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Abstract
This study developed a backward-Eulerian footprint modelling method based on an adjoint
equation for atmospheric boundary-layer flows. In the proposed method, the concentration
footprint can be obtained directly by numerical simulation with the adjoint equation, and
the flux footprints can be estimated using the adjoint concentration based on the gradient
diffusion hypothesis. We first tested the proposed method by estimating the footprints for
an ideal three-dimensional boundary layer with different atmospheric stability conditions
based on the Monin–Obukhov profiles. It was indicated that the results were similar to the
FFP method (Kljun et al. in Boundary-Layer Meteorol 112:503–523, 2004, https://doi.org/
10.1023/B:BOUN.0000030653.71031.96; Geosci Model Dev 8:3695–3713, 2015, https://
doi.org/10.5194/gmd-8-3695-2015) for convective conditions and the K–M method (Kor-
mann and Meixner in Boundary-Layer Meteorol 99:207–224, 2001, https://doi.org/10.1023/
A:1018991015119) for stable conditions. The proposed method was then coupled with the
Reynolds averagedNavier–Stokesmodel to calculate the footprints for a block-arrayed urban
canopy. The results were qualitatively compared to the results from the Lagrangian-Large-
Eddy-Simulation (LL) method (Hellsten et al. in Boundary-Layer Meteorol 157:191–217,
2015, https://doi.org/10.1007/s10546-015-0062-4). It was shown that the proposed method
reproduced the main features of footprints for different sensor positions and measurement
heights. However, it is necessary to simulate the adjoint equation with a more sophisticated
turbulence model in the future to better capture turbulent effects in the footprint modelling.

Keywords Adjoint equation · Footprint model · RANS simulation · Turbulent diffusion ·
Urban canopy

1 Introduction

The development of the eddy covariance (EC) technique (Aubinet et al. 2012) has enabled
the monitoring of mass and energy exchange in the atmospheric boundary layer (ABL). In
addition to the concentration of the target gas, the vertical flux can be calculated by combining
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the wind velocity measured by the sensors. However, the obtained concentration or flux is
the integrated product of all potential sources in the upwind area; therefore, it is necessary to
interpret the measurements to extract detailed information about the sources. Schuepp et al.
(1990) proposed the “footprint” concept to connect the measurements with the sources.

The footprint function describes the relative contribution of each elemental source area
upstream of the sensor to themeasured concentration or vertical flux. Previously, the interpre-
tationofmeasurements using the footprint functionhas been employed indifferentmonitoring
scenarios in urban areas and the results have been encouraging. For example, Sugawara et al.
(2021) analyzed the changes in anthropogenic CO2 emissions in the urban area of Tokyo
during the COVID-19 state of emergency. Ando and Ueyama (2017) identified the surface
energy exchange in a dense urban area in Osaka, Japan, based on two-year ECmeasurements
and footprints. Furthermore, Lauvaux et al. (2016) estimated CO2 source distributions over
the city of Indianapolis based on tower network observations, footprint modelling, and the
Bayesian inversion method. Baldocchi et al. (2001) stated that the FLUXNET network and
appropriate footprint knowledge can help elucidate regional and global ecosystem exchanges.

In addition to explaining themeasurements, the footprint model can also improvemonitor-
ing quality. Footprint predictions can serve as guidance for the planning of sensor networks
and the design of sampling characteristics (Leclerc et al. 2003). Levin et al. (2020) designed
a dedicated flask-sampling strategy for integrated carbon observation system stations based
on footprint information.

To ensure the efficiency of the above applications, it is critical to accurately and quickly
estimate the footprint function for each sensor. Since the proposal of the footprint concept,
several modelling methods have been developed. There are three main types of modelling
methods. At an early stage, researchers developed an analytical model for the footprint based
on the advection–diffusion equation. Several approximation solutions have been derived for
situations with thermally neutral stratification and a constant velocity profile (Schuepp et al.
1990; Horst and Weil 1992; Hsieh et al. 2000). Kormann and Meixner (2001) introduced the
Monin–Obukhov profiles into the analytical analysis (K–Mmodel) to represent the effects of
different boundary layer stabilities, which are still commonly used in modern applications.
Although these analytical models are cost-effective and user-friendly, they can only deal with
a horizontal homogeneous turbulent field and lose validity outside of the surface layer (Kljun
et al. 2002).

The second type of footprint model is the Lagrangian stochastic approach. Based on the
Langevin equation, the trajectory of each scalar particle emitted from the source area is
calculated (forward mode), or the trajectory of each scalar particle released from the sensor
is tracked backward in time with the inverse flow (backward mode) (Vesala et al. 2008).
A representative Lagrangian footprint model was developed by Kljun et al. (2002), who
considered various ABL stratification conditions. This model was then parameterized by an
approximation formula and evolved into the rapid Flux Footprint Predictions (FFP) model
(Kljun et al. 2004, 2015). However, in these models, the turbulence influence is commonly
represented by a one-point probability density function (PDF) of the Eulerian velocity field
to reduce calculation costs. This predefined turbulent field requires revisions when the target
location is changed. It is also difficult to properly describe heterogeneous turbulent fields
using only one velocity PDF. With the development of computational techniques and the
growing need to handle complex surface conditions, such as urban built environments, large-
eddy simulation (LES) has replaced PDF velocity to directly simulate the turbulent flow field,
which then drives the transport of scalar particles. Several studies have applied the LES +
Lagrangian (LL)method to investigate the footprint in the ABL (Glazunov et al. 2016), urban
canopy models (Hellsten et al. 2015), and real urban areas (Auvinen et al. 2017). One of the
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unavoidable weaknesses of these Lagrangian methods is the heavy computational burden
caused by the use of many trajectories, which is indispensable to the stable convergence of
the modelling.

