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Abstract
Measurements of three flux towers operated during the land atmosphere feedback experi-
ment (LAFE) are used to investigate relationships between surface fluxes and variables of
the land–atmosphere system. We study these relations by means of two machine learning
(ML) techniques: multilayer perceptrons (MLP) and extreme gradient boosting (XGB). We
compare their flux derivation performance with Monin–Obukhov similarity theory (MOST)
and a similarity relationship using the bulk Richardson number (BRN). The ML approaches
outperform MOST and BRN. Best agreement with the observations is achieved for the fric-
tion velocity. For the sensible heat flux and even more so for the latent heat flux, MOST
and BRN deviate from the observations while MLP and XGB yield more accurate predic-
tions. Using MOST and BRN for latent heat flux, the root mean square errors (RMSE) are
107Wm−2 and 121Wm−2, respectively, as well as the intercepts of the regression lines are
≈ 110Wm−2. For the ML methods, the RMSEs reduce to 31Wm−2 for MLP and 33Wm−2

for XGB as well as the intercepts to just 4Wm−2 for MLP and −1Wm−2 for XGB with
slopes of the regression lines close to 1, respectively. These results indicate significant defi-
ciencies of MOST and BRN, particularly for the derivation of the latent heat flux. In fact,
in contrast to the established theories, feature importance weighting demonstrates that the
ML methods base their improved derivations on net radiation, the incoming and outgoing
shortwave radiations, the air temperature gradient, and the available water contents, but not
on the water vapor gradient. The results imply that further studies of surface fluxes and other
turbulent variables with ML techniques provide great promise for deriving advanced flux
parameterizations and their implementation in land–atmosphere system models.
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1 Introduction

In numerical weather prediction (NWP), seasonal forecast, and climate models, unresolved
atmospheric variables close to the Earth’s surface and surface fluxes must be parameterized.
Parameterizations of gradients and fluxes in the atmospheric surface layer (SL) are funda-
mental for an appropriate representation of land–atmosphere (L–A) or ocean–atmosphere
interactions and, thus, accurate forecasts and simulations over all forecast ranges. The SL
ranges up to approx. 10 to 100m above the land surface and is generally stable during night-
time or over surfaces that are colder than the atmosphere. This leads to a reduction of surface
fluxes and different mechanisms of vertical exchange such as intermittent turbulence induced
by gravity waves. Over most ocean and land surfaces during daytime, in contrast, the SL is
unstable resulting in an increase of vertical fluxes due to dynamical turbulence or turbulence
due to surface heating. Typically, vertical resolutions of approx. 1m for resolving gradients
and temporal resolutions of 10Hz are required to derive surface fluxes. Therefore, the reso-
lutions of all the model systems mentioned above and not even the typical configurations of
large eddy simulation (LES) are sufficient to resolve fluxes and gradients. Only special LES
designs on the m-scale are appropriate, but these are computationally very demanding so that
only a few case studies can be performed and evaluated (e.g., Maronga 2014; Maronga and
Reuder 2017; Basu and Lacser 2017).

Corresponding research and understanding of flux–gradient relationships has a long tra-
dition in atmospheric sciences. Pioneering studies were performed by Prandtl in the 1920s
(Prandtl 1925). A huge step forward in the understanding of the parameterization of fluxes and
gradients was the Monin–Obukhov similarity theory (MOST, Monin and Obukhov 1954).
Here, an Obukhov length L was proposed, which is used as a scaling parameter in flux–
gradient similarity functions. An overview of MOST is presented in Foken (2006). An
alternative approach was proposed by Deardorff (1972), who suggested a scaling of sim-
ilarity functions using the bulk Richardson number (BRN). This approach was adopted by
Sorbjan (2006, 2010) and Mauritsen et al. (2007).

In almost all model systems, parameterizations based on MOST are implemented. This
is due to the absence of alternatives that can easily be implemented in the model codes and
measurement campaigns such as the Wangara (Hess et al. 1981) and the Kansas experiments
performed in 1967 and 1968, respectively. During these experiments, measurements in the
SL using on a combination of high-resolution sonic anemometers, hot wire thermometers,
and Lyman Alpha water vapor sensors provided the basis for determination of the stability
dependence of dimensionless gradient functions and indications of a universality of the
results (Businger et al. 1971; Hicks 1976; Högström 1996). In addition, the experimental
data provided estimations of some fundamental constants of turbulent flow in the ABL, such
as the Von Kármán constant.

In spite of the apparent success of MOST and its implementations in models, recent
research results indicate severe deviations with respect to observations. This can be due to
self-correlations as well as incorrect assumptions and structural deficiencies of the proposed
similarities. Additionally, as surface fluxes are the result of L–A feedback processes (San-
tanello et al. 2018), the scaling of surface fluxes should also depend on the heterogeneity of
the land surface (Morrison et al. 2021), induced micro- and mesoscale circulations (Li et al.
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2018; McNaughton and Brunet 2002), and the evolution of the atmospheric boundary layer
(ABL) (van Heerwaarden et al. 2009). Therefore, it can be expected that the MOST-based
scaling functions are not universal, or even incorrect, due to inappropriate assumptions of
their shapes and scaling. Also, the omission of land surface heterogeneities as well as of
reasonable ABL scaling variables such as the ABL depth zi (van de Boer et al. 2014; Cheng
et al. 2021) or entrainment fluxes (van Heerwaarden et al. 2009) can lead to errors in the
determination of surface fluxes.

Therefore, it is essential to intensify research on flux derivations in the SL over various
land cover types. Particularly, machine learning (ML) approaches hold great promise because
of their capability to detect nonlinear relationships in large data sets without any constraints
by the similarity relationships and self-correlations of variables prescribed in MOST and
BRN. An overview of ML methods in L–A system research is given in Zhang (2008); Pal
and Sharma (2019).

The application of ML methods for investigating surface fluxes is rapidly expanding. For
instance, Qin et al. (2005a, b) applied variants of neural networks to study latent heat and CO2

fluxes over cropland. They were able to train theMLmethods to achieve good agreement and
correlations with the observations. They also performed sensitivity analyses with respect to
the observational inputs to the ML methods. However, they did not apply tower data and did
not perform comparisons with MOST or BRN. Momentum and sensible heat fluxes were not
studied either; the same limitations apply to the latent heat flux predictions by Wang et al.
(2017); Xu et al. (2018);Wang et al. (2021). Safa et al. (2018) investigated sensible and latent
heat fluxes with a multilayer perceptron (MLP) as the MLmethod including sensitivity anal-
yses based on multiyear data sets of fluxes and L–A variables over maize. Momentum fluxes
were not investigated. They demonstrated promising training results; however, Safa et al.
(2018) neither investigated temperature nor moisture gradients in the SL nor compared the
results with MOST or BRN. Leufen and Schädler (2019) used an extensive set of tower data
in combinationwithMOST and anMLP to study surfacemomentum and sensible heat fluxes.
After training the MLP using the data of one tower and application of the training results
to an independent data set of another tower, Leufen and Schädler (2019) found comparable
performance of MOST and MLP. Latent heat fluxes were not investigated.

