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Abstract
Eddy-covariance data from five stations in the Inn Valley, Austria, are analyzed for stable
conditions to determine the gap scale that separates turbulent from large-scale, non-turbulent
motions. The gap scale is identified from (co)spectra calculated from different variables
using both Fourier analysis and multi-resolution flux decomposition. A correlation is found
between the gap scale and the mean wind speed and stability parameter z/L that is used to
determine a time-varying filter time, whose performance in separating turbulent and non-
turbulent motions is compared to the performance of constant filter times between 0.5 and
30 min. The impact of applying different filter times on the turbulence statistics depends on
the parameter and location,with a comparatively smaller impact on the variance of the vertical
wind component than on the horizontal components and the turbulent fluxes. Results indicate
that a time-varying filter time based on a multi-variable fit taking both mean wind speed and
stability into account and a constant filter time of 2–3 min perform best in that they remove
most of the non-turbulent motions while at the same time capturing most of the turbulence.
For the studied sites and conditions, a time-varying filter time does not outperform a well
chosen constant filter time because of relatively small variations in the filter time predicted
by the correlation with mean flow parameters.

Keywords Complex terrain · Eddy-covariance data processing · Filter time scale · i-Box ·
Spectral analysis

1 Introduction

The analysis and description of turbulent motions using eddy-covariance measurements are
based on the decomposition of turbulent variables into a time average and fluctuations about
this mean, which represent the turbulent motions (Wyngaard 2010). Isolating the turbulent
motions by defining an appropriate filter to remove the larger-scale, non-turbulent motions
from the raw time series is thus a crucial step in processing eddy-covariance data. The
separation of turbulent and non-turbulent scales is in particular important when studying
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turbulence characteristics, such as similarity relationships since non-turbulentmotions cannot
be described by the same similarity functions and thus add scatter to the data (Vickers and
Mahrt 2003). For other research questions, however, such as the surface-energy balance
closure or ecosystem respiration, the total surface fluxes resulting from both turbulent and
non-turbulent motions are relevant (Acevedo et al. 2006) so that longer filter times may lead
to a better surface-energy balance closure (Mauder and Foken 2006). Here the focus is on
the first type of application, for which a clear separation between turbulent and non-turbulent
motions is desirable.

Commonly used types of filters include block averaging, also known as mean removal,
linear detrending, and other high-pass filters (Aubinet et al. 2012; Donateo et al. 2017;
De Franceschi and Zardi 2003; Falocchi et al. 2018). Linear detrending and high-pass filters
are oftentimes used to remove trends within individual averaging periods before calculating
turbulence statistics. This step is omitted when applying block averaging, so that τ f = τa ,
where τ f is the filter time and τa is the averaging period. Depending on the application and
atmospheric conditions, the different detrending methods and corresponding time constants
for high-pass filters have been shown to lead to significant errors in the calculated fluxes
(Culf 2000; Donateo et al. 2017; Rannik and Vesala 1999).

Independent of the filter method, an appropriate τ f needs to be defined that separates
turbulent and non-turbulent motions. Under ideal conditions, a distinct gap occurs in the
energy spectra of any turbulent variable that clearly separates turbulent scales from the larger
scales and thus defines the appropriate time scale separating the different contributions (Stull
1988). However, particularly under stable conditions, so-called submeso motions may be
superimposed on the turbulence, with similar spatial and temporal scales. Submeso motions
are defined as non-turbulent motions that are specific to stable stratification and have a
spatial scale of about 2km or less (Mahrt 2014) or a time scale of 1–30 min (Vercauteren
and Klein 2015). They include, for example, internal gravity waves (Sun et al. 2015a, b),
meandering flow (Cava et al. 2019; Mortarini and Anfossi 2015; Mortarini et al. 2016, 2019;
Stefanello et al. 2020), and microfronts (Mahrt 2019; Pfister et al. 2021a, b). In addition,
these motions also interact with each other (Cava et al. 2019) as well as with turbulence (Sun
et al. 2015a, b; Vercauteren andKlein 2015; Vercauteren et al. 2019a), generating intermittent
turbulence bursts (Mortarini et al. 2018; Sun et al. 2002, 2012) and impacting scalar fluxes
and the surface-energy balance (Stefanello et al. 2020). Separating these submeso motions
from turbulence and thus identifying an appropriate τ f can be difficult. For example, spectra
calculated by Acevedo et al. (2006) for nighttime periods showed a gap in the co-spectra
only if the nights were not characterized by intermittent turbulence.

Different forms of spectral analysis have been used in the past to determine both τ f and
τa for varying conditions. One common method is based on the Ogive function, which is
defined as the cumulative distribution function of the spectral densities (Desjardins et al.
1989; Metzger and Holmes 2008; Oncley et al. 1996). As the contributions to the cumulative
distribution and thus the respective (co)variance become increasingly small in the energy
gap, the Ogive functions are expected to level off at this location and can thus be used to
determine the energy gap scale τg . For example, Metzger and Holmes (2008) used a constant
threshold of 99.5% of the total covariance to determine τg from Ogive functions of the heat
flux under convective conditions, while de Roode et al. (2004), Zhou et al. (2014), and Kang
(2020) used a threshold of 2/3 to determine the location of the spectral peak in the spatial
spectra from large-eddy simulations. Babić et al. (2012) calculated Ogive functions from the
cospectra of the kinematic heat flux andmomentumflux for a single 4-h nighttime periodwith
intermittent turbulence, but, since the curves did not converge towards a constant value, the
authors concluded that defining a filter time τ f based on the Ogive functions is not easy. To
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estimate turbulent fluxes without the need of explicitly specifying a filter and averaging time,
Sievers et al. (2015) fitted a model function to distributions of Ogives that were calculated
from a dataset using different filter times and window sizes.

Multi-resolution flux decomposition (MRD) yields similar information as Fourier spectra,
that is, the spectral contributions to the total (co)variance, which can be used to identify τg
(Howell and Mahrt 1997; Mahrt et al. 2001; Vickers and Mahrt 2003, 2006). Vickers and
Mahrt (2003) usedMRD todetermine τg by identifying the turbulence peak and the location of
a subsequent minimum in the spectra or a location at which the spectra level off. This method
was further developed by Voronovich and Kiely (2007), who fitted a polynomial to the MRD
cospectra, which thus allows an analytical determination of special points, such as maxima
and minima, in the fitted function. The latter method was also applied by Babić et al. (2017)
to daytime data from the Owens Valley, California, where they found large spatial variations
in the identified τg depending on the dominant mesoscale processes. Metzger and Holmes
(2008) used the fact that the heat flux often changes sign near the location of the energy
gap, as described in Vickers and Mahrt (2003). Analyzing data from unstable conditions
and thus assuming a positive sensible heat flux, they identified τg as the period at which the
MRD spectra crossed the zero line. A similar approach was also adopted by Kang (2019).
Assuming that the heat flux, the moisture flux, and the correlation between temperature and
moisture fluctuations have a positive sign above a heated surface, they searched for the scale
at which the signs differed from this expectation, finding periods between 9 and 42 min. Wei
et al. (2021) and Ren et al. (2019) used yet another type of spectral analysis, specifically a
Hilbert-Huang transform, to determine τg during stable conditions.

The energy gap in the spectra occurs typically around a time period of 30–60 min during
unstable conditions (Stull 1988; Stiperski et al. 2019). Babić et al. (2017), for example,
identified gap scales between 17 and 29 min for different types of daytime thermally driven
and channeled valley winds. For this reason, an averaging period τa of 10–60 min is used
frequently (Lee et al. 2005), which equals the filter time τ f if block averaging is applied.
For stable conditions, a shorter τ f and τa are commonly used to exclude contributions from
non-turbulent submeso motions, with a common τa of 5 min (Cava et al. 2019; Mahrt et al.
1998; Nadeau et al. 2013; Van de Wiel et al. 2003) or 1 min (Banta 2008; Mahrt 2017a, b,
2019; Stiperski et al. 2019). Mahrt and Thomas (2016) even used τa =10s and 6s for
measurements close to the surface under very strong stratification. Donateo et al. (2017)
on the other hand, determined a gap scale of about 10 min from temperature spectra and
cospectra of the kinematic heat flux for an urban canopy during nighttime.

The appropriate τ f thus seems to varywith time and atmospheric conditions. For example,
Vickers andMahrt (2003) determined gap scales between 30s and 20 min fromMRD spectra
of a one-month long dataset from CASES99 and also found that they increase with height
above the ground. Turbulence peaks can also be seen to move to larger periods for higher
measurement levels in the MRD cospectra of Vercauteren et al. (2019b). Stiperski and Calaf
(2018), on the other hand, identified distinctly different gap scales for weakly and strongly
stable conditions. In addition, the averaging time needed to approach the ensemble average
may also depend on the variable. Oncley et al. (1996), for example, identified a τa from
the convergence of the Ogives of the momentum flux that was about twice as long as that
from the heat flux. Following Lumley and Panofsky (1964), Wyngaard (1973) argued that the
averaging time should increase with the order of the statistical moments to reach the same
accuracy.