The third type of footprint model is based on the Eulerian simulation of the Navier–Stokes
equations. The workflow was presented by Sogachev et al. (2002) and Sogachev and Lloyd
(2004), whereby the concentration field of each surface cell was repeatedly simulated and the
flux footprint was then estimated based on a one-and-a-half order closure with concentration
results. This approachmay be able to handle footprint modelling over heterogeneous terrains;
however, it must simulate the dispersion fields for all potential sources, which is burdensome
and inefficient. These disadvantages may also be the reason that, except for this Eulerian
model, other Eulerianmethods are rare in the literature. Therefore, it is meaningful to develop
a more effective Eulerian modelling method that is not hampered by a large number of
particles or potential sources.

Recently, an adjoint concentration equation has attracted attention in source term estima-
tion studies (Pudykiewicz 1998; Keats et al. 2007; Jia and Kikumoto 2021). It is a powerful
tool for constructing the source–receptor relationship, which has a physical meaning similar
to that of the concentration footprint. As an Eulerian dispersion simulation, the merit of the
adjoint equation is that the contributions of all sources to the concentration measurement of a
sensor are estimated from the view of the sensor by inverse simulation. Considering that the
number of sensors is finite and that the dispersion is simulated by the transport equation of
passive scalar rather than particle trajectories in the Eulerianmethod, the adjoint equation can
save significant computational resources. Although the current usage of the adjoint equation
mainly focuses on concentration estimation, the fluxmay be estimated from the concentration
using the K-theory (Sogachev and Lloyd 2004). Therefore, a backward Eulerian footprint
modelling approach could be established based on the adjoint equation.

In this study, we propose this type of backward Eulerian modelling method for footprints.
Following the definition of footprints in previous studies (Schuepp et al. 1990; Kljun et al.
2002), the proposed method is concerned with the surface source in the target domain, which
includes the whole bottom surface, to reflect the response of the sensor when possible sources
appear anywhere. In numerical modelling, the surface source can be divided into ‘point’
sources by the grid. Hence, we derived the proposed method based on the point sources
as shown in Sect. 2. This derivation process enables the proposed method to deal with the
spatially continuous surface sources, as well as the discrete point sources sparsely distributed
in the domain.

The simulation of the adjoint equation requires a turbulent flow field in the target domain.
Therefore, the three-dimensional wind velocity field is a prerequisite, which can be simu-
lated by computational fluid dynamics (CFD)with appropriate boundary conditions (Blocken
2015). In other words, the wind direction and mean velocity profile are necessary informa-
tion for the application of the proposed method. In reality, the wind direction and profile are
unsteady, so the footprints are modelled for each period when the wind direction and profile
are almost steady. In each period, because the target domain, wind flow field, and sensor
are unchanged, the footprint function is steady and independent of the temporal releasing
characteristics of the surface source. Additionally, since the footprint function is calculated
inversely from the view of sensors by the adjoint equation, users do not require much infor-
mation about the sources (such as the location and number of sources). This is one of the
advantages of the proposed method.

For the remaining content, the definition of the footprint function and a detailed intro-
duction to the proposed method are presented in Sect. 2. Section 3 describes the use of the
proposed method to model the footprint of a three-dimensional atmospheric boundary layer
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with different thermal stabilities. The robustness of the adjoint relationship in the backward
flux estimation was first evaluated, and then comparisons of our results with the analytical
solutions (K–M model) and Lagrangian results (FFP model) are discussed. Section 4 pro-
vides an application of the proposed method to footprint modelling in a block-arrayed urban
canopy model. The footprints obtained were qualitatively compared to those simulated using
the LL method. Section 5 provides concluding remarks.

2 Methodology

2.1 Definition of the Footprint Function

The concept of the footprint function can be expressed by the following equation:

η(xm) �
∫
S

f (xm|x)qs(x)dx, (1)

This integration is conducted on the two-dimensional bottom surface Sof the target
domain. xis the coordinate onS, which represents the locations of all potential sources or
sinks. xmrepresents the coordinate of the target sensor, and ηis the measured quantity. When
η is the concentration (gm−3) or vertical flux (gm−2 s−1) of the gas, f (xm|x)is the concen-
tration (sm−3) or flux footprint function (m−2) between sensor xmand all potential sources
onS. qsdenotes the strength (gm−2 s−1) of the source or sink. Notice that the unit set is
based on the mass concentration, and the unit set for the volume concentration can be written
similarly.

In the integration, it is not necessary that qs is spatially continuous because there may be
only discrete sources in the target domain. In such a case, qs(x) is a set of delta-spikes and
the value is 0 at the location where there is no source. If the footprint function and source
strength distribution are known, the resultant measurements can be integrated quickly. In
contrast, if the measurements and footprint functions are available, it is possible to inversely
estimate the information of the sources that caused these measurements.

2.2 EulerianModelling Approach

Footprint modelling requires a dispersion simulation based on preparatory turbulent flow
fields, which can be simulated by the Navier–Stokes equation and the continuity equation in
the Eulerian approach. There are many mature turbulence modelling approaches, such as the
Reynolds-averaged Navier–Stokes (RANS) method, LES, and Direct Numerical Simulation
(DNS). The evolution of the concentration field C (gm−3) of the passive scalar resulting
from the strength function qs can be written as:

∂C

∂t
+ (u · ∇)C − ∇ · (K∇C) � qs(x), (2a)

∇nC � 0 at ∂�, (2b)

C(x, t � 0) � 0. (2c)

This equation has a spatial domain� and a time range of [0, T ]. K is the mass diffusivity,
and∇n is a directional derivative normal to the boundary. Please note that only an ideal format
of the transport equation for passive scalar is given here, without considering the chemical
reaction, condensation, radiation, and other properties of specific scalars.
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Fig. 1 Schematic of forward dispersion and adjoint dispersion

Based on the physical meaning of Eq. (1), it is considered that there is only an infinitely
small surface source located at xs in the target domain. It releases pollutants at a rate of Q0

(g · s−1), which means that the strength distribution is:

qs(x) � Q0δ(x − xs). (3)