In this study, we use data of three towers at two height levels operated during the land–
atmosphere feedback experiment (LAFE) (Wulfmeyer et al. 2018) over vegetated surfaces for
a duration of one month in August 2017. LAFE was performed at the Southern Great Plains
(SGP) site of the US Department of Energy (DOE) Atmospheric Radiation Measurement
(ARM) program. We use the measurements of the surface friction velocity as well as the
sensible and latent heat fluxes and compare thesewithMOSTandBRNaswell as twodifferent
machine learning (ML) methods without the consideration of additional ABL variables. For
the ML methods, we chose multilayer perceptrons (MLP) (Goodfellow et al. 2016) and
extreme gradient boosting (XGB) (Chen and Guestrin 2016).

We focus on the daytime unstableABLover land. In contrast to the formerwell-established
approaches, the ML models do not rely on explicit theory-driven formulations. Instead their
predictions are primarily derived from the available data; they essentially learn relations
and patterns within the available measurements of gradients and other variables in the L–A
system.

In this work, based on our observations and the methods to evaluate similarity relation-
ships, we focus on the following questions based on the LAFE data:

1. How accurate are the fluxes derived by MOST and BRN using appropriate data analyses?
2. How do these compare with the output of the ML techniques?
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3. Can we use ML techniques to generate improved results and to identify of the most
important drivers of the fluxes?

Please note that it is not the scope of this work to claim a universality of our results but
to compare MOST, BRN, and ML for a specific location and time period. After a short
introduction to the MOST and the BRN relationships, we present the ML approaches used in
this work. Then, we give an overview of LAFE as well as the set up and operation of the three
towers. We explain the training and the derivation of the results based on MOST, BRN, and
the MLmethods and compare their outputs. We summarize the results focusing on the future
potential of ML with respect to the derivation of flux relationships, process understanding,
and its implementation in earth system models.

2 Principles of the Parameterization of Surface Fluxes

2.1 General Principles of the Derivation of Surface Flux Similarity Relationships

Surface flux similarities are fundamental for the understanding of L–A exchange and form the
basis for parameterizations in models. Typically, the most common form of first order closure
is applied, which assumes that the surface fluxes are mainly dependent on the gradients of
the transport variable. Within the SL, where the fluxes are determined and the gradients
are derived, the fluxes are considered as constant with height (constant flux layer). Using
Buckingham’sπ analyses, a set of surface scalingvariables canbederived,which are expected
to control this relationship completely. Flux–gradient relationships hold for typical temporal
averaging times of 30-60min so that enough eddies can be sampled to derive a reasonable
flux with small error bars as well as meso- and microscale circulations can be separated
from the turbulent fluctuations. It is assumed that the turbulence during this time period is
quasi-stationary. As each flux value corresponds to a certain spatial footprint, the soil and
the land cover properties are considered to be homogeneous over this area. We show that this
is also the case for our measurements (see below for further discussions). Furthermore, we
disregard potential dependencies of surface fluxes on ABL evolution. Therefore, we use the
standard equations of the MOST and the BRN approach as well as we only apply soil, land
cover, and SL variables for the ML approaches.

For applying MOST or BRN similarities, it turned out that flux relationships containing
just a combination of surface scaling variables are not successful. It is necessary to combine
these with similarity functions that consider the effects of the SL stability by additional
scaling variables such as the Obukhov length L or the bulk Richardson number Rib. These
additional relationships introduce self-correlations of the results, which may imply apparent
artificial relations. Nevertheless, we disregard these effects in our study.

Currently, there is no general theory available to derive these similarity functions so
that these are determined by observations or large eddy simulation (LES) with ultra-high
resolution (Maronga and Reuder 2017). In the following, we apply the current state-of-the-
art formulations of these similarity functions based on previous experiments derived under
daytime unstable conditions.

2.2 Monin–Obukhov Similarity Theory

In this case, Monin and Obukhov proposed for the vertical gradient of the SL wind U (z),
potential temperature θ(z), and specific humidity q profiles:
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Û := ∂U

∂z
κ (z − d) = u∗ φm

(
z − d

L

)
, (1)

θ̂ := ∂θ

∂z
κ (z − d) = −H0

u∗
φh

(
z − d

L

)
, (2)

q̂ := ∂q

∂z
κ (z − d) = −Q0

u∗
φq

(
z − d

L

)
, (3)

with u∗ =
{
(u′w′)2 + (v′w′)2

}1/4
, (4)

and L = − θvu3∗
κgw′θ ′

v
, (5)

where U is the horizontal wind speed, κ � 0.4 is the von Karman constant, z is height
above ground level (AGL), d = dz + z0 is the displacement height, where dz is the zero-
plane displacement and z0 is the roughness length, u∗ is the friction velocity, θ is potential
temperature, θv is virtual potential temperature, H0 = w′θ ′ is the surface kinematic heat flux,
q is specific humidity, and Q0 = w′q ′ is the surface kinematic water vapor flux. The overline
indicates the covariance of turbulent quantities averaged over the time period of interest. u′,
v′, and w′ are the zonal, meridional, and vertical fluctuations of the three wind components.
θ ′ and q ′ are the fluctuations of potential temperature and specific humidity, respectively.
Except the other variables introduced above, L is expressed by the mean θv in the SL, the
acceleration due to gravity g, and the surface virtual heat flux H0,v = w′θ ′

v � H0+0.61T Q0

where T is the mean temperature in the SL.
φi stand for the similarity functions that need to be derived to correct the flux–gradient

relationships with respect to atmospheric stability and the strength of turbulence in the SL. In
MOST, these functions scale with the dimensionless variable ζ = (z − d)/L . The structure
of the MOST equation shows a critical self-correlation due to the presence of u∗ in both
terms on the right side of Eq.1 as well as due to the presence of fluxes and u∗ in both terms
on the right sides of Eqs. 2 and 3 (see Andreas and Hicks 2002).

Asmentioned above, we disregard these effects here and use these relations to compare the
observations with the theoretical expectations from MOST. For this purpose, the similarity
functions in the following forms were used for the daytime unstable surface layer:

Û

u∗
= φm

(
z − d

L

)
= bm

(
1 − am

z − d

L

)−α

, (6)

− θ̂ u∗
H0

= φh

(
z − d

L

)
= bh

(
1 − ah

z − d

L

)−β

, (7)

− q̂ u∗
Q0

= φq

(
z − d

L

)
= bq

(
1 − aq

z − d

L

)−γ

. (8)

Similar functional relationships are used in Dyer and Hicks (1970); Dyer (1974) and in the
parameterization of surface fluxes in the Weather Research and Forecasting (WRF) model
(Jiménez et al. 2012).

The challenge is to relate the measurements at the different heights either with gradients
at specific heights or, in order to circumvent this, to use the integrated functions providing
equations for the wind, temperature, and humidity profiles.
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2.2.1 Using the Gradient Functions to Derive Fluxes

If the gradient functions are used directly to find relationships to the fluxes, analytical rela-
tionships can be derived with some approximations or the full set of the three equations is
used by iterative methods. For instance, using these three similarity functions (Eqs. 6–8) with
a := am ≈ ah ≈ aq , we can find the following relationships between gradient measurements
and the fluxes:

u∗ = Û

bm

(
1 − a

z − d

L

)α

, (9)

H0 = −u∗ θ̂

bh

(
u∗ bm
û

)β/α

, (10)

Q0 = −u∗ q̂
bq

(
u∗ bm
û

)γ /α

, (11)

L = θv

κ g θ̂

u2∗{
1

bh

(
u∗ bm
û

)β/α

+ 0.61
T

θ̂

q̂

bq

(
u∗ bm
û

)γ /α
} . (12)

This system of equations can be solved implicitly by inserting Eq.12 in 9 and proceeding
consecutively to Eqs. 10 and 11.