Stationary motions occurring at a time scale longer than τ f may positively contribute to
total flux estimates (Mahrt 2010, and references therein). The impact of τ f on the calculated
turbulent fluxes varies, however, strongly among different studies. Kang (2019), for example,
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Table 1 Definitions of different
time scales

Variable Definition

τa Averaging period

τ f Filter time

τ f c Constant filter time

τ f v Time-varying filter time

τg Time scale of the energy gap

τp Time scale of the turbulence peak

comparedfluxes calculatedwith a time-varyingfilter time τ f v identified fromMRDandfluxes
calculated with a constant filter time τ f c = 30 min using block averaging and found only
negligible differences. Similarly, Feng et al. (2017) calculated block averaged fluxes with
averaging periods between 1 and 720 min and found that the fluxes did not differ by more
than 3% for τ f < 60 min over a maize field, but that the energy-balance ratio, that is, the ratio
between the sum of the turbulent fluxes and the available energy, increases with τ f . Acevedo
et al. (2006), on the other hand, found large differences for τ f between 1 min and 30 min for
nocturnal conditions with intermittent turbulence, proposing the use of a time-varying filter
time. Mahrt et al. (2001) also mention that the impact of τ f is more pronounced on variances
than on the covariances. Extending τa to values longer than the traditional 30 min may also
improve the closure of the surface-energy balance by capturing more low-frequency motions
(Finnigan et al. 2003; Foken et al. 2006; Mauder and Foken 2006). Other studies have,
however, also found that τa = 30 min is generally long enough and that longer averaging
times do not necessarily lead to a better closure of the surface-energy balance (Charuchittipan
et al. 2014). This may, however, differ over tall vegetation (Finnigan et al. 2003).

The goals of this work are to use spectral analysis (i) to identify the gap scale τg for
different locations in a steep Alpine valley under stable conditions, (ii) to determine the
dependence of the identified τg on the variable, type of spectral analysis, and method used
for identification, and (iii) to determine whether a time-varying filter time based on a relation
between τg and mean flow characteristics can separate turbulent and non-turbulent motions
better than a constant filter time scale. Vickers and Mahrt (2003) have already found a corre-
lation between τg identified from MRD spectra and stability, expressing τg as a function of
the Richardson number. Here we use instead a fit between τg and the mean wind speed and
the stability parameter z/L to determine a time-varying filter time. The performance of dif-
ferent constant and time-varying filter times to separate turbulent and non-turbulent motions
is evaluated (i) by comparing the scalar-averaged wind speed with the vector-averaged wind
speed to determine whether non-turbulent motions are largely removed and (ii) by determin-
ing how much of the turbulence range is missed in the spectrum of the vertical velocity. In
addition, the dependence of τg on the variable, type of spectral analysis, and method used
for identification led us to eventually use an ensemble approach, that is, medians over fits
resulting from different (co)spectra and methods. Section2 briefly describes the measure-
ment sites and instrumentation. The spectra and the identified τg are discussed in Sects. 3
and 4, respectively. Finally, Sect. 5 discusses the impact of τ f on the turbulent fluxes and
the performance of a time-varying filter time τ f v compared to a constant filter time τ f c. A
summary and conclusions are given in Sect. 6. The different time scales used in this study
are summarized in Table 1.
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Fig. 1 a Topography of the Inn Valley, Austria. The black rectangle outlines the location of (b). b Location
of the i-Box measurement sites. Elevation contour lines are at 100-m intervals

Table 2 Site characteristics, elevation, slope angle, and measurement levels for sonic anemometers and gas
analyzers

Sitea Characteristic Elev. (m) Slopea (◦) z (m)—sonic z (m)—gas analyz

VF0 Valley floor 545 0 4.0, 8.7, 16.9 4.0, 16.9

SF8 South-facing 575 9 6.1, 11.2 11.2

SF1 South-facing 829 3 6.8 6.8

NF10 North-facing 930 11 5.7 5.7

NF27 North-facing 1009 25 1.5b, 6.8 6.8

aWhile the last two digits of the site names refer to the slope angle, these slope angles are based on an earlier
assessment and may differ from those given in the table, which are based on an assessment by Lehner et al.
(2021). Site names are, however, kept for consistency with previous i-Box publications
bSince September 2017

2 i-BoxMeasurement Sites and Data

Data come from five eddy-covariance stations in the Inn Valley, Austria, which form part of
the i-Box (Innsbruck Box, Rotach et al. 2017) measurement installation. The Inn Valley is
an approximately southwest–northeast oriented valley in the western part of Austria, which
opens north to the Alpine foreland (Fig. 1). The i-Box measurement sites are located about
20km east of Innsbruck within an approximately 6.5-km long section of the valley. At the
location of the i-Box sites, the valley is about 2000m deep and the valley floor is about
2000m wide.

The overall goal of the i-Box installation is to collect a long-term dataset of turbulence
measurements in a complex Alpine mountain valley (Rotach et al. 2017). The individual
sites were thus selected to represent different topographic characteristics (Table 2) and are
arranged along two lines across the valley (Fig. 1b). One of the sites, VF0, is located at the
almost flat valley floor and is mainly surrounded by grassland and agricultural fields. Two
sites are located on the north sidewall, with one site close to the valley floor (SF8) and one
site on an almost flat plateau about 200m above the valley floor (SF1). While SF1 is mainly
surrounded by grassland and agricultural fields, SF8 is located at the border between a field
and a concrete parking lot and helicopter landing area. Two sites on the south sidewall are
located on slopes covered by grassland. The two sites differ mainly in terms of slope angle,
with a moderately steep slope of 11◦ (NF10) and a steep slope of 25◦ (NF27). A sixth eddy-
covariance tower is located on a nearby mountain top, which is, however, not used in this
study because of frequent data gaps.

Measurements started in 2012 or 2013, depending on the station. In the present study,
data are used from the 7-year period between 2014 and 2020. All five sites are instrumented
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with CSAT3 sonic anemometers (Campbell Scientific Ltd., Logan, Utah, USA), with three
measurement levels between 4 and 17m a.g.l. (above ground level) at VF0 (Table 2). The
other four stations are equipped with a single sonic anemometer at 5.7–6.8 m a.g.l. and an
additional CSAT3 at 11.2 m a.g.l. at SF8. A second CSAT3 was also installed at NF27 in
September 2017. Fast-response humidity measurements are made at 4.0 and 17m a.g.l. at
VF0 with an open-path, infrared gas analyzer (EC150, Campbell Scientific Ltd.) and until
2020 a Krypton hygrometer (KH20, Campbell Scientific Ltd.), respectively. KH20 hygrom-
eters were operated at one measurement level at each of the other sites initially. In September
2017, the KH20 and respective CSAT3 at NF27 were replaced with the combined Irgason
(Campbell Scientific Ltd.). The remaining Krypton hygrometers at VF0, SF8, SF1, and NF10
were replaced with Irgasons in fall 2020. The lowest measurement level at VF0 (4.0 m a.g.l.),
SF8 (6.1 m a.g.l.), and NF27 (1.5 m a.g.l.) will be referred to as VF0_lvl1, SF8_lvl1, and
NF27_lvl1, respectively. Analogous terminology will be used for the second measurement
levels (VF0_lvl2, SF8_lvl2, and NF27_lvl2) and the third level at VF0 (VF0_lvl3). Air
temperature and humidity measurements used for flux corrections come from PT100 tem-
perature and HT-1 humidity sensors (HC2A-S, Rotronic, Bassersdorf, Switzerland). Pressure
is measured with Setra 278 sensors (Setra Systems, Inc., Boxborough, Massachusetts, USA).

For comparing the impact of different filter time scales on turbulent fluxes, i-Box data
are processed using block averaging without an additional high-pass filter, so that τa equals
τ f . Data are processed using averaging periods of 0.5, 1, 2, 3, 5, 10, 15, and 30 min.1

Before calculating turbulent statistics, raw 20-Hz data are quality controlled and rotated
into a streamline coordinate system using double rotation. During quality control, data are
removed if the instrument quality flag is set; if data points are classified as spikes; and if
measurements exceed 30m s−1 for the horizontal wind components, 10m s−1 for the vertical
wind component, and 50g m3 for water vapor density or are outside the range −20 − 40◦C
for sonic temperature. Removed data are replaced by random values drawn from a Gaussian
distribution with the mean and standard deviation calculated from a 30-s window. If more
than 10% of the data within a single averaging interval are replaced, the calculated turbulent
statistics are excluded from further analysis. Flux corrections are applied to the (co)variances,
including a frequency response correction (Aubinet et al. 2012;Moore 1986)with co(spectral)
models followingMoore (1986), Højstrup (1981), and Kaimal et al. (1972); a sonic-heat flux
correction of the vertical heat flux and temperature variance (Schotanus et al. 1983); a WPL
correction of the vertical moisture flux (Webb et al. 1980); and an Oxygen correction of the
vertical moisture flux based on measurements from Krypton hygrometers (Van Dijk et al.
2003).