Here, δ(·) is a two-dimensional Dirac delta function with the unit of m−2. Thus, Eq. (1)
changes to:

η(xm) �
∫
x
f (xm|xs)Q0δ(x − xs)dx � Q0 f (xm|xs). (4)

Then, the footprint function can be calculated by:

f (xm|xs) � η(xm)

Q0
. (5)

When Q0 � 1(g ·s−1), the resulting concentration or flux at the sensor equals the footprint
function value even though their units are different.When themeasurement η(xm)is the time-
averaged concentration C(xm|xs)(g · m−3), the concentration footprint fc(xm|xs)(s · m−3)
can be calculated by:

fc(xm |xs) � C(xm |xs)
1g · s−1 . (6)

As for the flux footprint ff , the mean turbulent flux ftf at sensor xm caused by source xs
is estimated by the mean concentration using the K-theory (Sogachev and Lloyd 2004):

ff (xm|xs) � uz(xm) · C(xm|xs) + ftf (xm|xs), (7a)

ftf (xm|xs) � u′
z(xm)C ′(xm|xs) ≈ −Kt (xm)

dC

dz

∣∣∣∣∣
xm

, (7b)

where Kt is the local eddy-diffusion coefficient, ′ denotes the temporal fluctuation of a
quantity, and − is the time-averaging operator. This relationship is widely used in steady-
state dispersion simulations tomodel turbulent flux and is also known as the gradient diffusion
hypothesis (Combest et al. 2011). The gradient of the mean concentration can be evaluated
through the concentrations of the adjacent cells upward and downward from the sensor
(Sogachev and Lloyd 2004) as shown in Fig. 1(a), which means:
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dC

dz

∣∣∣∣∣
xm

≈ C
[(
xm + �z

2

)|xs] − C
[(
xm − �z

2

)|xs]
�z

. (8)

2.3 Proposed BackwardMethod with the Adjoint Equation

One problem with the above method is that the concentration fields of all sources must be
simulated, which requires a large amount of computational resources for real applications.
This study proposes the use of the adjoint equation to mitigate this problem.

If we define a linear operator L(·) in a Hilbert space such that:

L(·) ≡ ∂(·)
∂t

+ (u · ∇)(·) − ∇ · (K∇(·)), (9)

then the dispersion from a point source can be represented by the transformation of function
C by L:

L(C) � Q0δ(x − xs). (10)

Due to the Lagrange duality relationship (Christensen 2010, pp. 70–74), the adjoint oper-
ator L∗ corresponds to L exists, which is:

〈C∗L(C)〉 � 〈L∗(C∗)C〉, (11)

where C∗ is the adjoint concentration field and 〈·〉 is the linear product operator defined in
the same Hilbert space as:

〈C∗L(C)〉 �
∫ T

0
dt

∫
�

(C∗ · L(C))d�. (12)

According to previous studies (Marchuk 1995), L∗ can be expressed as:

L∗(·) ≡ −∂(·)
∂t

− (u · ∇)(·) − ∇ · (K∇(·)). (13)

It is interesting to note that the L∗(C∗) can be regarded as the transport process of a
hypothetical tracer emitted from sensor xm with the rate of Q0, which means:

L∗(C∗) � Q0δ(x − xm), (14a)

∇nC
∗ � 0 at ∂�, (14b)

C∗(x, t � T ) � 0. (14c)

In this dispersion process, the tracers are transported by the inverse flow −u(x, t) from
time T to time 0 with a negative time-step increment. If we incorporate Eqs. (10) and (14)
into Eq. (11), the adjoint relationship can be obtained:

Q0C∗(xs |xm) � Q0C(xm|xs). (15)

In this case, Eq. (15) indicates that the time-averaged concentration of the target gas at the
sensor C(xm|xs) equals the time-averaged concentration of the adjoint tracer at the source
C∗(xs |xm). Therefore, the dispersion equations do not need to be solved for all potential
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sources. Instead, only a few adjoint equations for the sensors are sufficient, which reduces
the calculation requirements considerably.

According to this adjoint relationship, the forward concentration can be equally replaced
by the adjoint concentration in Eq. (6); therefore:

fc(xm |xs) � C∗(xs |xm)

1g · s−1 . (16)

Then, the turbulent flux value at the sensor can be similarly transferred based on Eqs. (7)
and (8), and the concentration gradient can be approximated:

ftf (xm|xs) � −Kt (xm)
dC

dz

∣∣∣∣∣
xm

, (17a)

dC

dz

∣∣∣∣∣
xm

≈ C
[(
xm + �z

2

)|xs] − C
[(
xm − �z

2

)|xs]
�z

(17b)

� C∗[xs |(xm + �z
2

)] − C∗[xs |(xm − �z
2

)]
�z

. (17c)

Note that the adjoint concentration fields in Eq. (17) are caused by releases from the
adjacent cells with coordinates of

(
xm + �z

2

)
and

(
xm − �z

2

)
, as shown in Fig. 1(b), as

opposed to the sensor cell xm. Therefore, when the footprint of one sensor is modeled, three
adjoint equations must be simulated, which is still significantly fewer than the total potential
sources.

3 Flux Simulation for the Atmospheric Boundary Layer

The first application of the proposed method is to estimate the flux footprint in an ideal three-
dimensionalABL. In large-scalemodelling of the footprint, different terrains and atmospheric
stabilities can be approximated by a boundary layer with an appropriate adjustment of coeffi-
cients. Therefore, since Kormann and Meixner (2001) provided an analytical solution based
on this scenario, the following research (Kljun et al. 2004; Wang et al. 2018) tested their
methods using this case. In this section, the proposed method is used to estimate flux foot-
prints in the ABL. The results are compared to those of the analytical K–Mmethod (Kormann
and Meixner 2001) and the FFP model based on the Lagrangian stochastic tracer method
(Kljun et al. 2002, 2004).