Particularly, if we consider from previous studies that β � γ � 2α, we achieve even an
analytical solution of these equations starting with:

L = θv

κ g θ̂

û2

b2m

(
1

bh
+ 0.61

T

θ̂

q̂

bq

) . (13)

However, there is a severe difficulty here, which makes the use of gradients challenging.
If only tower measurements at two heights are available and their differences are used, the
slope of these secants do not agree with the slope of the gradient function at the arithmetic
mean between these two heights due to its strong nonlinearity. Of course, due to the mean
value theorem of integral calculus, within the range of heights spanned by a secant, there is
always a certain height (but not at the arithmetic mean) where the gradient function agrees
with the secant. However, this height depends on L and can only be found, if the integrated
gradient functions are derived and evaluated. Therefore, the gradients at the arithmetic mean
between the two heights cannot be replaced by the secants, and if this was done, this would
result in systematic errors of the fluxes. However, these solutions can be applied for scanning
lidar systems and fiber-based sensors that are capable to resolve gradients of atmospheric
variables (e.g., Späth et al. (2022)).

2.2.2 Using the Integrated Functions for the Derivation of Fluxes

This is the common approach, we also applied here for flux estimations. According to the
overview in, e.g., Lee and Buban (2020), it is appropriate to set α ≈ 0.25 and β ≈ γ ≈ 0.5.
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Using these exponents, the integrals can be resolved analytically and we achieve:

U (z) = −4
bm u∗

κ

⎡
⎢⎢⎢⎣0.5 arctan

1(
1 − am (z − d)

L

)0.25

+0.25 ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(
1 − am (z − d)

L

)0.25
+ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−0.25 ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 − 1(

1 − am (z − d)

L

)0.25

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦ + C, (14)

θ(z) = bh H0

u∗κ

[
ln

(√
1 − ah (z − d)

L
+ 1

)

− ln

(√
1 − ah (z − d)

L
− 1

)]
+ D, (15)

q(z) = bq Q0

u∗κ

[
ln

(√
1 − aq (z − d)

L
+ 1

)

− ln

(√
1 − aq (z − d)

L
− 1

)]
+ E .

for L < 0 and z > d . (16)

Therefore, the difference at two measurement heights can be expressed as:

U (z2) −U (z1) = −4
bm u∗

κ

⎡
⎢⎢⎢⎣0.5 arctan

1(
1 − am (z2 − d)

L

)0.25

+0.25 ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(
1 − am (z2 − d)

L

)0.25
+ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−0.25 ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 − 1(

1 − am (z2 − d)

L

)0.25

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

−0.5 arctan
1(

1 − am (z1 − d)

L

)0.25
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−0.25 ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(
1 − am (z1 − d)

L

)0.25
+ 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+0.25 ln

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 − 1(

1 − am (z1 − d)

L

)0.25

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎤
⎥⎥⎥⎦ , (17)

θ(z2) − θ(z1) = bh H0

u∗κ

[
ln

(√
1 − ah (z2 − d)

L
+ 1

)

− ln

(√
1 − ah (z2 − d)

L
− 1

)

− ln

(√
1 − ah (z1 − d)

L
+ 1

)

+ ln

(√
1 − ah (z1 − d)

L
− 1

)]
, (18)

q(z2) − q(z1) = bq Q0

u∗κ

[
ln

(√
1 − aq (z2 − d)

L
+ 1

)

− ln

(√
1 − aq (z2 − d)

L
− 1

)

− ln

(√
1 − aq (z1 − d)

L
+ 1

)

+ ln

(√
1 − aq (z1 − d)

L
− 1

)]
. (19)

We used these equations for the derivations of the surface fluxes based on MOST. First of
all, in order to optimize the comparisons, we fitted the combination of coefficients bm and
am , bh and ah as well as bq and aq to the results. Afterward, the fluxes in Eqs. 14–16 were
derived based on this adaptation of the similarity function coefficients.

In principle, these functionsmay also be used to find the respective heights for all variables
where the gradients agree with the secants of the tower measurements at different heights
but we keep these considerations for future efforts.

2.3 Bulk Richardson Number

Use of the BRN Rib has been proposed as an alternative to MOST (e.g., Sorbjan 2006, 2010;
Mauritsen et al. 2007). Recent work has shown that using a Ri-based approach yields better
predictions of near-surface gradients of wind, temperature, moisture, and heat fluxes than
using the long-standing similarity relationships derived from MOST (Lee and Buban 2020;
Lee et al. 2021; Lee and Meyers 2022). Furthermore, a Ri-based approach has the potential
to avoid some of the long-known downsides associated with MOST such as a reduction of
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self-correlation and also to bemore computationally efficient. In the approach, local gradients
present in the calculation of Ri are computed as bulk gradients such that the BRN, Rib, is
computed as:

Rib = gΔθv Δz

θv [(Δu)2 + (Δv)2] . (20)

In the above equation, θv is the virtual potential temperature as well as u and v are the
zonal and meridional wind components, respectively. Following Lee et al. (2021) and briefly
summarized here, in the BRN approach, u∗ , H0, and Q0 are computed, under unstable
conditions, as (Panofsky et al. 1977):

u∗ = Uz cm [1 − dm Rib]1/3, (21)

H0 = −Δθ u∗ ch [1 − dh Rib]1/3, (22)

Q0 = −Δq u∗ cq [1 − dq Rib]1/3. (23)

In the above equations, Uz is the wind speed at height z as well as Δθ and Δq are the
differences in potential temperature and specific humidity between two sampling heights z1
and z2, respectively. cu,h,q and du,h,q are empirically determined coefficients that were found
using the LAFE data set. More details appear in Lee et al. (2021).

3 Application of Machine Learning Analyses for Studying Flux
Similarities

Data-driven ML algorithms can be understood as complementary, if not orthogonal,
approaches to the theory-driven methods described earlier, i.e., MOST in Sect. 2.2 and BRN
in Sect. 2.3. More precisely, an ML algorithm can learn a nonlinear mapping from a set of
given input variables (input features), e.g., observational data, to predict a desired target vari-
able. This mapping can be learned purely from data and without any prior knowledge about
the real physical processes and the importance of individual input features. Once a model has
been trained, it can be analyzed in terms of the importance that it attributes to the respective
features.

Thesemethods allow for studying possibly complex relationships between input and target
variables without any prescribed relationships such as the similarity functions and the scaling
variables for MOST and BRN. Moreover, we aim at using the ML results for improving the
process understanding and advancing present theories.

In this work, we focus on predicting the following target variables:

u∗ = F

(
U3m,U10m,

U10m −U3m

7m
, θ2m, θ10m,

θ10m − θ2m

8m
, ...

Rs,d , A, Rl,d , Rl,u, Rnet , Ts,
T2m − Ts

2m

)
, (24)

H0 = F

(
U3m,U10m,

U10m −U3m

7m
, θ2m, θ10m,

θ10m − θ2m

8m
, ...

Rs,d , A, Rl,d , Rl,u, Rnet , Ts,
T2m − Ts

2m
, Tsoil,5 cm,

Ts − Tsoil,5 cm
5 cm

, AW

)
, (25)

Q0 = F

(
U3m,U10m,

U10m −U3m

7m
, θ2m, θ10m,

θ10m − θ2m

8m
, ...