3 (Co)spectra

3.1 Calculation of (co)spectra

Two different types of (co)spectra are calculated to determine the gap scale τg: Fourier
decomposition and subsequent calculation of Ogive functions from the Fourier (co)spectra
and MRD. Fourier (co)spectra are calculated using the Welch method (Welch 1967) for 1-h
long periods that overlap by 30min to increase the sample size. Ogive functions are defined as
the cumulative distribution function of the spectral densities (Desjardins et al. 1989; Metzger

1 The datasets are available on zenodo (Lehner 2023a, b, c, d, e, f, g, h).
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and Holmes 2008; Oncley et al. 1996):

Ogxy ( f0) =
∫ f0

∞
Sxy( f )d f , (1)

where f and f0 are the frequency and Sxy is the spectral density of the variables x and y.
The MRD approach is described in detail in Vickers and Mahrt (2003). To summarize

the basic concept, two time series xi and yi with i = 1, 2, . . . 2M data points are split into
consecutively smaller blocks by cutting the individual blocks into halves until n = 2M blocks
with a length of only 1 data point remain. In each step, the block average is first subtracted
before splitting the block into two parts. The cospectrum of variables x and y is then defined
as:

Dxy (m + 1) = 1

2M−m

2M−m∑
n=1

xn (m) yn (m) , (2)

where m is the scale, with m = M the lowest-order mode corresponding to the mean over
the whole time series with 2M data points and m = 0 the highest-order mode corresponding
to the mean over blocks of one data point, and xn the average over block n of the time series
xi . Dxy has the same units as the covariance x ′y′. The spectrum of a single variable x can be
calculated analogously as Dxx . MRD (co)spectra are computed for overlapping time series
of 216 data points corresponding to approximately 55 min, with a new time series starting
every 30 min.

Only stable (co)spectra with positive z/L in both 30-min periods of each 1-h period, for
which the (co)spectra are calculated, are used to determine the gap scale.

3.2 Binned (co)spectra

3.2.1 Turbulent Peak

Mean (co)spectra calculated over the selected stable periods are shown in Fig. 2a–f for all
five i-Box sites and each vertical measurement level. Overall, all (co)spectra show a more or
less pronounced turbulent peak between 0.1 and 1min. The exact location of the peak differs,
however, strongly from site to site and also from variable to variable, with a smaller turbulent-
peak time scale τp of about 0.1 min in the vertical velocity compared to the horizontal
components with τp ≈ 1 min (Fig. 2a, b). The difference in the location of the turbulent peak
is equally visible between the vertical and horizontal heat fluxes (Fig. 2d, e), as well as in
the moisture fluxes (not shown). In the vertical velocity, there is also a shift of the peak with
distance from the ground at all three sites with multiple measurement levels (VF0, SF8, and
NF27). The size of the largest and most energy-containing eddies is expected to decrease
close to the ground. Sun et al. (2020) have shown that under stable conditions the length scale
of the peak in the vertical velocity spectra is slightly lower than the measurement height z.
The height dependence is also reflected in the surface-layer scaling by Kaimal et al. (1972),
who have shown that appropriately scaled spectra plotted against a normalized frequency that
is proportional to the height z collapse onto a single curve in the inertial subrange (Kaimal
and Finnigan 1994; Vickers and Mahrt 2003). The focus of this work is on the gap scale and
as Vickers and Mahrt (2003) have pointed out, the relation between the peak scale and the
gap scale is not known, but they have also shown that the gap scale increases equally with
height above ground. The turbulent peak in the spectra of the horizontal wind component
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Fig. 2 a–eMean (co)spectral densities of u,w, T , uT , andwT calculated over all stable (co)spectra at different
sites (line colors, see top-left legend). f–t (Co)spectral densities at VF0_lvl1 color coded by (f–j) z/L and
(k–o) U and at (p–t) NF10_lvl1 color coded by U . Mean (co)spectra are shown for each variable-sized bin
containing 20 (co)spectra. Line color indicates the mean z/L orU for the respective bin. Sloping dashed lines
show a −2/3 slope

is also shifted towards smaller time scales at the lowest level of SF8 compared to the other
sites. A possible explanation is the location of the site next to a steep embankment at the
border between a concrete area and cropland. While the measurement height of 6.1 m a.g.l.
(Table 2) refers to the height above the parking lot south of the mast, the height above ground
is lower with respect to the area north of the embankment.

While the mean vertical velocity spectrum decreases continuously with increasing τ for
τ > τp and Sw( f ) approaches zero, SuT ( f ) (Fig. 2d), ST ( f ) (Fig. 2c) and Sq( f ) (not
shown) show a distinct increase at large scales. The exception is NF27_lvl1, where SuT goes
to zero at τ ≈ 10 min. This is also the only location with a mean negative SuT , indicating
an upslope turbulent heat flux, directed against the predominantly downslope oriented flow
during nighttime at this location.
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3.2.2 Dependency on MeanWind Speed and Stability

To analyze the dependency of the (co)spectra onmean flow parameters, they are binned based
on mean 1-h values of z/L and scalar-averaged wind speed U calculated from individual
30-min values, where z is the measurement height and L the Obukhov length (Fig. 2f–t).
Binning the (co)spectra based on 1-h averages of data processed with τ f c = 1 min does
not change the results shown in Fig. 2 significantly (not shown). The (co)spectra are binned
into equal-sized bins of 50 (co)spectra per bin, which, however, means that the range of the
binning variables z/L and U varies among bins. The spectra of the wind components show
the expected behavior with lower values of Su( f ) and Sw( f ) for smallU (Fig. 2k, l) and large
z/L (Fig. 2f, g). In other words, the variance is smallest for stable and weak-wind conditions,
when shear production is small and buoyancy damping large. The turbulence peak in Sw shifts
to smaller time scales for higher wind speeds, consistent with the normalized frequency used
to scale the spectra in Kaimal et al. (1972), which is inversely proportional to the mean wind
speed. In the spectral model by Kaimal et al. (1972), the location of the turbulence peak
remains a function of stability, with the peak shifted to lower non-dimensional frequencies
for less stable conditions. The shift in the turbulence peak with z/L is not as clear as for wind
speed, but it decreases slightly with increasing stability. High stability is, however, typically
associated with low wind speeds, so that the two parameters are not independent of each
other.

The impact of stability and wind speed is similar for all periods in the inertial subrange,
that is, below approximately 1 min. For larger scales, the spectra decrease for low stabilities
and high wind speeds with increasing time. For weak winds and high stability, the spectra
continue to increase, suggesting the presence of submeso motions. A similar absence of a
spectral gap under very stable conditions and a continuous increase of the spectra of horizontal
windwith increasing spatial scaleswas also found byVercauteren et al. (2019a) and attributed
to the impact of submeso motions.

For temperature, the dependency on z/L andU is not as clear as for the wind components.
While spectral density increases with increasing wind speed for high frequencies, the highest
spectral densities at low frequencies occur with very weak winds (Fig. 2m). This suggests
that submeso motions contribute at these scales during low-wind conditions. For stability, the
spectral densities of T are highest for medium values of z/L and decrease towards both very
stable and near-neutral conditions (Fig. 2h). This is consistent with the explanation given
by Mahrt et al. (1998) for the highest sensible heat fluxes occurring for medium z/L in that
temperature fluctuations are small under near-neutral conditions. The observed dependency
of the temperature fluctuations on z/L is equally visible in the cospectral densities of both
the vertical and horizontal heat fluxes (Fig. 2i, j).