3.1 Simulation Settings

Seven atmospheric stability conditions are considered, as shown in Table 1. For footprint
modelling, a boundary layer size of 4000 m(x)×600 m(y)×200 m(z) is set as the calculation
domain. Forward and adjoint dispersions are simulated using Eqs. (2) and (10) with the finite
volume method using OpenFOAM v2112 (Weller et al. 1998). The advection scheme for
dispersion is set as a first-order bounded upwind. As for the mesh setting, in the horizontal
plane, a uniform hexahedral orthogonal grid with 5 m(x) × 5 m(y) is utilized for the entire
domain. To accurately simulate the dispersion near the bottom wall, a grid edge of 1m(z)
was imposed from 0 to 50 m in the vertical direction and then expanded at a ratio of 1.08 to
200 m.
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Table 1 Seven cases with stabilities defined by coefficients

Stability Friction speed (m
s−1)

Obukhov length
(m)

Roughness height
(m)

Sensor height
(m)

Strongly
convective

0.2 −5 0.01 10

Forced
convective

0.2 −30 0.01 7.5

Slightly
convective

0.3 −650 0.01 90

Neutral 0.5 ∞ 0.01 75

Slightly stable 0.4 1000 0.01 60

Stable 0.3 130 0.01 18.75

Strongly
stable

0.3 84 0.01 15

Despite the use of CFD simulation, the dispersion processes are solved by OpenFOAM,
but the streamwise velocity and turbulent diffusion coefficients are assigned to fixed vertical
profiles, which are synthesized by theMonin–Obukhov profiles (Monin and Obukhov 1954):

Ux (z) � u∗
κ

[
ln

z

z0
+ ψm

( z

L

)]
, (18a)

Kt (z) � κu∗z
ϕc(z/L)

, (18b)

where κ � 0.4 is the von Kármán constant. The boundary layer stratification condition is
characterized by the friction speed u∗, Obukhov length L , and roughness height z0, as listed in
Table 1. The Businger–Dyer relationships describing the stability dependence of the profiles
are (Paulson 1970; Dyer 1974):

ψm �
⎧⎨
⎩

5z
L for 0 < z/L < 1

−2ln
[
1+ξ
2

]
− ln

[
1+ξ2

2

]
+ 2arctanξ − π

2 f or − 2 < z/L < 0
with ξ � (1 − 16z/L)1/4 and

(19a)

ϕc �
{
1 + 5z

L for 0 < z/L < 1
(1 − 16z/L)−1/2 for − 2 < z/L < 0

(19b)

3.2 Verification of the Adjoint Equation in the Backward Flux Estimation

First, we verify the applicability of the backward concentration or flux estimation based on
the adjoint equation. The forward dispersion of a point source and the adjoint dispersion of
a point sensor are simulated to check whether the forward resultant concentration or flux
and backward estimations are matched. Flux is estimated based on the concentration results
from both the forward and backward simulations; therefore, it is only necessary to determine
whether C∗(xs |xm) is the same as C(xm|xs).

We present the results of the strongly convective case here because the verification pro-
cesses for the different stability conditions are similar. For the verification, the sensor is
placed at a height of 10 m, as shown Table 1, and the source is positioned on the bottom
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Fig. 2 Concentration distribution of the source (left) and adjoint concentration distribution of the sensor (right)

surface (z � 0.5m) 150 m upstream of the sensor. The adjoint concentration fields released
from three points (z � 9.5, 10.0, and10.5m) are calculated for the flux estimation, and �z
in Eq. (13) was 1 m.

Figure 2 shows the horizontal distributions of the forward-simulated concentration of the
source and the adjoint concentration of the sensor. The adjoint concentration is dispersed
upstream because it is driven by reverse flow. Although these planes have two heights, their
distributions are analogous. The values of C(xm|xs) and C∗(xs |xm) are extracted and their
difference is shown inTable 2. It is confirmed that the concentrationmeasured at each receptor
is close to the adjoint concentration at the source from each receptor. The numerical error
caused by backward estimation is imperceptible in the current case.

However, deviations caused by backward estimation are unavoidable because the numeri-
cal schememay perform differently in the forward and backward directions. Furthermore, the
backward simulationmay be biased by the spatiotemporal interpolation errors in unsteady and
strongly curved confluent flow (Dahl et al. 2012). The backward parcel trajectories may be
considerably different from the forward ones because of the errors caused by the temporally
interpolated velocity field or the spatial interpolation in the strongly curved flow. Although
this problem is analyzed in the Lagrangian backward simulation, analogous problems may
occur in the proposed method when the unsteady adjoint equation is simulated based on the

Table 2 Comparisons between the forward dispersion concentration and estimations based on the adjoint
dispersion

Receptors Quantities

C(xm|xs ) in the forward simulation Difference between C(xm|xs ) and C∗(xs |xm )

xm − �z
2 2.26 × 10−4 2.63 × 10−8

xm 2.05 × 10−4 2.71 × 10−8

xm + �z
2 2.04 × 10−4 2.74 × 10−8
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temporal interpolated velocity field or the strongly curved flow field. Before the potential
risk brought by the backward simulation is clarified by future research, special attention is
still required for complex turbulent flow fields.

3.3 Simulation Results

The crosswind integrated flux footprints for the three methods are shown in Fig. 3. In all three
models, when the stability changes from convective to neutral, the streamwise extent of the
footprint increases, and the peak value decreases. When the stability changes from neutral to
stable, the extent of the footprint shrinks, and the peak value become larger again.

Under convective situations, where turbulent diffusion during dispersion has a dominant
effect on the concentration and flux distribution, the proposed method yields results similar
to that of the FFP model. The peak values and locations are almost identical. In comparison,
K–M underestimates the peak value and overestimates the peak location and range extent.
The estimation discrepancy is caused by the absence of turbulent diffusion in the horizontal
direction in the K–M method (Kormann and Meixner 2001). Unlike the K–M method, the
proposed method applies a homogeneous K in all directions by the Monin–Obukhov profile,
so the turbulent diffusion is better captured, and the results are closer to those of the FFP.
However, it should be noted that the footprints upstream of the source do not appear in the
proposed method, which may indicate that the synthesized diffusion coefficients are still
insufficient to accurately capture the turbulent characteristics. A more comprehensive flow
field can further improve the estimation performance.