123



346 V. Wulfmeyer et al.

q3m, q10m,
q10m − q3m

7m
, Rs,d , A, Rl,d , Rl,u, Rnet, ...

Ts,
T2m − Ts

2m
, Tsoil,5 cm,

Ts − Tsoil,5 cm
5 cm

, AW

)
. (26)

To facilitate the ML methods learning an effective input to output mapping, all non-target
measurement variables from the LAFE were considered as inputs. More specifically, we
used the following input features: wind speed at 3m (U3m) and 10m heights (U10m) along
with the resulting gradients (or differences); wind direction at 10m height; air and potential
temperatures at 2m (T2m , θ2m) and 10m heights (T10m , θ10m) along with the gradients; five
radiation terms (incoming short- and longwave radiations Rs,d and Rl,d , outgoing short- and
longwave radiations Rs,u and Rl,u as well as the resulting net radiation Rn and the albedo A);
skin temperature Ts , soil temperatures in five cm depth (Tsoil ), and the gradients from soil
to skin and skin to air temperatures in 2m height; specific humidity at 3m (q3m) and 10m
height (q10m) along with the gradient; and the available water content AW . Separate models
were trained to predict either friction velocity u∗, latent heat flux Q0, or sensible heat flux
H0, as detailed in, e.g., Eqs. 24–26. More information about the recorded and used variables
can be found in Sect. 4.

When choosing Φ
y
p(x) as desired ML algorithm Φ with learnable parameters p and input

x to predict the target variable y, the above equations transform into:

u∗ � Φu∗
p (x), H0 � ΦH0

p (x), and Q0 � ΦQ0
p (x). (27)

Usually, x is an input vector that represents and holds all input features xi for i ∈ {1, ..., n},
where n is the number of input variables.

In this work, we train two ML approaches: a dedicated deep multilayer perceptron (MLP)
model (Goodfellow et al. 2016) from the class of artificial neural networks and the extreme
gradient boosting (XGB) method (Chen and Guestrin 2016). For both methods, we applied a
threefold cross-validation to assess the model performance on unseen data. For this purpose,
we used the data from two towers to train theMLmodels and tested these on the data from the
respective third tower. Accordingly, to obtain predictions for all three towers, three models
were trained for each target variable. Alternative data splits (e.g., 80% of data from all towers
as train and the remaining 20% as test, or even training and testing on all data without split)
were tested as well but not reported since the threefold cross-validation is considered the
most robust method to prevent overfitting on the train data.

3.1 DeepMultilayer Perceptron

The first model we incorporated in our experiments is a deep fully connected MLP, see, e.g.,
Goodfellow et al. (2016). It consists of multiple layers of nonlinear neural processing units as
shown in Fig. 1. In the following, we describe the computational scheme of the single neuron
j :

x j = φ j

(∑
i

wi j xi + b j

)
with, e.g., φ j (u)

{
u if u > 0

0.001u otherwise,
(28)

where xi refers to the input value or output of a neuron of the previous layer, wi j refers to
a trainable weight from neuron or input i to neuron j , b j is a trainable bias value, and φ j is
the activation function, which computes the output of neuron j . In the overall network, an
input pattern is propagated stage-wise from the input layer to the output layer.
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...
...

...
...

x1

x2

xn-1

xn

... y

Fig. 1 Exemplary illustration of anMLP regression model with three hidden layers with ReLUs and one linear
output unit. x1, . . . , xn represent the input features and y represents the respective output variable

Learning with such a model refers to adapting the free parameters wi j ’s and b j ’s (essen-
tially the linear mappings from layer to layer) to approximate an unknown function, which
is represented by a set of known input–target pairs.

For training the deep neural network, all 20 individually z-transformed (normalized using
the mean and standard deviation from the respective training data) feature variables (of a
particular time step) were fed into the network and an according prediction of the target
variable (u∗, Q0, or H0) was generated. More precisely, 20 input neurons feed into three
hidden layers 16, 32, 16 leaky rectified linear units (leaky ReLU, Maas et al. 2013) as shown
in (28). Finally, the output is generated by a linear output layer (no activation function)
consisting of a single output neuron, overall resulting in 1425 trainable parameters (including
biases in each layer). In preliminary experiments, this particular architecture was identified
as a good trade-off between generalization performance andmodel complexity. For a detailed
introduction to optimization and supervised learning in neural networks, the reader is referred
to Goodfellow et al. (2016).

3.2 Extreme Gradient Boosting

As an alternative machine learning approach, we evaluated a recent state-of-the-art decision
tree-based method called extreme gradient boosting (XGB) proposed by Chen and Guestrin
(2016). Gradient boosting is an ensemble method in which multiple weak predictors (here
decision trees) are sequentially arranged to produce a joint output. First, an initial predictor
f0 is trained to predict the target vectors zi . Then the gradient of the loss function E with
respect to the predictions yi is calculated:

− ∂E

∂ yi
with, e.g., E =

∑
i

(xi − zi )2. (29)

This gradient is used to update the prediction:

yi ← yi − ∂E

∂ yi
, (30)

and also as a learning target for the next predictor f1. Thus, each new predictor fτ+1 attempts
to correct the error residual left by the previous predictor fτ . This is repeated until convergence
is reached, e.g., until no more improvement is achieved by additional predictors. Finally, the
overall ensemble prediction is the sum of all predictors of the above chain:

f (x) = f0(x) +
n∑

τ=1

η fτ (x), (31)
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where the learning rate η regulates the size of the residuals.
From a methodological perspective, XGB adds regularization (L1 and L2) to gradient

boosting, but the name refers to its highly efficient and parallelized implementation, which
makes it fast and thus effective in practice. Moreover, it has been shown to be particularly
successful for both classification and regression on sparse and unstructured inputs (Chen and
Guestrin 2016). For a detailed introduction to XGB, please refer to further literature, e.g.,
(Brownlee 2016).

3.3 Feature Importance Analysis

In order to assess the relative importance of each feature, as attributed by the models with
respect to each target variable, we calculated the permutation feature importance as proposed
by Breiman (2001): (1) Compute the prediction score of the trained model s (we used the
root mean square error, RMSE). (2) Randomly permute the values of feature j over the
data set (we used the respective test data sets) and recompute the score s′

i, j (repeating for
i ∈ {1, . . . , n} times, we used n = 10). (3) Calculate the average prediction score s′

j for

feature j and subtract s, i.e., s′
j =

[
1
n

∑n
i (s

′
i, j )

]
− s. Additionally, we normalize s′

j to obtain

the final and relative feature importance scores s j = s′
j/

∑
j s

′
j . we repeated this procedure

for each target tower and target variable and computed the average importance scores with
standard deviations for each feature over the three towers.

4 The Land–Atmosphere Feedback Experiment and its Measurements
for Studying Flux Similarities

4.1 Overview of the Land–Atmosphere Feedback Experiment

The land–atmosphere feedback experiment (LAFE) took place in August 2017 at the DOE
ARM program SGP site near Lamont, Oklahoma, USA. An overview of LAFE is presented
in Wulfmeyer et al. (2018). The overarching goal of LAFE is the study of L–A feedback
processes in the SGP region during summer time considering different vegetation types,
which would have different soil moisture conditions, and the land surface heterogeneity.
Specifically, LAFE has 4 scientific objectives:

1. Determine water vapor and vertical velocity, turbulence, and latent heat flux profiles, and
investigate new similarity relationships for entrainment fluxes and variances

2. Map surface momentum, sensible heat, and latent heat fluxes using a synergy of range–
height indicator (RHI) scanning wind, humidity, and temperature lidar systems

3. Characterize L–A feedback and the moisture budget at the SGP site by combining surface
and ABL flux measurements as well as measurements of humidity advection in depen-
dence of different soil moisture regimes.