3.2.3 Dependency on the Flow Regime

In contrast to the valley floor (VF0), the cospectra of uT at the slope site NF10 change sign
for low U from generally positive values, that is, a turbulent transport in the direction of the
main wind direction, to slightly negative values, that is, a turbulent transport against the main
wind direction. This sign change is a result of different flow regimes at the north-facing slope,
which becomes apparent when stratifying the data according to wind direction (Fig. 3a–c).
The low-wind speed cospectra at NF10_lvl1 with distinctly different behavior are associated
with southerly downslope flows (yellow lines in Fig. 3). These katabatic winds are very
shallow, which is indicated by the almost zero, but sometimes very weak upward transport
of momentum (Fig. 3c), showing that the wind-speed maximum is located near or below
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Fig. 3 Similar to Fig. 2, showing the mean (co)spectral densities of uT , wT , and uw at a–c NF10_lvl1,
d–f SF8_lvl1, and g–i VF0_lvl1 as a function of wind direction. Red and green lines represent the up-valley
and down-valley direction, respectively. Yellow lines correspond to the downslope direction at NF10 and the
upslope direction at SF8 and blue lines, vice-versa, the upslope direction at NF10 and the downslope direction
at SF8. Thick lines show the medians over the respective wind direction ranges and dotted horizontal lines
indicate zero for the cospectral densities

the measurement level at 5.7 m a.g.l. The oftentimes negative sign of SuT ( f ) shows that the
turbulent transport advects warmer air from further down the slope against the mean wind
direction. Similar differences in the spectral densities and in SuT and Suw for katabatic winds
can also be observed at NF27 (not shown). In addition to the distinctly different katabatic
flow regime, other regimes can be identified as well at NF10 (Fig. 3a–c). Specifically, the
overall largest magnitudes of both SwT ( f ) and SuT ( f ) and of Suw( f ) occur together with a
westerly down-valley direction (green lines), while easterly up-valley flows (red lines) lead
to smaller magnitudes.

The effect of different flow regimes on the (co)spectra is also visible at other sites, for
example, at VF0 and SF8 (Fig. 3d–i). At SF8, westerly down-valley winds (green lines) are
also characterized by larger SuT ( f ) and SwT ( f ) than easterly up-valley winds (red lines)
and a shift of the turbulent peak to lower and higher τ in SwT ( f ) and SuT ( f ), respectively
(Fig. 3e, d). At the same time, Suw( f ) is lower for down-valley flows (Fig. 3f) and Svw( f ) is
positive in contrast to up-valley flows (not shown), which can also be seen at SF1. Thermally
driven up-valley wind periods with stable conditions are mainly restricted to the evening and
early night, whereas the down-valley winds can extend beyond sunrise, when wind speeds
start to increase near the surface (Lehner et al. 2021) and buoyancy starts to contribute
positively to turbulence production. The pronounced shift in the turbulent peak of SwT can
also be seen in the spectra of the vertical velocity (not shown) and may be related to stronger
turbulence anisotropy in the down-valley flows due to submeso motions or terrain effects,
with higher terrain just north of the measurement site. During periods of downslope flows
(blue lines), cospectral densities are general weak and SuT becomes slightly positive, similar
to the downslope flows at NF10 and NF27. Even at VF0, the largest cospectral densities
occur for down-valley directions (green lines). Flows with a more southerly direction, on
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the other hand, include a cross-valley wind component, which could be related to previously
documented outflows from tributary valleys to the south (Babić et al. 2021).

In summary, the (co)spectral densities clearly depend on the mean flow parameters, but
this dependency is not consistent across the whole frequency range and it varies among the
different variables. For example, submeso motions that influence the large-scale end of the
(co)spectra, impact the horizontal motions more than the vertical. The distinctly different
shapes of the (co)spectra also suggest that not all variables are equally well suited for iden-
tifying a filter time because of, for example, the lack of a pronounced gap in the (co)spectra.

4 Gap Time Scale

4.1 Identification of the Gap Time Scale from (co)spectral Densities

To identify the gap time scale, the methods by Vickers and Mahrt (2003, VM03 hereafter)
and by Voronovich and Kiely (2007, VK07 hereafter) are followed. While Vickers and
Mahrt (2003) used only MRD cospectra, we are applying their method not only to the MRD
(co)spectra Dxy , but equally to the Fourier (co)spectra S( f ) and to (co)spectra derived from
the Ogive functions ΔOg. VK07 is similarly applied to all three types of (co)spectra. The
only difference is that the MRD (co)spectra are first smoothed with a 1-2-1 filter as in VM03,
whereas the other (co)spectra are smoothed with a LOWESS (locally weighted scatterplot
smoothing) function. WhileΔOg are very similar to the original Fourier (co)spectra and can
thus be expected to yield similar τg , they do differ somewhat as a result of the bin averaging
applied to the raw Fourier (co)spectra to reduce the number of frequency values and thus the
amount of the data being stored. In the (co)spectra derived from Ogive functions, the sign
information is lost as well since they are calculated from normalized Ogives.

Individual steps of the identification algorithms are visualized for two example cospectra in
Fig. 4, specifically for an MRD and a Fourier cospectrum of wT . For VM03, the turbulence
peak τp is identified in the smoothed (co)spectra as the location where the slope of the
(co)spectrum dS/dτ or dD/dτ first becomes negative above a threshold value of τ = 1 s.
If the dominant part of the (co)spectrum in the range τ = 1 − 300 s is negative as in the
examples shown in Fig. 4, the sign of the whole (co)spectrum is first changed to ensure that
the turbulence peak is a maximum and not a minimum. The (co)spectrum is discarded if no
sign change, that is, no turbulence peak is found or if dS/dτ is already negative at τ = 1 s.
The gap scale τg is then defined as the location where dS/dτ changes sign again, that is, at
the first minimum in the (co)spectrum, which deviates by at least 5% from the peak value,
for example, τg identified from DwT in Fig. 4a (blue line). Figure 2 suggests that many of
the (co)spectra do not have a pronounced gap, for example, SwT . If no minimum exists, τg
is identified as the location where the (co)spectral density stops to contribute significantly to
the total (co)variance, for example, τg identified from SwT in Fig. 4b (blue line). This point
is defined as the location where the (co)spectrum normalized by the cumulative sum drops
below an arbitrary threshold of 0.005, that is, the contribution of the (co)spectral density to
the total (co)variance drops to below 0.5%.

For the secondmethod, followingVK07, a fifth-order polynomial is fitted to the individual
smoothed (co)spectra (dotted lines in Fig. 4) and the curves with a fit error exceeding 0.15
are rejected. The location of turbulence peak τp is then determined analytically as the first
extremum in the fitted curve between τ = 1 and 1200s. Further extrema, roots, and inflection
points are found for τ > τp and τg is derived from the polynomial fit p as the location where
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Fig. 4 Example a DwT and b SwT cospectra showing the gap identification. Solid lines with markers show
the smoothed cospectra, light solid lines the original unsmoothed cospectra, and the dotted lines the fifth-order
polynomial fit used byVK07. Vertical blue and brown lines indicate the gap scales identified using themethods
by VM03 and VK07, respectively, and the vertical gray line indicates the lower limit of τ = 1 s for identifying
the turbulence peak. The example DwT in (a) and SwT in (b) were selected to visualize the methods best and
are not for the same time period

p(τg) = p(τm)+0.02
(
p(τp) − p(τm)

)
, with τm being theminimum τ of the first extremum,

first root, and second inflection point after τp . A detailed description of the method can be
found in VK07 and in Babić et al. (2017).

4.2 Gap Times Scales fromDifferent (co)spectra and IdentificationMethods

In this section, the gap time scales identified from the (co)spectra of different variables,
different types of (co)spectra, and different identification methods are compared to evaluate
the sensitivity of the identified gap scale to these different options. Figure5a,b compare
all τg from VM03 and VK07 identified from ΔOgwT and DwT . It has to be kept in mind
that VK07 determines τg analytically from a fit to the spectra, whereas VM03 identifies
the gap in the original spectra, so that the resolution decreases with increasing τ for VM03
(Fig. 4). Overall most of the data are located above the 1:1 line for ΔOgwT (Fig. 5a),
indicating larger τg identified by VK07 than by VM03. The reason may be found in the fact
that VM03 is applied to the raw (co)spectra, which may contain small minima even in the
smoothed curves, which are removed in the polynomial fits used by VK07. This may lead
to particularly large differences when applied to MRD (co)spectra with a coarser resolution
(Fig. 5b). The agreement between the two methods depends also on the variable (not shown)
and the cospectrum of wT in Fig. 5a, b was simply chosen as an example.

Fourier (co)spectra are binned into logarithmically spaced frequency bins before out-
putting them. Since the resolution decreases for lower frequencies and fewer data points are
averaged in the low-frequency bins, the (co)spectra are noisier and the application of VM03
does not work well beyond approximately τ = 30 min. This means that large τg cannot be
identified based on a combination of Fourier (co)spectra and the VM03 method, so that the
resulting distributions of τg are biased towards lower values (Fig. 5c). For low values of τg ,
the agreement with τg identified from ΔOg is, however, good. The VK07 method is not
affected since the polynomial fit can be extended to larger τ . Similar results are found for
other variables (not shown).

