clouds (e.g., Shin andBaik 2022). In the near future, simulation
results for various cloud types with the LSM approach will be reported.
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Appendix 1

The particle density correction algorithm from Wild (2013) is adopted so that the time-
averaged particle density is consistent with the basic state density ρ0. The particle density q
at the grid midpoint zk is calculated as:

m∗ =
(∫

z
ρ0 dz

)
/Np,

(q)k = m∗ ∑Np
n=1

(
ĝk (z∗)

)
n

zk+ 1
2

− zk− 1
2

,

(33)

wherem∗ is the mass per unit area (kgm−2) of a particle. To reduce statistical fluctuation on
q , the following time-averaging technique is used,

qn+1
avg = μqnavg + (1 − μ)qn+1,

μ = K − 1

K
, K ≥ 1,

(34)

123

http://creativecommons.org/licenses/by/4.0/


Lagrangian Stochastic Modeling of Stratified ABL Page 25 of 27 18

where qnavg is the time-averaged q at the time level of n and K is the time-averaging factor.
K = 100 is used for this study.

The normalized density error Q is defined using the time-averaged particle density:

Q = qavg − ρ0

ρ0
. (35)

The correction velocity wc is computed as:

wc = −a
∂Q

∂z
,

a = Cpos min

⎛
⎝ (CFL)cpΔz∥∥∥ ∂Q

∂z

∥∥∥Δt

⎞
⎠ tanh(10max(Q)),

(36)

where Cpos and (CFL)cp are parameters and are specified as 0.2 and 0.5, respectively. The
correction velocity is added to the particle velocity to update the particle position. The
correction velocity is typically very small (|wc| < 0.05m s−1) compared to the particle
velocity.
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