4. Verify LES runs and improve turbulence parameterizations in mesoscale models

The LAFE measurements were complemented by the three tower measurements of NOAA
for energy balance closure (EBC) measurements (EBC Towers 1, 2, 3 NOAA), which are
subject of this work, and another EBC station of UHOH (Wizemann et al. 2015). These
instruments were oriented along the main line of sight (LOS) of the LAFE remote sensing
measurements in order to get a good overlap, enable comparisons, and taking advantage of the
sensor synergy. For instance, this measurement configuration resulted in first measurements
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Table 1 Canopy parameters
measured at the tower locations
and derived based on Foken
(2016)

Tower i hi , m dz,i , m z0,i , m

1 0.5 0.4 0.05–0.1

2 0.6 0.5 0.05–0.1

3 0.6 0.5 0.05–0.1

of lidar-derived two-dimensional fields of LOS, moisture, and temperature. Their vertical
structures over different towers were used for comparisons with MOST (Späth et al. 2022).

In this work, we focus on the analyses of the NOAA tower data. Our results have strong
relationships to all LAFE objectives. The surface fluxmeasurements will be used for comple-
menting flux profiles measurements within LAFE objective 1, for the verification of scanning
lidar-derived surface flux estimates (objective 2, see also Späth et al. 2022), for ABL budget
studies (objective 3), and for the investigation of the parameterization of surface fluxes in
mesoscale models (objective 4).

4.2 NOAATower Measurements

4.2.1 Data Sampling and Processing

Important for this work are the data sets from three 10-m towers that were installed within the
LAFE domain. Tower 1 was installed in an early growth soybean crop field; Tower 2 in native
grassland; and Tower 3 in a more mature soybean crop field. The towers were outfitted with
an identical suite of measurements to sample wind, temperature, and moisture measurements
as well as vegetation and soil variables such as albedo A and available water contents AW ,
which was calculated using a weighted average of the soil moisture measurements made at 5
cm (Smois05), 10 cm (Smois10), and 20 cm (Smois20): AW = 7.5 Smois05+7.5 Smois10+
20 Smois20. Temperature differences were sampled between 2m and 10mAGL, whereas the
moisture and wind differences were determined between 3m and 10m AGL. Momentum,
heat, andmoisture fluxes were sampled at heights of 3m and 10mAGL. Bulk quantities were
sampled at 1 Hz; turbulence and water vapor were sampled at 10 Hz using an CSAT3 sonic
anemometer and EC155 closed path infrared gas analyzer, respectively. Additional details on
the experimental setup during LAFE appear in Lee and Buban (2020); Lee et al. (2021); Lee
and Meyers (2022). The whole data set during August 2017 was applied for our analyses.
The diurnal cycles of the flux, gradient, and mean values during LAFE are shown in Lee and
Buban (2020).

Table1 summarizes the canopy heights hi that we measured in the field, the derived
zero-plane displacements heights dz,i , and the roughness lengths z0,i at each tower i . The
zero-plane displacements were estimated using the approximation of 0.8h and the roughness
lengths from Table2.7 in Foken (2016). The land cover and the terrain heights were rather
homogeneous over the footprint areas and beyond. As the canopy heights and the roughness
lengths were similar for all sites and the crop growth could be neglected, it was valid to use
d � 0.5m for all sites. As the roughness sublayer is less than three times the canopy height
(Harman and Finnigan 2007), it was ensured that all measurements were taken above in the
inertial sublayer, which is another requirement for the validity of MOST.

With respect to turbulence, we processed the data sets from the sonic anemometer and gas
analyzer with the TK3 software byMauder and Foken (2015), which applied cross-wind cor-
rections, corrections of spectral loss, steady-state tests, and integral turbulence characteristics
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tests consistently and reproducible in one package. The differences in the results between the
NOAA software and TK3 where in the range of a few 10Wm−2 and we identified further
25 out of 1248 data points (≈ 2 0/00) that did not pass the scientific level stationarity and
integral turbulence characteristics test. Therefore, these two tests had negligible influence on
our results.

As we were concerned about the unstable behavior of the turbulent fluxes, we applied
further specific quality controls to reduce the impact of flow distortions on themeasurements,
which can happen at specific wind directions. First of all, as we dealt with unstable situations,
we selected the data with a sensible heat flux of SH > 0Wm−2, which corresponded also
to LH > 0Wm−2. Furthermore, to avoid indifferent situations during morning transitions
and afternoon decays of turbulence, we chose only data with u∗ > 0.1ms−1. Flow distortion
were detected and sorted out by the criterion 0.9 < σw u−1∗ < 1.8 according to Oliveira
et al. (2021) where σw is the standard deviation of the vertical wind fluctuations. Also, values
exceeding 800Wm−2 for sensible and latent heat fluxes were considered as outliers. The rest
of the data were applied for the comparisons of MOST, BRN, and the ML methods with the
observations.

The following analyses gave us high confidence that MOST and BRN were applicable
at all tower sites. As noted by Lee and Buban (2020) and briefly summarized here, there
was nearly complete EBC at the early growth soybean and native grassland sites for the
entire month-long data set. At the more mature soybean site, however, the EBC was around
95%, which was attributed to larger ground heat storage as compared with the other sites.
As these errors are still quite small, we used the entire data set without any corrections
for the EBC. Footprint analyses were performed for all towers using the tools provided in
Kljun et al. (2015) (not shown). Both the footprints for the flux measurements at 3m and
10m showed rather homogeneous and consistent pattern after quality control of the data (see
above). The 3m flux footprints had a typical radius of 50m so that all flux measurements
corresponded to the soil and land cover over the fields of interest. Therefore, we focused
on the flux measurements at this height for our flux retrievals and comparisons. Within the
footprints, the terrains were very flat (variabilities of the order of 0.1m) and the land covers
were fairly homogeneous. The fluxes measured at 2m, 3m, and 10m showed a reasonable
correspondence without indications of inhomogeneous mesoscale flows. Furthermore, lidar
scans analyzed so far over the sites did not indicate strong inhomogeneous pattern either
(Späth et al. 2022). We also emphasize that almost all mesoscale models apply MOST over
these types of crop lands so that any verification of MOST such as in this work can be
considered as very instructive to get insight in the expected performance of land–atmosphere
model systems.