Since the MRD (co)spectra are determined by splitting the time series into consecutively
smaller blocks of data, the resolution of the MRD (co)spectra is much coarser than the
resolution of the Fourier and ΔOg (co)spectra for low frequencies (Fig. 4). This is also
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Fig. 5 Comparison of τg identified from different (co)spectra and methods at VF0_lvl1: comparison of VM03
and VK07 applied to aΔOgwT and b DwT ; comparison of τg c, d fromVM03 applied toΔOgwT , DwT , and
SwT and e from VK07 applied to ΔOgwT and DwT ; f–h comparison of τg from DwT and Dww , Duw , and
DuT using VK07. Gray histograms along the x- and y-axis show the distributions of τg from the respective
method and variable and r in the top-right corner of each subfigure is the Spearman correlation coefficient

reflected in τg identified by the VM03 method, which, for example, can be only 6.8 or
13.7 min in the range τ = 5− 15 min (Fig. 5d). Since τg is determined analytically from the
fitted polynomial curve in VK07, continuous values of τg are possible for MRD (co)spectra
as well (Fig. 5e). Mahrt et al. (2001) mention that the spectral gap identified from Fourier
(co)spectra occurs at somewhat larger periods than the gap identified fromMRD (co)spectra.
With the VM03 method, overall little correlation is found between τg identified from the two
types of cospectra (Fig. 5d). With the VK07 method, on the other hand, the values agree very
well for τg smaller than about 10 min without a clear bias (Fig 5e). For larger values, the
correlation is low, but most of the data points are located above the 1:1 line indicating higher
values from the Fourier than from the MRD cospectra.

As seen in the (co)spectra (Fig. 2), the location of the gap varies among the different
variables, which means that τg will equally vary depending on the variable used for identifi-
cation. Figures5f–h show comparisons of τg identified from DwT using VK07 with τg from
different other MRD (co)spectra. Since the spectral densities of w decrease continuously
after the turbulence peak without a spectral gap (Fig. 2b), the identification of τg mostly
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Fig. 6 Distributions of τg identified from DwT using VK07 for different sites and measurement levels

fails, yielding an almost constant value of about 25 min (Fig. 5f), mostly independent of
the type of spectrum and method used. Identification from spectra of T equally fails most
of the time despite the presence of a spectral gap, but resulting in very low values close to
zero (not shown). Correlations between τg identified from different variables are generally
low with large scatter. A relatively high number of data points close to the 1:1 line can be
found for Duw (Fig. 5g), DuT (Fig. 5h), and Dwq (not shown), particularly for τg smaller
than 20 min, but correlations are overall low. While scatter is relatively large, τg from Duw

tends to be somewhat larger than from DwT , particularly for larger τg (Fig. 5g), and τg from
DwT are again slightly higher than from DuT (Fig. 5h). This is likely related to the stronger
impact of submeso motions in the high-frequency range of the cospectra of uT and wT than
in the momentum cospectrum. At NF10 and NF27_lvl1, which are both strongly influenced
by downslope flows during nighttime, no systematic difference can be seen between τg from
Duw and DuT or DwT (not shown). Overall, results clearly depend on the selected variable,
but also on the type of (co)spectra and method used to identify τg . While some yield clearly
erroneous results (for example, w spectra), others may differ, but it is not immediately obvi-
ous which one of them, or if any is incorrect. Further analysis is thus partly based on an
ensemble approach, using all of the methods, types of (co)spectra, and variables excluding
only clearly unrealistic results.

4.3 Site Dependency

Distributions of τg identified from DwT using VK07 are compared for the different measure-
ment sites in Fig. 6. The distributions are overall similar for all sites and vertical levels. This
is also true for other variables and types of (co)spectra; the distributions in Fig. 6 are again
only an example. The variable, type of (co)spectrum, and method have thus a larger influence
on the detected τg than the location. Notable exceptions occur for low τg both at SF8 and
NF27. A larger fraction of values are in the lowest two bins at the lower level than at the
upper level, that is, small τg are more frequent closer to the ground. This is consistent with
the results of Vickers and Mahrt (2003), who also found an increase of τg with height above
ground. At VF0, a similar difference can be observed for the smallest bin, which is, however,
not equally pronounced in other variables. Small τg are overall somewhat less frequent at SF1
and NF27_lvl2, with the exact distributions depending again on the variable. At SF1, wind
speeds are generally higher than at the other sites during nighttime and at NF27, downslope
winds occur regularly (Lehner et al. 2021), with strong vertical wind shear.

4.4 Correlation Between the Gap Scale andMean Flow Parameters

To determine an expression for a time-varying filter time, a relation needs to be found between
the identified gap time scale τg discussed in the previous subsection and the local mean flow
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Fig. 7 Distribution of τg identified from Duu using VK07 as a function of a mean wind speed and b stability
at VF0_lvl1. (c, d) as (a, b) but τg andU are normalized by z/u∗ and u∗, respectively. The yellow lines show
fits (Eq. 3) through the binned data (yellow dots) and r is the Spearman correlation coefficient

parameters. Figures7a,b show an example of the relationship between τg and the mean
wind speed U and between τg and the stability parameter z/L , respectively. Specifically,
the example shows the results for VF0_lvl1 and τg identified from Duu using VK07. U and
z/L are 60-min averages calculated from individual 30-min values. While there is significant
scatter in the data, there is also a distinct correlation with both parameters, with higher wind
speeds and lower z/L resulting in larger τg as expected. Similar relations can also be found
for other combinations of variables, methods, types of (co)spectra, and stations (not shown).
To fit a curve through the data, data points exceeding the mean fitting variables (U or z/L) by
at least 5 standard deviations were excluded. VK07 can yield values of τg larger than 60 min,
that is, outside the range of the original (co)spectra, because it is based on an analytical
form of a polynomial fit to the (co)spectra. To avoid using values of τg based on potentially
unrealistic fits outside the range of the original (co)spectra, only τg smaller than 50 min were
used for fitting. This ensures further that no values are included, which correspond to the
last point of the (co)spectrum if identified with the method of VM03. The remaining τg were
binned and median values of U or z/L calculated for each bin, indicated by the yellow dots
in Fig. 7. An exponential curve of the form:

τg = exp(ax + b), (3)

was fitted through the binned values, where a and b are the fit parameters and x = U or
x = ln(z/L). Both U and z/L are local values from the same measurement level as the
identified τg . Only bins with at least 10 valid data points were included in the fit and no fit
was determined if less than three bins with enough valid data were present.

The samemethodwas applied to all sites, variables, types of (co)spectra, and bothmethods
of identifying τg , yielding a range of different fits for both U and z/L (Fig. 8a, b). Only fits
with a p value lower than 0.01 have been retained for the analysis and, in addition, fits based
on spectra of w were removed because the identification of τg does not work well. Some fits
based on data with large scatter also produced a slope with a sign opposite to expectation and
to the majority of the fits, that is, a negative slope for U and a positive slope for z/L . These
curves were particularly frequent for SF8 and were not included in the median fits shown
in Fig. 8a, b either. While the remaining fits show some scatter, there are little systematic
differences based on the variable and spectral method (not shown). A large part of the scatter
is, however, a result of location so that median fits for each sonic anemometer differ from the
medians over all fits and from each other. For example, individual fits for NF27 are clustered
in the left part of Fig. 8a, which is partly a result of the overall low wind speeds observed at
this site, while other sites are oftentimes influenced by the stronger valley winds (Lehner et al.
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Fig. 8 Frequency distribution of all fits (Eq. 3) with a p value less than 0.01 (gray shading) for τg as a function
of a U and b z/L and normalized τg as a function of c normalized U and d z/L . The pink line corresponds
to the median fit parameters a and b from all individual fits using different variables, types of (co)spectra,
methods, and sites and other colored lines show the median fits for each of the different measurement sites.
The purple line is based on fits of data from all locations

2021). Fits for SF8, in particular SF8_lvl1, on the other hand, extend further to near-neutral
conditions (Fig. 8b). SF8 is located next to a concrete parking lot, where z/L remains weak
during stable periods before sunset and stability weakens rapidly in themorning after sunrise.

In addition, fitswere also calculated in a non-dimensional framework. The gap scale τg was
normalized by z/u∗ and the wind speedU by u∗, where u∗ is the friction velocity, calculated
over the same averaging period asU . Since the goal of thiswork is to evaluate the performance
of a time-varying filter time that can be relatively easily determined, normalization with more
complex parameters, such as the integral time scale, were not considered. Scatter does not
decrease compared to the non-normalized framework, neither for the correlation between τg
and the mean flow parameters (Fig. 7) nor among the individual fits resulting from different
(co)spectra and identification methods (Fig 8).