As the ABL becomes increasingly stable, the turbulent diffusion of the passive scalar
gradually attenuates. As a result, neglecting horizontal turbulent diffusion in the K–M does
not generate a large difference when compared to the Monin–Obukhov profile used in the
proposed method, and the two footprints grow closer. In contrast, the FFP method generates
two times larger peak values, smaller peak locations, narrower footprint ranges, and non-zero
footprints upstream of the source.

Overall, the proposed adjoint method performs similarly to the FFPmethod under convec-
tive conditions and comparably to the K–M method in terms of stable stability in this study
case. One of themain reasons for this is probably because the turbulent fields used in the three
methods are different. When the proposed method is compared to the K–Mmethod, the main
difference is that the horizontal turbulent diffusion is ignored in the latter. This can explain
why the proposed method is similar to the K–M method in terms of stable stability, while it
is different from the K–M method in terms of convective stability. It was also demonstrated
that the absence of horizontal turbulence results in similar deviations between the K–M and
FFP methods (Kljun et al. 2003). In theory, the FFP method should produce the best estima-
tion because it considers the Reynolds stress, particle velocity variance, and vertical velocity
skewness in the dispersion by the LPDM (Rotach et al. 1996) Lagrangian model. When the
proposed method is compared to the FFP method, the two methods own close peak values
and peak locations in the unstable stabilities indicates that the Monin–Obukhov profile and
LPDMmodel similarly reflects the turbulent diffusion and advection. However, the peak val-
ues of FFP are much higher than those of the proposed method and K–Mmethod in the stable
stabilities. The possible reason is that the non-Gaussian crosswind dispersion and velocity
skewness are considered in the LPDM model. It should be said that it may be difficult to
analyze the reasons further because the specific parameters for turbulence in LPDM model
are unavailable, which is a limitation of the current study.

123



Backward-Eulerian Footprint Modelling Based on the Adjoint Equation 169

Fig. 3 Comparisons of the crosswind integrated flux footprint modelling results from the K–M method, FFP
method, and proposed adjoint method in the ABLs with different stability conditions
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Another limitation is that the Monin–Obukhov profiles applied here may not accurately
represent the turbulent flow field of the convective atmospheric boundary layer in reality.
Recent studies (Johansson et al. 2001; McNaughton et al. 2007; Cheng et al. 2021) point out
that the boundary layer height zi is an important length scale characterizing the turbulence
flow field but is not included in the Monin–Obukhov similarity. Specifically, the measure-
ments show that the non-dimensionalwindvelocity gradient dependson zi andbecomes larger
than the Monin–Obukhov profiles (Johansson et al. 2001). Although the non-dimensional
temperature gradient shows much less variation with zi than the velocity, DNS simulation
implies that the temperature profile should be defined by log laws based on zi , which is at
odds with the Monin–Obukhov profile (Cheng et al. 2021). Besides, the horizontal velocity
variance also highly depends on zi especially when zi is close to L . As a result, all these
factors may induce nonlinear numerical bias from reality when the Monin–Obukhov profile
is used to transport the passive scalars. It is necessary to utilize a more accurate flow field to
estimate the footprint in the unstable atmospheric boundary layer.

Furthermore, there are also some factors during the adjoint equation simulation that may
affect the results of the proposed method, such as the mesh resolution of the domain, the
vertical difference �z, the numerical scheme for the flux estimation, and the advection
scheme for the adjoint concentration, which should be further investigated in the near future.

It should also be stated that it is still debatable as to whether the K–M or FFP method
is closer to reality because of the limited number of field-test validations, which are one
of the most convincing approaches to validate all models. Kumari et al. (2020) concluded
that the K–M model showed smaller errors for different source–receptor deviations based
on artificial tracer experiments in unstable conditions over an open field. However, with
the tracer experiments at a grassland site, Heidbach et al. (2017) found that the FFP model
better predicted the peak contributions of the real footprints, whereas the K–M method led
to an overly flattened footprint with an overestimated extent range. Therefore, more field test
datasets are necessary for validation, and the proposedmethod is deemed reliable considering
that its results lie between those of the K–M and FFP methods.

4 Footprint Simulation of the Urban Canopy

One of the advantages of the proposed method is that heterogeneous dispersion behaviours
can be estimated because the complex turbulent flow field used for adjoint simulation can be
prepared in advance using CFD techniques. In recent years, more attention has been paid to
footprint modelling in urban areas, which is meaningful for gaining insight into atmospheric
monitoring that is directly related to large populations. Under these circumstances, the second
case employs the proposed method to model the footprint in a block-arrayed urban canopy
model.

4.1 Simulation Settings

The calculation domain is illustrated in Fig. 4. The configuration and size of the blocks
follow the settings of an open wind tunnel experiment (WTE) database provided by the
Architecture Institute Japan (https://www.aij.or.jp/jpn/publish/cfdguide/), where cubes with
edges of H � 60mm are uniformly placed at a distance of H . This urban building model is
a benchmark for exploring the urban wind environment (Xie and Castro 2006; Ikegaya et al.
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Fig. 4 Schematic of the calculation domain for the urban canopy model

2017; Wang and Okaze 2022) and pollutant dispersion mechanisms (Kanda and Moriizumi
2009; Tominaga and Stathopoulos 2012) in urban areas.