4.2.2 Monin–Obukhov Similarity Theory

For the derivation of the fluxes, the integrated MOST functions were applied using the
therein prescribed exponents of the similarity functions (see Eqs. 17–19) and d � 0.5m.
For improving the comparisons, we fitted first the parameters am,h,q and bm,h,q using the
entire tower 1–3 data set. Fits applied to the single tower data provided highly variable
results with larger errors due to the reduction of the data points. A fit to all tower data (solid
lines) is exemplarily demonstrated in Fig. 2 for potential temperature where the resulting
MOST integrated functions are compared to the observations in dependence of L . This plot
already demonstrates a structural problem of the MOST gradient and integrated functions. It
is difficult to identify a clear relationship between the integrated function and its dependence
of L and a large range of fit coefficients provide similar results with respect to the rms errors
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Table 2 Fit coefficients for the
similarity or the integrated
functions using α = 0.25 and
β = γ = 0.5, respectively, for all
three fluxes of interest based on
the tower 1–3 data

Parameter Result Uncertainty

am 16 2

bm 1.26 0.02

ah 7 1

bh 0.88 0.02

aq 62.0 29

bq 2.5 0.4

Fig. 2 Fit of the scaled differences of the potential temperaturemeasurements to the integratedMOST gradient
function for potential temperature (see Eq.18). The fits using the coefficients of Dyer and Hicks (1970) and
Maronga and Reuder (2017) are also shown. The large scatter of the data and the resulting uncertain fits over
the entire range of L already demonstrates fundamental problems of MOST

between the observations and the measurements of u∗ and H0. The results achieved with the
coefficients of Dyer andHicks (1970) andMaronga and Reuder (2017) are also shown, which
led to significant biases in the results (as well as for H0 and Q0, not shown). Therefore, it was
reasonable to adapt these coefficients to our LAFE data. The results for the fit coefficients
are presented in Table2.

After fixing these coefficients, a simultaneous iteration betweenEqs.17–19was performed
to derive the three fluxes u∗, H0, and Q0 for each data point (three measurements of differ-
ences in three equations with three unknowns).

4.2.3 Bulk Richardson Number

In a similar manner as for MOST but now for the gradient functions, the coefficients for BRN
were determined using the tower 1–3 data. In order to determine the BRN fitting coefficients,
we followed the procedure discussed in Markowski et al. (2019); Lee and Meyers (2022),
which is briefly summarized here. We first computed each observation’s uncertainty before
performing a Levenberg–Marquardt least-squares fit that weights the uncertainties in each
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Table 3 BRN function fit
coefficients used for the
comparisons based on the tower
1-3 data

Parameter Result Uncertainty

cm 0.11 0.01

dm 2.4 1.6

ch 0.28 0.04

dh 16 12

cq 0.18 0.01

dq 28 7

Table 4 XGB parameters that
were identified by means of a
systematic search over all three
towers and used with respect to
each target variable

XGB parameter Target variable
u∗ SH LH

Eta 0.19 0.16 0.11

Min child weight 0.70 0.02 0.44

Max depth 12 4 19

Gamma 0.00 0.01 1.92

Subsample 0.69 0.67 0.44

Colsample bytree 0.89 0.73 0.98

Colsample bylevel 0.87 0.47 0.77

Reg Lambda 0.29 0.65 0.62

N estimators 21 26 70

SH : sensible heat flux, LH : latent heat flux

observation to determine the fitting coefficients. Also here, the BRN similarity functions
were analyzed specifically using all tower 1–3 data together. For this purpose, a fit of the
experimental data was performed using Eqs. 21–23. The results are presented in Table3.
Please note that the differences between these coefficients with respect to each single tower
were close considering the estimated error margins, which confirmed that it made sense to
use the entire tower 1–3 data set for the fits and the retrievals.

4.2.4 Machine Learning

For the MLP, we applied the Adam optimizer (Kingma and Ba 2015) to train the models’
parameters using a learning rate of 1 × 10−3, 1000 epochs of training with batch size 256,
and default settings otherwise. Additionally, we used L2 regularization, i.e., weight decay,
with a rate of 0.1 (Loshchilov and Hutter 2019). After cleaning (removing samples with NaN
entries), the data amounted to 487, 519, and 450 samples for towers 1, 2, and 3, respectively.
Training was performed on a GeForce GTX 1060 6GB graphics card using PyTorch 1.8.1.

Using the XGB for learning the fluxes, we used the same data split between the tower
data as reported in Sect. 3.1. A systematic search over all three towers revealed the best XGB
parameters per target variable, which are reported in Table 4. We also tested the training
using a subset of all tower data together (80:20 or 60:40) and found even improved results
that indicated that our two-tower training strategy was reasonable.
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Table 5 Friction velocity evaluation metrics using linear regression analyses

Model RMSE, ms−1 R OLS Slope interval

BRN 0.04 0.94 u∗,o = 0.9 u∗,r + 0.03ms−1 [0.91 0.95]

MOST 0.05 0.9 u∗,o = 0.8 u∗, r + 0.06ms−1 [0.80 0.85]

MLP 0.03 0.96 u∗,o = u∗, r [0.99 1.02]

XGB 0.03 0.96 u∗,o = u∗, r [0.99 1.03]

RMSE: Root mean square error, R: regression coefficient, OLS: ordinary least square regression line coeffi-
cients, slope interval: 95% confidence interval, u∗,o: observed friction velocity, u∗,r : retrieved friction velocity

Fig. 3 Scatter diagram of the retrieved friction velocities versus the observations. Blue: MOST, green: BRN,
orange: XGB, red: MLP

5 Results

Using the derivation of the results forMOST,BRN, andML, as described above,we compared
their outputs with the observations using the eddy covariance measurements of the fluxes.
For all comparisons, the kinematic heat fluxes were transformed in Wm−2 using SH =
cp ρ w′θ ′ = cp ρ H0 and LH = lq ρw′q ′ = lq ρ Q0 where cp � 1005Jkg−1K−1 is the
specific heat capacity of air at constant pressure, ρ is the surface air density which fluctuates
here between 1.08 and 1.2kgm−3, and lq � 2500 Jg−1 is the specific heat of evaporation.

First of all, we visualized and analyzed the results using scatter diagrams. These scatter
diagrams are presented in Figs. 3, 4 and 5 and are statistically evaluated in Tables5, 6 and
7. For the regression analyses we used an ordinary least-squares model to obtain the slope
and intercept of the line, followed by an error evaluation using a confidence interval of 95%
based on a standard normal distribution.

Figure3 presents the results for u∗ and Table5 provides the statistical comparison of
the results based on regression analyses. The plot shows that MOST and BRN perform
similarly; however, the correlation coefficient is slightly smaller for MOST. MOST rolls off
at u∗ ≥ 0.6ms−1 and often overestimates the friction velocity whereas this effect is reduced
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Table 6 Sensible heat evaluation metrics

Model RMSE (Wm−2) R OLS Slope interval

BRN 24.8 0.92 SHo = 0.84 SHr + 18Wm−2 [0.82 0.86]

MOST 42.9 0.86 SHo = 0.62 SHr + 27Wm−2 [0.60 0.64]

MLP 17.0 0.95 SHo = SHr − 1Wm−2 [0.99 1.03]

XGB 26.1 0.9 SHo = 0.9 SHr + 5.5Wm−2 [0.87 0.93]

SHo: observed heat flux, SHr : retrieved heat flux

Fig. 4 Scatter diagram of the retrieved sensible heat flux versus the observations. Blue: MOST, green: BRN,
orange: XGB, red: MLP

with BRN. The RMSEs for MOST and BRN are similar. The slight bias of these methods
is also demonstrated by the deviating slopes and the significant intercepts of 0.06ms−1 and
0.03ms−1 of the regression lines, respectively. For MLP, u∗ is slightly overestimated up
to u∗ ≤ 0.25ms−1 whereas this bias is reduced for XGB. However, for the rest of the
comparisons, these methods show a better correspondence to the observations than BRN or
MOST with reduced RMSEs. Both ML methods perform very similar over the remaining
range of data. This is also expressed in Table5. A clearly better correspondence of the
regression lines with slope 1 with respect to the observations is achieved showing nearly no
intercept with respect to the bisecting line.