To apply a multi-variable regression using both z/L and U , the identified τg were first
binned and only bin averages with at least three data points were used for the regression.
Example distributions of τg in the two-dimensional parameter space are shown in Fig. 9a, b
for both dimensional and non-dimensional data. Multi-variable regressions of the form:

τg = exp
(
c ln

z

L
+ dU + e

)
, (4)

τg

z/u∗
= exp

(
c ln

z

L
+ d

U

u∗
+ e

)
, (5)

where c, d , and e are the fitting coefficients, describe the general behavior of τg , with an
increase of τg with decreasing z/L and increasing U or decreasing U/u∗. In the example
shown in Fig. 9a, b for Duu , the fit seems to somewhat overestimate τg using dimensional data
for near-neutral conditions, with a better agreement for non-dimensional data. A comparison
of all fits resulting from the different variables, types of (co)spectra, and both methods VM03
and VK07 are shown in Fig. 9c, d. Similar to the single-variable regressions (Eq. 3), only
those curves with p values less than 0.01 for both fit parameters and with the expected and
dominant slopes were included. In the next section, the determined regression curves are
used to derive a time-varying filter time and the performance of the different fits is evaluated.

To evaluate the robustness of the fits to some degree, we recalculated them for individual
subperiods of the total 2014–2020 period, specifically for the three subperiods 2014–2015,
2016–2017, and 2018–2019. The median fits (not shown) for each site are very close to those
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Fig. 9 a, bDistributions of binned a τg and b normalized τg identified from Duu using VK07 as a function of
z/L and a U and b U/u∗ from all measurement locations. Color lines show the respective multi-variable fits
(Eqs. 4, 5). c, d Comparisons of multi-variable fits from different methods and (co)spectra using data from all
measurement locations in a c dimensional and d non-dimensional framework (transparent blue planes). The
black planes show the respective median fits

for the whole period shown in Fig. 8 for the dimensional fits, except for one outlier at SF1. It
has to be kept in mind that shorter periods mean fewer data points, which is detrimental for
the fitting algorithm, which fails more frequently or yields unreliable results. The variability
is also somewhat larger for the non-dimensional site-specific fits, in particular for SF8 and
NF27. The medians over all individual fits and the fits from all data (pink and purple lines in
Fig. 8) vary, however, very little, using both dimensional and non-dimensional analysis, as
do the multi-variable fits. We similarly calculated fits using 60-min averages of U and z/L
calculated from individual 1-min values. The differences to the fits calculated from 30-min
data are of a similar magnitude as the variations among the different subperiods (not shown)
and have little impact on the predicted distributions of the filter time discussed in the next
section.

5 Impact of Filter Time

5.1 Time-Varying Filter Time

In this section, we want to evaluate the performance of different constant filter time scales
between τ f c = 30 s and 30 min and of time-varying filter times based on the fits described
above. The performance will be evaluated using two separate criteria that are designed to
establish whether a given filter time removes non-turbulent motions effectively and whether
the filter time is long enough to capture most of the turbulence spectrum. These criteria are
described in detail in Sect. 5.1.2. To determine a time-varying filter time, τ f v , data were pre-
processedwith constant filter times τ f c of 30s, 1min, 2min, 3min, 5min, 10min, 15min, and
30 min. Using, for example, the 30-min averaged values of U together with the coefficients
determined from the regression in Eq. 3, yields one value of τ f v for each 30-min period,
for which the closest value within the above list of filter times is selected. The data for this
30-min period are then extracted from the pre-processed datasets. All fluxes and turbulence
statistics for τ f v < 30 min are averaged over a 30-min period, that is, if τ f v = 3 min for a
given 30-min period, the ten 3-min periods are averaged to give a single value. This approach
is easier to implement than actually processing the data with a time-varying filter time, in
particular with many existing eddy-covariance software packages.
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Fig. 10 Distributions of τ f v for all stable 30-min periods at VF0_lvl1 (top row), SF1_lvl1 (middle row),
and NF27_lvl2 (bottom row). a–c τ f v based on dimensional (light and dark blue bars) and non-dimensional
(turquoise bars)multi-variable regressions;d–i τ f v based on dimensional and non-dimensional single-variable

regressions using d–f U and g–i z/L as input parameters. Input parametersU and z/L are based on τ f c = 30-
min (light blue) and τ f c = 1-min (dark blue) averages. In addition, d–i show the distributions of d–f the
τ f c = 30-min mean wind speed (brown bars) and g–i the τ f c = 30-min (brown bars) and 1-min (yellow
bars) stability parameter (top x axes and right y axes). Distributions of τ f c = 1-min mean wind speed are not
included in d–f because the scalar-averaged wind speed does not depend on τ f c and the distribution is thus
identical to that using τ f c = 30-min

5.1.1 Predicted Distributions of �fv

The performance of τ f v based on different regressions is evaluated, specifically, the medi-
ans of all single-variable regressions shown in Fig. 8 (pink lines), as well as the median
multi-variable fits (Fig. 9) from both dimensional and non-dimensional analysis. Since the
regressions show significant differences among the locations, site-specific regression curves
(color lines in Fig. 8) are tested aswell. Distributions of τ f v from different regression lines are
shown in Fig. 10 together with the distributions of the τ f c = 1-min and 30-min mean wind
speed and z/L , with the 1-min data averaged to 30 min.While the filter time used to calculate
z/L has relatively little impact on the regression curves themselves, it has a non-negligible
impact on the distribution of τ f v resulting from z/L . In connection with the regression lines
in Fig. 8, the distributions of U and z/L help to explain the final distributions of τ f v .

Observed wind speeds during stable conditions are overall low (Fig. 10d–f), particularly
at the valley floor, with strongly skewed distributions. At VF0_lvl1, U < 3 m s−1 for more
than 80% of all 30-min periods and U < 1 m s−1 for more than 30%. The corresponding
τ f v

(
U

)
resulting from the curve shown in Fig. 8 are thus equally low, yielding τ f v = 30 s

in more than 60% of the time. This result seems to differ from the distributions of the gap
scale τg shown in Fig. 6, which indicate a much larger number of values above 1 min and
even above 20 min. This may point to an imperfect representation of the data, which scatter
strongly, by the respective regression curves. A cluster of high τg can, for example, be seen
in Fig. 7a for U between 2 and 6m s−1. In addition, the distributions of wind speed for the
periods, for which the gap scale identification is successful are partly shifted to slightly higher
values, in particular at VF0 and SF1 (not shown). Using site-specific fits does not change the
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distributions of τ f v much, except for NF27, where the distribution is shifted more towards
30min (not shown). The distribution changes, however, at all sites when using the regressions
based on non-dimensional parameters for both site-specific and general fits (Fig. 10d–f). The
difference is, however, mainly in shifting values from τ f v = 30 s to τ f v = 30 min.

Using z/L as the independent variable instead of U leads to an overall smaller number
of periods with τ f v = 30 s and slightly higher numbers in all other classes (Fig. 10g–i)
when z/L is based on τ f c = 30 min. The distributions are similar to those of τ f v

(
U

)
when

using τ f c = 1 min since more periods are classified as strongly stable (yellow bars), leading
to lower τ f v based on the curves shown in Fig. 8b. Similar to U , the function based on
non-dimensional parameters yields τ f v = 30 min most of the time.

Using a multi-variable regression and including both z/L and U as predictors yields
completely different distributions (Fig. 10a–c). Instead of identifying τ f v = 30 s as the
appropriate filter time for most of the periods, the distribution shifts to τ f v = 0.5− 3 min at
all sites, with the exact distribution depending on the site. τ f v depends also on whether z/L
used inEq. 4 to calculate τ f v is basedon30-minor 1-min averagedfluxes.Using τ f c = 30min
input data, the distribution is shifted to lower values of τ f v . For the non-dimensional fit, the
distributions are, however, similar to those resulting from the single-variable fits. The filter
time thus depends strongly on the type of fit (multi-variable vs single-variable) and on the
frequency distribution of the independent variables used to calculate τ f v .

5.1.2 Performance Assessment

The goal of using a time-varying filter time is to ideally separate turbulent and non-turbulent
motions better thanwith a constant filter time.To evaluate the performanceof τ f v anddifferent
τ f c, we thus need to determine whether the selected filter time for each 30-min period is (i)
short enough to removemost non-turbulentmotions and (ii) long enough to capturemost of the
turbulence spectrum. To estimate whether τ f is short enough, the scalar-averaged mean wind
speedU is compared to the vector-averaged mean wind speed u, where u corresponds to the
wind speed in the mean wind direction of the averaging period. It is quite common to define u
as the mean wind speed when processing eddy-covariance data, for example in the frequently
used EddyPro Software (LI-COR Biosciences 2021). The vector-averaged mean wind speed
can, however, be significantly lower than the scalar-averaged wind speed, depending on the
variability of the wind direction (Clive 2008). In the presence of oscillatory motions in the
horizontal wind direction with a time scale shorter than τ f , such as, for example, meandering
(Mortarini et al. 2016, 2019), U and u can thus differ strongly. If τ f , on the other hand, is
short enough to remove these large-scale motions, u should be close to U and the difference
Δu = |U − u| can thus be used to quantify the performance of τ f . To estimate whether
τ f is at the same time long enough to capture most of the turbulence spectrum, the spectra
of the vertical velocity are used, which show comparatively little impact of non-turbulent
motions at larger scales (Fig. 2). The spectra decrease continuously for scales larger than
the turbulence peak, so that the variances calculated with increasing τ f will converge. A

reference τ f ,re f = 30 min is defined to represent the total turbulent variance w′2
re f and

the difference Δw′2 = |w′2
re f − w′2

τ f | represents the underestimation of the total variance
when using τ f < 30 min and is used to quantify how much of the turbulence spectrum is
missed.