The size of the domain is set as 54H(x) × 24H(y) × 10H (z) to ensure there is sufficient
space to reproduce the turbulent structures around the urban canopy and to observe the
footprint distribution over a long distance. The built area is 5H away from the inlet and
10H away from the outlet for the full development of the wake flow, according to previous
research (Tominaga et al. 2008). Regarding the boundary conditions, the inlet employes the
same vertical profiles for the velocity, turbulent kinetic energy (TKE), and dissipation as those
of the experiment. The outlet is imposed with a zero-gradient boundary for all quantities,
except for the pressure, which is set at a fixed value. The side walls have cyclic boundaries,
which represent an infinitely wide built area. The top boundary is defined as a slip wall, and
the bottom boundary is defined as a nonslip wall with a Spalding wall function.

For the mesh setting, below z � 1.2H , a hexahedral orthogonal grid with an edge of
H/16 is used to resolve the turbulent structures surrounding the buildings. Above z � 1.2H ,
the horizontal size of the grids is maintained, but the vertical edge begins to expand at a ratio
of 1.08 to the top boundary. The realizable k–ε RANS model (Shih et al. 1995), which is
effective for the dispersion simulation of an urban environment (Tominaga and Stathopoulos
2018), is used to simulate the time-averaged flow field. The Reynolds number based on the
freestream wind velocity ur � 4.8m/s and H is approximately 1.92 × 104.

Regarding the adjoint equation simulation, because the inverse simulation needs to retain
all flow field data of the forward simulation and then read it inversely (Jia and Kikumoto
2020), this study conducted a steady simulation of the adjoint equation to reduce the storage
cost and only the time-averaged flow field u and Kt obtained from forward simulation are
required:

−(u · ∇)C∗ − ∇ · (
[Kt + K ]∇C∗) � δ(x − xm), (20a)

Kt � νt

Sct
, (20b)

where νt is the eddy viscosity estimated by the TKE and dissipation in the RANSmodel, and
Sct is the turbulent Schmidt number, which is set to 0.3 here to offset the underestimation of
TKE caused by the RANS model that was proven to be effective in predicting the concen-
tration distribution of passive scalars in the current urban canopy model in a previous study
(Lin et al. 2021).
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Fig. 5 Settings of the sensor positions and distribution of time-averaged vertical velocity (z � 0.3H )

The footprint modelling is executed for four positions: above the roof (Point A), wake
region (Point B), cross-section (Point C), and the road between buildings (Point D), as shown
in Fig. 5. Four measurement heights zm � 0.3H (except Point A), 1.3H , 1.8H , and 2.5H ,
are selected to analyze the effects of measurement height on the footprint function. In total,
15 sensors and 45 adjoint equations are simulated for the concentration and flux footprint
estimations.

4.2 Simulation Results

4.2.1 Validation of the Mean Flow Field

Before footprint modelling, it is necessary to validate the CFD simulation against WTEmea-
surements. In addition to the flow field, a forward dispersion simulation is also conducted and
validated to discuss the reliability of the dispersion simulation from the side view. The source
of the passive scalar is placed at (4H, 12H, 0). The results of four validation locations are
selected and presented in Fig. 6. All results are nondimensionalized by the reference velocity
ur and the reference concentration Cr � Cgasq/

(
urh2r

)
. Cgas is the scalar concentration of

the source, q is the gas flow rate at the source, and hr � 3.33H is the reference height.
The validation results of the streamwise velocity are shown in the top row of Fig. 6.

The simulated profile agrees well with the measurements, except that the velocity above
the block is slightly overestimated at Points 2 and 3. In the middle row, the TKE in the
simulation is compared with that of the WTE. In general, although the distribution trend of
the profile is similar to the measurement, the RANS model undervalues the TKE, especially
in the area below H , which is one of the main limitations of RANS simulations of the
wind environments surrounding buildings (Tominaga and Stathopoulos 2012). Since νt is
calculated from the TKE in the RANS method, it is worth noting that the influence of this
numerical error on the footprint estimations is twofold: 1) νt is smaller than the true value and
suppresses turbulent diffusion during the dispersion simulation, and 2) in Eq. (17), turbulent
flux modelling relied on Kt , which may change the distribution of the flux footprint. The
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Fig. 6 Validation of the streamwise velocity, TKE, and concentration simulated by RANS based on the WTE
measurements
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bottom row of Fig. 6 shows the validation results of the forward-dispersion simulation.
Except for the overestimation of the concentration near the source, the predicted profiles
are consistent with the measurements at other locations, which indirectly suggests that the
adjoint dispersion also has acceptable accuracy. It is considered that Sct � 0.3 effectively
mitigates the influence of the underestimated TKE on the dispersion.

After validation, it is necessary to examine the simulated mean vertical velocity uz at the
sensor location because it influences the vertical flux footprint. Occasionally, the local mean
flux may change the sign of the footprint values. The uz of sensors at other heights are close
to 0; therefore, only the distribution of uz at z � 0.3H in an elemental area is presented
in Fig. 5. Although the overall distribution appears rational in that the effects of the canyon
vortex are reflected, the negative region at the windward side of the cube is larger than the
LES results (Hellsten et al. 2015; Jia and Kikumoto 2020), which leads to a strong local
downwash at Point B and a negative local mean flux. The situations of Points C and D are
identical to those of the LES. The canyon vortices that are separated from the cubes escape
from the adjacent wake and merge in the open street; thus, uz at Point C is positive and the
uz at Point D approaches 0.

4.2.2 Flux Footprint

It is difficult to evaluate the accuracy of the footprint results estimated by the proposedmethod
because the existing validation dataset for footprints in urban areas is limited. Therefore, we
compare the results with a published report (Hellsten et al. 2015) where the footprints are
calculated using the LL method for an idealized urban canopy. However, because the results
of that study were shown using only colourful contours, and the cube configuration is slightly
different from the present research (the distance between cubes was 1.13 H as opposed to
H ), our comparison is discussed qualitatively rather than quantitatively. The flux footprints
with two methods are nondimensionalized using their edges of cubes, and the colour bars
are unified for comparison.