Figure4 shows the results for SH and Table6 provides the corresponding statistical eval-
uations. Here the behavior of MOST and BRN is considerably different. A large number of
MOST retrievals overestimate SH nearly over the entire range, in spite of the optimization of
the coefficients in the similarity function. Considering our careful outlier removal techniques,
these deviations are significant. The number of strongly deviating data points with respect to
the regression line is strongly reduced for BRN. Taking all these data into account, MOST
has the highest RMSE � 43Wm−2 of all methods and the smallest regression coefficient
of 0.86. The regression line is far off the bisecting line. BRN has a similar tendency for an
underestimation of SH indicated by a positive intercept of the regression line. However, in
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Table 7 Latent heat evaluation metrics

Model RMSE (Wm−2) R OLS Slope interval

BRN 121 0.42 LHo = 0.3 LHr + 111Wm−2 [0.22 0.29]

MOST 107 0.41 LHo = 0.5 LHr + 112Wm−2 [0.47 0.61]

MLP 31 0.92 LHo = LHr + 4Wm−2 [0.94 0.99]

XGB 33 0.91 LHo = LHr − 1Wm−2 [0.96 1.02]

LHo: observed heat flux, LHr : retrieved heat flux

Fig. 5 Scatter diagram of the retrieved latent heat flux versus the observations. Blue: MOST, green: BRN,
orange: XGB, red: MLP

contrast to MOST, its slope corresponds more to the bisecting line, the RMSE is signifi-
cantly reduced to 25Wm−2, and the correlation coefficient is higher with R � 0.92 (see
Table6). Using MLP or XGB, a clearly better agreement with the observations is achieved.
Here, MLP performs better than XGB because the latter is biased toward higher values for
SH > 200Wm−2. For XGB, the RMSE is slightly higher as for BRN; however, the slope is
closer to the bisecting line and the intercept is reduced to 5.5Wm−2. The best performance is
achieved withMLP. The RMSE is strongly reduced to 17Wm−2, the correlation coefficients
is R � 0.95, the slope is close to 1, and the intercept just −1Wm−2.

The strongest improvement of the analysis of surface fluxes by the ML methods in com-
parison with BRN and MOST was achieved for the latent heat flux LH . Figure5 presents
the scatter diagram for LH and Table7 the corresponding statistics. Here, MOST and BRN
perform very suboptimal pointing to structural problems of the assumptions with respect to
the similarity functions. The scatter is largest for BRN with an RMSE � 121Wm−2 in
comparison to MOST with RMSE � 107Wm−2. The regression coefficients are poor with
R ≤ 0.42 and the intercepts are > 100Wm−2 in both cases with slopes of the regression
lines far away from the bisecting line. In contrast, MLP and XGB still show a very good
correlation and linearity almost over the entire range of the data set. Obviously, MLP and
XGB are superior in their search for reasonable relationships between LH and the proposed
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Fig. 6 Scatter diagrams of the comparisons broken downwith respect to different intervals of the observations.
Beige: observations, Blue: MOST, green: BRN, orange: XGB, red: MLP

predictors. MLP and XGB perform similar with strongly reduced RMSE � 33Wm−2 and
high regression coefficients of R � 0.9. The slopes of the regression lines nearly correspond
to the bisecting line and the absolute values of the intercepts are < 5Wm−2.

A more detailed breakdown of the performance of the various approaches for the flux
similarities is presented in Fig. 6. Here, the scatter diagrams are presented with respect to
intervals or classes of the observations for u∗, SH , and LH . For all three variables, these
refined scatter diagrams confirm the general reduced scatter of the ML methods and their
reduced biases in comparison to MOST and BRN. Whereas the scatter and the bias for all
these classes is acceptable for u∗, there are basically no intervals where MOST and BRN are
bias-free for SH and LH with the most degraded performance for the latter.

6 Discussion

Based on these results, it is very interesting to reconsider and to evaluate the key relationships
that are prescribed in the MOST and the BRN similarity relationships as well as to search
for more general and accurate ones. Particularly, the ML approaches permit the study of the
relative importance of the respective features used during the training processes, as described
above. The results are presented in Figs. 7, 8, and 9 for both ML methods ordered in relative
importance for the MLP.

Figure7 shows these weights for u∗. As expected from the relative good agreement of
the MOST and BRN retrievals with the observations, indeed U3m and U10m are the most
important features for MLP and XGB. Interestingly, the weight of U3m and U10m for MLP
methods is similar but much higher with respect toU10m for XGB. The third most important
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Fig. 7 Histogram of the importance scores forMLP and XGBwith respect to the different features used during
the training process for retrieving u∗. Black bars: MLP, gray bars: XGB

Fig. 8 Histogram of the importance scores forMLP and XGBwith respect to the different features used during
the training process for SH . Black bars: MLP, gray bars: XGB
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Fig. 9 Histogram of the importance scores forMLP and XGBwith respect to the different features used during
the training process for LH . Black bars: MLP, gray bars: XGB

weight is the wind speed gradient between 3m and 10m. This result confirms that the main
proposed structural relationships, the proportionality of u∗ toU3m or toU10m , is largely valid.
This dependence of the surface momentum flux on the strength of the SL wind is physically
reasonable and understood, as the increase of the surface wind gradient (with wind at the
displacement height equal to zero) must enhance the turbulence and dynamic exchange with
the atmosphere. However, even in this case, the ML methods perform better for larger u∗ in
comparison to MOST and BRN. Based on Fig. 7, this is not due to missing relationships in
MOST and BRNwith respect to other variables because the remaining importance weighting
of these is very low. Therefore, this deficiency of MOST and BRN is either due to a different
nonlinear relationships of u∗ to the wind speed that is not fully captured by the prescribed
similarity functions or by a limited validity of the scaling variables L and Rib in the similarity
functions. It will be subject of our future research to study and to separate these effects in
more detail.

We investigated these most important relationships for u∗ by plots of u∗ versus U3m or
U10m . The results are presented in Figs. 10 and 11. These figures confirm the major depen-
dence of u∗ on the surface winds. Themain difference is the varying slope due to the different
surface wind strengths between 3m and 10m. All retrieval methods show a slight under-
dispersive behavior with respect to the scatter of the observations, which may be due to
dependencies to other variables. Except at small u∗, where a small remaining bias may be
present for MLP and XGB, the correspondence of all retrievals follow the observed relation-
ships between u∗ and the surface wind speedsU3m andU10m . A positive bias of MOST in the
range of 2.5m s−1 < U3m < 6m s−1 or 4m s−1 < U10m < 8m s−1 is visible. In contrast,
BRN shows a positive bias for U3m > 6m s−1 and U10m > 9m s−1.
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Fig. 10 Observed and retrieved u∗ in dependence of U3m . Black: Observations, blue: MOST, green: BRN,
orange: XGB, red: MLP

Fig. 11 Observed and retrieved u∗ in dependence of U10m . Black: Observations, blue: MOST, green: BRN,
orange: XGB, red: MLP
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Fig. 12 Observed and retrieval SH in dependence of potential temperature gradient between 2m and 10m.
Black: Observations, blue: MOST, green: BRN, orange: XGB, red: MLP

For SH , the importance weighting by MLP and XGB is presented in Fig. 8. As assumed
in MOST and BRN, the most important drivers are indeed either the temperature differences
between 10m and 2m or between 2m and the land surface, respectively. Here, the weights
are larger for XGB because the third most important feature is mainly present for MLP and
is U3m . This higher-order relationship will be studied more in detail in the future.