Figure 11a shows the frequency FΔu ofΔu/U > 10%for different constant filter times τ f c

and different regression curves used to determine τ f v . For a constant τ f c, FΔu increases with
increasing τ f c, reaching, for example, values of about 40% for τ f c = 15 min at VF0_lvl1.
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Fig. 11 Frequencies a FΔu and b FΔw and c the mean of FΔu and FΔw for different constant filter times (top
rows) and for τ f v from different regression curves (bottom rows), whereU and zol indicate the fitting variables

U and z/L , respectively; mv a multi-variable fit; rcs and rcm the site-specific and median over all regression
curves, respectively; dim and ndim whether the fits are based on the dimensional or non-dimensional analysis;
and 1min that U and z/L are based on τ f c = 1-min data instead of 30-min data. The individual columns in
the subfigures show the respective frequency for each of the sensor locations and the last column (mean) is
the respective mean of all sensor locations

This means, using τ f c = 15 min, non-turbulent motions are not completely removed in 40%
of all cases. FΔu differs, however, from site to site. At NF27_lvl2, Δu exceeds 10% in more
than 70% of all cases using τ f c = 15 min, whereas at SF1, the number is below 20%. While
FΔu decreases rapidly with decreasing τ f c for most sites, it remains high at NF27 for all
τ f c. Even with τ f c = 30 s, FΔu is about 20% at NF27_lvl1. This suggests that at NF27,
wind direction is strongly variable even at small time scales. These motions overlap with the
turbulence scale and are thus difficult to remove with a traditional block averaging filter.

FΔw, that is, the frequency of Δw′2/w′2
re f > 10% shows the opposite trend to FΔu , that

is, it generally increases with decreasing τ f c (Fig. 11b). Using τ f c = 30 s, the total variance
is underestimated by more than 10% in more than 60% of the cases at most of the sensor
locations, which means that τ f c = 30 s is generally too short to capture all of the turbulence.
The most pronounced outlier is NF27_lvl1 at 1.5 m a.g.l., where this is only true about 30%
of the time. The dependence of FΔw on τ f c is, however, overall not as large as that of FΔu .
Even with τ f c = 15 min, FΔw remains above or close to 15% at all locations, except for
NF27_lvl2.

For τ f v , the results depend strongly on the used regression. High values of FΔu together
with relatively low values of FΔw are found for fits based on a non-dimensional analysis

123



Time-Varying Filter Time for Stable Conditions in Mountainous Terrain 543

when using τ f c = 30 min data to determine τ f v , independent of the fit variable. This is a
result of the high number of τ f v = 30 min intervals identified by these fits (Fig. 10). FΔu

decreases when using τ f c = 1-min data to determine τ f v as a result of the high number of
periods with τ f v = 30 s (Fig. 10). The dimensional fits based on U yield a large number of
τ f v = 30 s (Fig. 10); FΔu is thus low and FΔw correspondingly high, similar to τ f c = 30 s.
The multi-variable dimensional fit resulted in completely different distributions of τ f v , with
the highest numbers between τ f v = 30 s and 3 min (Fig. 10). The resulting FΔu and FΔw

based on 30-min and 1-min averaged values are thus similar to those for τ f c = 0.5 − 1 min
and τ f c = 2 − 3 min, respectively.

If we want to identify a filter time that performs best, both scores FΔu and FΔw need
to be combined to determine the τ f that removes the non-turbulent motions best while, at
the same time, captures most of the turbulent motions. Figure10 shows that all fits yield
a distribution of τ f v with one or two dominant peaks, resulting in similar scores than the
respective τ f c. None of the tested fits stands out with low values of both FΔu and FΔw,
indicating a perfect performance. It can also be seen from Fig. 11 that FΔu depends more
strongly on τ f than FΔw. Keeping FΔw below 45% and FΔu below 20% (green squares in
Fig. 11c), τ f c = 2 − 3 min emerge as the overall best choices based on the mean values
over all sites (Fig. 11c). Among the different time-varying filter times, the multi-variable
dimensional fit using τ f c = 1 min as input data yields the best result, but slightly worse than
τ f c = 2 − 3 min.

For individual locations, results, may differ, however. Similar results are found at VF0
and NF10. At VF0, the mean of FΔu and FΔw reaches its minimum for larger values of τ f c

at the top two measurement levels, in agreement with the previous finding that the gap scale
increases with height. It has to be mentioned, however, that vertical velocity spectra at VF0
are most strongly impacted by non-turbulent motions in the low-frequency range compared
to other locations (Fig. 2), likely related to the frequently occurring oscillatory motions in
the very stable and nearly quiescent layer above the valley floor. This impact in the spectra
means, however, that FΔw is potentially even overestimated. At SF8 and NF27_lvl2, on the
other hand, none of the tested τ f v and τ f c yields FΔu < 20% and FΔw < 45%. At NF27, this
is largely due to high values of FΔu , suggesting that non-turbulent motions occur within the
katabatic flows at time scales lower than 1 min. Oscillations have been observed frequently
in downslope and other drainage flows (Zardi and Whiteman 2012). SF8, on the other hand,
shows high values of both FΔu and FΔw, with FΔw increasing faster with increasing τ f c than
at other sites. As mentioned before, near-neutral conditions occur more frequently at SF8,
with typically higher spectral densities in the inertial subrange and near the turbulence peak
(not shown), thus likely causing a fast underestimation of the total turbulence spectrum for
lower τ f c. At both SF8 and NF27, the lowest mean values of FΔu and FΔw for constant filter
times are, however, equally reached for τ f c = 2 min and the dimensional, multi-variable fit
yields one of the lowest values among all tested fits for NF27, but not SF8. The lowest values
of FΔu and FΔw occur generally at SF1, with equally low mean values for τ f c = 2–15 min,
which are also much lower than at the other sites. The location of SF1 on an almost flat
plateau above the valley floor is special in that it is typically characterized by higher wind
speeds during nighttime than the other sites (Lehner et al. 2021), but no physical explanation
for the difference in FΔw and FΔu can be brought forward at the moment.
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Fig. 12 Distributions of a, e the sensible heat flux, b, f the friction velocity, c, g the variance of the streamwise
wind component, and d, h the variance of the vertical wind component at a–d VF0_lvl1 and e–h NF27_lvl2
for different τ f c (color lines) and τ f v based on the dimensional multi-variable fit using τ f c = 1 min input
data in Eq. (4) (gray lines). Note the difference in the scale of the vertical axes in (a–d) and (e–h)

5.2 Impact of the Filter Time on Turbulence Statistics

The final aspect to be addressed is the impact of the filter time τ f on the turbulent fluxes
and other turbulence statistics, that is, the question of how important the selection of an
appropriate filter time actually is. Figure12 shows distributions of the sensible heat flux, the
friction velocity, and the variances of the streamwise and the vertical wind component at
VF0_lvl1 and NF27_lvl2 for all 30-min stable periods using different τ f c and τ f v based on
the dimensional multi-variable fit with τ f c = 1-min input data. As expected, the distributions
are generally shifted towards smaller fluxes and variances for smaller τ f c. The exact changes
differ, however, among sites and also variables. At VF0_lvl1, τ f c = 30 s yields very similar
sensible heat and momentum fluxes as τ f c = 1 min, whereas at NF27_lvl2 the difference is
much larger. The particularly large change between τ f c = 1min and 30s at NF27_lvl2 is also
obvious in the variances of the two wind components. The turbulent fluxes and variances are
overallmuch smaller at VF0_lvl1 than atNF27_lvl2, independent of τ f .WhileVF0 is located
at the valley bottom within a very quiescent and stable near-surface layer during nighttime,
NF27 is located on a slope, where katabatic winds with strong vertical wind shear occur
regularly. Turbulence intensities are thus generally higher at NF27 and the strong difference
between τ f c = 30 s and other τ f c and τ f v at NF27 suggests, that 30 s is generally too short
to capture the full turbulence spectrum.