Figure 7 summarizes the flux footprints of the three sensors above the roof (Point A). All
three sensors are in the mainstream above the canyon, and the local mean vertical velocity is
near 0; therefore, turbulent flux mainly contributed to the footprints. The distributions of the
footprints from the adjoint method and LL are similar. With an increase in the measurement
heights, the fetch of the footprint expands upstream. The distance between the peak and the
sensor increases, whereas the peaks gradually decrease and become flat. Note that the color
bars for the three footprints are different to demonstrate the details of the footprints of a large
zm . As described by Hellsten et al. (2015), the shape of the footprint is not the ideal ellipse
suggested by the analytical solution (Kormann andMeixner 2001). The footprint distribution
is separated by the central row of cubes and has a longer extension along the two streets on
the side. This so-called “two-branch” characteristic resulted from the wind field caused by
the urban canopy.

When zm � 1.3H , the peak value is located in the wake region just before the sensor. The
spanwise widths of the footprints from the two methods are also consistent and constrained
by approximately 5H . As for the footprints for zm � 1.8H and 2.5H , the peaks are located
at the centre line of the sensor andmove to the wake regions upstream. The areas surrounding
the sensor have little influence, but more source areas in both the streamwise and spanwise
directions can be measured at high positions.

The main difference between the results of the two methods at zm � 1.3H is that the
streamwise range of the LL footprint was shorter than that of the proposed method. In
addition, the negative footprint area appeares at approximately 20H upstream of the sensor
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Fig. 7 Comparisons of the flux footprints for different measurement heights at Point A estimated by the adjoint
method (left) and LL method (right) (Hellsten et al. 2015)

in the LL, which is not observed with the adjoint method. There are two possible reasons for
the limitations of the steady-state adjoint equation simulation. First, with the time-averaged
flow field produced by RANS, scalars released from upstream areas ascend into the upper
stream by the canyon vortex and are transported to the sensor in the streamwise-upward
direction, which causes a positive flux. However, when the source areas are 20H upstream
or further, the scalars move higher than 1.3H before they arrive at the sensor location and
could not descend in this steady flow. Therefore, the footprint value for the far upstream is
near zero instead of negative. In contrast, because LES reproduce most of the turbulence
structures and the particles are driven by unsteady flow in the LL, the particles released from
the same area could still be transported down to the sensor by turbulent motion, causing
negative flux. Second, LES can more effectively predict the turbulent flow field than RANS
and can explicitly resolve large-scale turbulent diffusion, which is implicitly modelled by
the gradient diffusion hypothesis in RANS. In such an urban canopy model, the adjoint
concentration could be overestimated in the streamwise direction and underestimated in the
spanwise direction by RANS, because the meanUy distribution in the wake is opposite along
the central line, which prevents spanwise diffusion (Jia and Kikumoto 2021). This causes
the streamwise extent of the footprints in the adjoint method to be longer. Therefore, it is
necessary to improve the estimation accuracy of the proposed method by implementing LES
of the adjoint equation in the future.
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Figure 8 shows the footprints of the sensors located above the wake region (Point B).
Hellsten et al. (2015) only includes the results for two heights, as shown in the second row of
Fig. 8. When zm � 0.3H , values in the proposed method are positive, whereas most values
in the LL are negative. According to the Uz distribution of RANS in Fig. 5, the sensor is
immersed in strongly negativeUz . In this case, the resultant mean flux is dominant in the Ff ,
the vertical fluxes at all positions are predisposed to the negative in Eq. (3), and the footprints
become positive during normalization. In contrast, Uz of the sensor is found to be close to 0
in the LES result (Hellsten et al. 2015), so the LL footprints represent the situations of the
turbulent flux Ft f .

Considering this, we recalculate the footprint based only on the turbulent flux for zm �
0.3H , which is shown in the third row of Fig. 8. The result is considerably closer to that with
LL. The sensor is immersed in the complicated canyon vortex, where the strong downwash
pushes the scalars released from far upstream areas into the wake. Consequently, there are
large areas with negative footprint values for both methods. The main difference between the
twomethods is that the sources surrounding the sensor resulted inmore positive effects on the
turbulent flux with LL than those with the adjoint method. The negative area begins from the
wake side of the sensor in LL, whereas it begins directly at the sensor in the adjoint method,
possibly due to the limitation of the mean flow field produced by the RANS model. In such a

Fig. 8 Comparisons of the flux footprints for different measurement heights at Point B estimated by the LL
method (second row) (Hellsten et al. 2015) and the adjoint method (remaining rows)
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steady flow field, the particles released from the source areas downstream of the sensor could
reach the sensor only by the backward-upward motion of the canyon vortex, which naturally
leads to a positive vertical flux. Meanwhile, most of the particles released from the upstream
areas are transported downward into the wake from the mainstream, causing the vertical flux
to become negative. In the unsteady flow of the LES, the particles released from the same
wake region as the sensor can still move upward to the sensor and cause a positive vertical
flux.

For the measurement heights zm � 1.3H , 1.8H , and 2.5H , the situation is similar to that
at Point A. The peak of the footprint distribution becomes farther from the sensor and flatter
with increasing zm ; The “two-branch” characteristic persists. Moreover, the crosswind range
of the footprint becomes wider for higher sensors.

Point C is located at the cross section of the cubes. Hellsten et al. (2015) only provides the
LL results for two heights; therefore, the footprints for zm � 0.3H and 1.3H are compared
in Fig. 9. At both heights, the majority of the footprints concentrates on the central street
where the sensor is located. At zm � 0.3H , except the central street, large footprint values
can also be observed in two adjacent streets, which is called the “three-branch” pattern in
Hellsten et al. (2015). However, the crosswind dispersion is again insufficient in RANSwhen
compared to LL due to the previously discussed reason. Hence, the “three-branch” pattern
only remains in the central branch with the adjoint method. Nonetheless, the footprints at
zm � 1.3H are similar.

The footprints of Point D are shown in Fig. 10. For the sensor below the canopy height,
the footprint estimated by the adjoint method has a longer positive region and shows no
negative region compared to that of LL. The mean vertical velocity in the open street is
slightly positive, as shown in Fig. 5, because the vortices from the adjacent canyons are
separated by the cube and then merge. Under these circumstances, scalars released from far

Fig. 9 Comparisons of the flux footprints for different measurement heights at Point C estimated by the LL
method (first row) (Hellsten et al. 2015) and the adjoint method (remaining rows)
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Fig. 10 Comparisons of the flux footprints of different measurement heights at Point C estimated by the adjoint
method (left column) and the LL method (Hellsten et al. 2015) (right column)

upstream sources climb up by the mean flow before they reach the sensor. However, in the
LL, although the released particles are also driven upward by the local-mean flow, the strong
turbulent motions near the sensor may have forced them downward, resulting in a negative
flux. In addition, the proposed method again fails to predict three branches in the LL results
because of the limited dispersion of the adjoint concentration in the spanwise direction, as
discussed above. The situation for zm � 1.3H is similar to that for Point C.When zm changes
to 1.8H and 2.5H , the footprints still concentrate on the central open street and become larger
and flatter.

When the footprints of the four points at the same height across Figs. 7, 8, 9 and 10 are
compared, the low measurement height corresponds to strong horizontal heterogeneity. The
shape of the footprints appears to depend on the sensor positions, especially for zm � 0.3H
and 1.3H . When the sensors are elevated, the footprints become similar, which means that
they gradually become independent of the skewed flow field caused by the urban canopy.
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They can also be divided into two groups based on their analogies. The footprints in each
group are almost identical, especially when zm is greater than 1.5H . Point A and B are placed
in Group I, which is in the row of cubes. Their footprints are separated into two branches by
the central row of the cubes. Points C and D are in Group II, which is in the row of the open
street. Their footprints are concentrated on the open street where the sensors are located.

4.2.3 Concentration Footprint

In this section, the concentration footprints estimated using the proposed method are dis-
cussed. As described in Sect. 2, the concentration footprint can be directly obtained by the
adjoint concentration released from each sensor. The footprints of the two groups described
in Sect. 4.2.2 are comparable for different sensor positions; therefore, we only show the
results of Points B and D in Fig. 11.

The characteristics of the concentration footprints are analogous to those of the flux
footprints. With increasing measurement heights, the footprints become longer and wider,
with smaller peak values and flatter shapes. The passive scalars tend to move upward after

Fig. 11 Concentration footprints for different measurement heights at Point B (left column) and Point D (right
column) estimated by the adjoint method
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release and generally did not return to the canyon; therefore, the sensor located below the
cube height only covered limited source areas. In contrast, higher sensors could receive
considerably more effects from a source far upstream. The footprint distribution of Point B
has a two-branch feature that is separated by the central row of cubes, whereas the footprint
distribution of Point D has a one-branch feature that developed along the open street. The
horizontal difference caused by the sensor position gradually disappears with the increase in
the measurement heights.

In general, the concentration footprint estimated by the adjoint method is qualitatively
comparable to the results of LL, whereby the main features of the footprints in the urban
canopy model are well reproduced.

5 Conclusions

This study proposed a backward Eulerian footprint modelling approach based on the applica-
tion of the adjoint equation. The concentration footprint can be conveniently obtained by the
adjoint concentration distribution, and the flux footprint can be computed from the gradient
of the adjoint concentration field using K-theory. The proposed method was first evaluated
in footprint modelling for three-dimensional ABLs with different stability conditions against
the K–M model and FFP models. The results were reasonable in that the proposed method
performed similarly to the FFP method in terms of convective stability, and to the K–M
method in terms of stable stability because of the assumptions regarding turbulent diffusion.

To understand the ability and practicality of the proposed method, it was applied to esti-
mate the footprints in a block-arrayed urban canopy based on the time-averaged flow field
simulated by RANS. The results were qualitatively compared to those in the existing litera-
ture using the LL method. The proposed method succeeded in predicting the main features
of footprints caused by the urban canopy terrain with different measurement positions and
heights. Footprints of the sensors in the same row of cubes were separated into two branches,
whereas footprints of the sensors located in the open-street region dominantly developed
upstream along the street, which clearly differed from the ideal ellipse distribution yielded
by the analytical solution. Additionally, the numerical errors caused by the steady simulation
of the adjoint equation using RANS were discussed. The imperfect predictions of the mean
vertical velocity field in the wake region and insufficient modelling of the turbulent diffusion
affected the reliability of footprint modelling for the sensors in the canyon.

There are some limitations to the proposed method. First, the turbulent flux was estimated
by the vertical gradient of the local concentration, which may lose credibility when the
diffusive process is more significant than the advective process (Sogachev and Lloyd 2004)
orwhen the turbulent diffusivity is highly anisotropic. It is necessary to improve turbulent flux
estimation using a higher-order closuremodel. In addition, according to Eq. (13), the gradient
estimation depends on the vertical difference �z. The numerical stability against the scale
of �z should be investigated further. Moreover, the performance of the proposed method
depends on an accurate simulation of the flow field in the target domain. The application of
the Monin–Obukhov profiles in the first case and RANS in the second case both resulted
in numerical flaws to some extent. For complex-built areas, LES could better simulate the
turbulent flow fields and conduct an unsteady simulation of the adjoint equation. This option
can explicitly resolve turbulent structures with different scales, and the turbulent flux can be
directly captured through the time-series of the adjoint concentration and velocities, which
solves the problem. However, the heavy calculation burden and large amount of inverse
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simulation data with LES remain a challenge. Finally, the proposed method was validated
by quantitative comparisons to the K–M and FFP models in the first case, and qualitative
comparison with the LLmethod in the second case, owing to the lack of a validation database
based on experiments or field tests. To evaluate existing footprint approaches thoroughly, it
is critical to construct these validation databases in the future.
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