The impact of τ f is generally smaller for the variance of the vertical wind component,
except for τ f c = 30 s at NF27_lvl2. This is consistent with the previous finding that the
spectra of w decrease monotonously for τ larger than the turbulent peak, so that the variance
converges with increasing τ f c. This can also be seen during individual nights. While Fig. 12
includes data for all stable conditions, Fig. 13 shows median time series of the same variables
using τ f c = 3 min at VF0_lvl1 and NF27_lvl2 and the relative deviations using different
τ f for 94 synoptically undisturbed and clear-sky conditions identified analogously to Lehner
et al. (2019). The choice of τ f has a much larger influence on the results at VF0_lvl1 than
at NF27_lvl2, which can be at least partly explained by the overall lower values of turbulent
fluxes and variances, for example, the friction velocity at VF0, thus resulting in a larger
relative difference. The variability among the different τ f is also smaller forw′2 during these
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Fig. 13 a–d Median MRD (co)spectra from periods between sunset and sunrise of 94 undisturbed nights.
Vertical dotted lines indicate the used τ f c between 30s and 30 min. e–lMedian time series of e, i the sensible
heat flux, f, j the friction velocity, g, k the variance of the streamwise wind component, and h, l the variance
of the vertical wind component at VF0_lvl1 and NF27_lvl2 during undisturbed nights using τ f c = 3 min
(black lines, left axes) and the respective relative deviations using different τ f c (color lines, right axes) and
τ f v based on the dimensional multi-variable fit using τ f c = 1 min input data in Eq. (4) (gray lines, right
axes). The time axes are normalized by the length of the night between sunset and sunrise, with t∗ = 0 and
t∗ = 1 marking sunset and sunrise, respectively

nights compared to the other variables. For u′2, the relative difference can reach values up
to 500% at VF0_lvl1 and even at NF27_lvl2 it reaches values of up to 200%. In particular,
τ f c = 10−30 min differ strongly from the other curves. These may be considered long filter
times for stable conditions, which are thus rarely used. However, even for common choices
of τ f c = 1 − 5 min, results can vary by up to about 50%.

The corresponding MRD spectra show large contributions from submeso motions in the
low-frequency range, which are particularly large at VF0 and SF8 close to the valley floor
(Fig. 13c). During undisturbed conditions, the layer directly above the valley floor is typically
strongly stratified with very low wind speeds, where oscillations are observed frequently. At
VF0, the submeso contributions are much smaller in the vertical velocity spectra (Fig. 13d),
suggesting meandering motions. These motions further contribute to the larger sensitivity of
the fluxes and variances to the filter time at VF0 than at NF27, NF10, and SF1. At SF8, low-
frequency peaks are not only visible in the horizontal velocity spectrum and the momentum
cospectrum, but also the vertical velocity spectrum and the heat flux cospectrum (Fig. 13a–d),
which indicates that these contributions have a different origin than horizontal meandering.
They also lead to a larger sensitivity of the sensible heat flux to the filter time, in particular
for filter times shorter than 30 min (not shown).

Since the dimensional multi-variable fit yields mostly values of τ f v =1–3 min, the corre-
sponding distributions are generally similar to the ones resulting from τ f c =2–3min (Fig. 12).
In particular at NF27, where τ f v has a pronounced peak at 2 min (Fig. 10), the distributions
of the turbulent fluxes using τ f v are almost identical to τ f c = 2 min. The example time series
in Fig. 13 show, however, an overall relatively small dependency of H on the filter time at
NF27_lvl2.
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6 Summary and Discussion

(Co)spectra from five eddy-covariance stations in the highly complex terrain of the Inn
Valley, Austria, were analyzed for stable conditions. Relationships could be found between
the energy gap time scale τg identified from the (co)spectra and the mean wind speed U
and between τg and the stability parameter z/L . Using these relationships, a comparatively
easy-to-use method of processing the turbulence data with a time-varying filter time τ f v was
presented. The data are pre-processed with a range of different constant filter times between
0.5 and 30 min. The identified regression curves are used to predict τ f v for each 30-min
averaging interval based on pre-processed values of U and z/L and the respective data are
then extracted from the pre-processed datasets. While this approach results only in a discrete
number of different values for τ f v , in this case specifically eight values (0.5, 1, 2, 3, 5, 10,
15, and 30 min), it is relatively easy to use with many existing eddy-covariance processing
software packages, which allow only a single constant filter time to be specified for the entire
dataset. At the same time, the pre-processed datasets are also used to determine the mean
flow parameters to predict τ f v .

In this study, we determined the gap scale τg from (co)spectra of different variables,
including the spectra of temperature, humidity, and the three wind components and the
cospectra of the momentum, heat, and moisture fluxes in all three directions. In addition, we
applied different methods to (i) calculate the (co)spectra and (ii) determine τg . Following
an approach proposed by Vickers and Mahrt (2003), τg was determined from (co)spectra
calculated using the multi-resolution flux decomposition method, identifying extrema in the
(co)spectral curves. The same approach was also applied to Fourier (co)spectra. A second
method was used to fit a polynomial function to the (co)spectra, which allows an analytical
determination of the curve’s extrema following Voronovich and Kiely (2007). The results
showed that the distributions of the identified gap scales differ more strongly among differ-
ent types of (co)spectra and methods at a single site than from site to site using the same
(co)spectrum. The range of τg identified for a single site shows that the results depend strongly
on the choice of method and variable and highlights the overall challenge in identifying an
appropriate filter time from spectral analysis. Part of these differences result from, for exam-
ple, the stronger damping of vertical motions close to the ground compared to horizontal
motions, but also the impact of non-turbulent motions at low frequencies, which may not
affect all (co)spectra equally. For example, meandering motions will have a stronger impact
on horizontal than on vertical motions, while linear gravity waves transport momentum,
but not heat. This sensitivity to the selected variables is important to keep in mind when
comparing gap scales from the different studies.

The large variability of τg and its strong dependence on the variables, types of (co)spectra,
and methods used for gap identification also raise the question whether it is even possible
to determine the optimal τg using spectral analysis. To include this uncertainty, an ensemble
approach was used for further analysis. Linear regressions were computed between the mean
flow parameters and all τg identified from the different methods, types of (co)spectra, and
variables, using both single-variable and multi-variable regressions. Median single-variable
and multi-variable fitting functions were determined subsequently from this ensemble of fit
parameters. Despite the large variability of the gap scales identified from different (co)spectra
and using different methods, the fits with the mean flow parameters U and z/L showed
very consistent trends. The resulting median regression curves used to predict time-varying
filter times are thus robust enough to evaluate the impact of using a time-varying filter time
compared to using a constant filter time.
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The performance of the time-varying filter time resulting from single-variable regressions
with U and z/L and from multi-variable regressions was evaluated by estimating how well
the respective τ f v removes non-turbulent motions and, at the same time, captures most of
the turbulence spectrum. The criteria to evaluate the performance of both τ f v and different
constant filter times were designed to determine how often more than 10% of the turbulence
spectrum are missed and how often non-turbulent motions clearly affect the results. The
criteria are thus implicitly basedon the assumption of a distinct energygap so that the turbulent
and non-turbulent motions can be clearly separated. Particularly under stable conditions, the
spectral ranges of turbulence and non-turbulent submeso motions may, however, overlap.
This means that it may not be possible to remove non-turbulent motions and capture the
full turbulence spectrum under these conditions using simple block averaging. Other filter
types may be needed to clearly separate turbulent and non-turbulent motions, but it is also
possible that such filters do not exist for all conditions. In addition, the criterion to determine
how much of the turbulence spectrum is missed, is based on the assumption that the vertical-
velocity spectra are not affected by non-turbulent motions. While the median spectra show
a continuous decrease at scales larger than the turbulence peak in contrast to the horizontal-
velocity spectra, it cannot be excluded that, for example, gravity waves occur occasionally,
which will also impact the vertical velocity.

When comparing the performance of time-varying filter times with that of constant filter
times, none of the time-varying filter times performed better than a well chosen constant filter
time. At the five i-Box sites, constant values of τ f c = 2 − 3 min yielded the best overall
performance, with similar results using a time-varying filter time based on a multi-variable
regression. The latter performed very similarly to τ f c = 2 min since the distribution of the
predicted τ f v has a prominent peak at 1–3 min. This could indicate that τ f v does not vary
strongly during stable conditions at these sites and that a constant filter time thus yields good
results. To confirm this hypothesis, it would, however, be necessary to extend the analysis to
other sites and conditions to determine (i) whether different distributions of τ f v are found
and (ii) whether a time-varying filter time can outperform a constant filter time if τ f v is more
evenly distributed. Performing the same analysis based on a subset of (co)spectra withmainly
stationary conditions did not have a significant effect on the results.
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