Therefore, it is reasonable to plot SH in dependence of the SL potential temperature gra-
dient for the observations and the retrievals. The result for all overlapping data is presented in
Fig. 12. Particularly, there seems to be a bifurcation of the data for potential temperature gra-
dients dθ/dz < −0.1Km−1. This figure demonstrates that theMLmethods are able not only
to reproduce this dependence very well but also these fine structures of the results. In order to
allow for a better comparison of the results and the observations, the comparisons of the obser-
vations and the retrievals are presented in separate panels in Fig. 13. Except remaining slight
deviations between the observations and MLP, the resulting clusters of retrievals perform
similarly and show the best agreement with the measurements. XGB is more underdispersive
and shows larger deviations at stronger temperature gradients. In contrast, for both BRN and
MOST, the retrievals are largely underdispersive and do not follow the general shape of the
observations. BRN and MOST represent only a subset of the data namely either the lower
range of SH for BRN and a general incorrect slope dependence of the temperature gradient
to SH on the temperature gradient. As the dependencies between retrievals and temperature
gradients inMOST and BRN deviate strongly from the observations, these confirm structural
limitations in their similarity relationships.

We can study this further by repeating theMLwith a reduced set of variables, e.g., the three
or two most important ones according to the importance weighting. Particularly interesting is
SH because the importance weighting confirms that the temperature differences are the most
powerful input variables as assumed in MOST and BRN (see Figs. 4, 8, and 12 as well as
Table6) but ML still shows a superior performance. As expected, using three input variables,
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Table 8 Sensible heat evaluation metrics

Model RMSE (Wm−2) R OLS Slope interval

Three input variables (two temperature differences and 3-m wind speed)

MLP 19.8 0.94 SHo = 0.98 SHr − 2.3Wm−2 [0.96 1.01]

XGB 23.3 0.91 SHo = SHr − 1Wm−2 [0.97 1.03]

Two input variables (10-m and 2-m temperature difference and 3-m wind speed)

MLP 22.5 0.92 SHo = 0.99 SHr − 3.5Wm−2 [0.96 1.02]

XGB 34 0.83 SHo = 0.82 SHr + 10.7Wm−2 [0.79 0.86]

SHo: observed heat flux, SHr : retrieved heat flux

the results are close to the performance using the full set of variables. If only the surface
and the atmospheric temperature differences as well the 3-m wind speed are used for our
threefold cross-validation and training strategy for ML, we still find similar results of the
ML retrievals. This is demonstrated in Table8 and Fig. 14, upper panel. The performance of
MLP using the three input variables is almost indistinguishable from the results with the full
training and XGB improves. As ML still achieves a better agreement with the observations,
obviously ML overcomes structural limitations of the MOST and BRN similarity functions.
If only two input variables are used (10-m, 2-m temperature difference as well as 3-m wind
speed), this performance is basically maintained for MLP whereas XGB shows comparable
results with BRN. Similar results are achieved for LH (not shown) and will be subject of
future research as well as the reason why XGB performed worse than MLP just for SH .

Last but not least for LH , the importance weighting by MLP and XGB is presented in
Fig. 9. It is striking that this result deviates strongly from the traditional expectations. There
is basically no weight for the SL specific humidity gradient but mainly for the net and the
incoming shortwave radiations for both XGB andMLP. Depending on the choice of XGB and
MLP, the next important variables are the outgoing shortwave radiation, the air temperature
gradient, and the available water contents.

In order to confirm the weak or even absent dependence of LH on the specific humidity
gradient (in this case between 3 and 10m), we plotted this dependence in Fig. 15 overlapping
for the observations and all retrievals. This figure clearly shows the very weak relationship
between LH and the moisture gradient between 10m and 3m. Additionally, this cluster
of observations is hardly reproduced by BRN and MOST whereas the retrievals of MLP
and XGB reproduce very well the distribution of the observations. This is seen is great
detail in Fig. 16 where all results are presented in separate panels. The weak dependence
of LH of the atmospheric moisture gradient is very well reproduced by MLP and XGB
even with respect to two rather distinct clusters and some scattered data. There is a very
slight underdispersive behavior of the entire range of the retrievals. In contrast, BRN and
MOST propose relationships that deviate strongly from the observations with respect to their
distributions and slopes. This slope dependence is far too large for BRN and also incorrect
for MOST. Also, both MOST and BRN perform largely underdispersively in the region of
the agreement of the data.

These results motivated us to plot the main dependencies that were predicted by the ML
methods, namely the dependencies of LH on the net radiation and the incoming shortwave
radiation. The results are presented in Fig. 17 for both variables (upper panel: net radiation,
bottom panel: incoming shortwave radiation). Indeed, the correspondence between LH and
the radiation terms is much clearer for MLP and XGB. The cluster of observations agrees
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Fig. 14 Upper panel: Scatter diagram of the retrieved sensible heat flux versus the observations using only
three input variables for ML (two temperature differences, 3-m wind speed). Bottom panel: Scatter diagram
of the retrieved sensible heat flux versus the observations using only two input variables for ML (10-m, 2-m
temperature difference, 3-m wind speed). Blue: MOST, green: BRN, orange: XGB, red: MLP

very well with the retrievals of ML and XGB. In contrast, using BRN and MOST, a huge
amount of scatter is produced in strong disagreement with the observations.

As we pointed out above, likely both MOST and BRN have further deficiencies such
as dependencies from surface heterogeneities (Morrison et al. 2021), micro- and mesoscale
circulations (Li et al. 2018; McNaughton and Brunet 2002), and ABL variables (van de Boer
et al. 2014; Cheng et al. 2021; vanHeerwaarden et al. 2009). In theMOST andBRN retrievals,
we disregarded these effects and pointed out that the footprints of the measurements could
be considered as homogeneous enough to apply these similarity theories. Also, our 2D lidar
scans did not indicate any special conditions or microscale variability that may indicate that
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Fig. 15 Observed and retrieval LH in dependence of specific humidity gradient between 3m and 10m. Blue:
MOST, green: BRN, orange: XGB, red: MLP

thesemeasurement siteswere not suitable for the application ofMOSTandBRN relationships
(Späth et al. 2022). Even without additional knowledge and ingesting this information in the
ML algorithms, we find that the ML methods are capable of reproducing the observations
very well. Therefore, we conclude that surface heterogeneities and ABL properties were
not the main drivers for the erroneous behavior of MOST and BRN mainly with respect to
SH and LH . The much better regression results of MLP and XGB indicate that the main
problem of BRN andMOST are limitations of their relationships to temperature andmoisture
gradients, the prescribed but obviously incorrect shape and scaling of the similarity functions,
and deficiencies in the choice of the scaling variables such as L .

It is interesting to compare our resultswith theworkofQin et al. (2005a, b, 2010), Safa et al.
(2018), who used station but not tower data for the training of ML techniques over cropland,
mainly above maize during different vegetation periods. Whereas Qin et al. (2005a, b) used
mainly temperature, water vapor pressure deficit V PD, the soil water content in root zoneW ,
the leaf area index L AI , and the photosynthetically active radiation PAR as input variables,
Safa et al. (2018) also considered net radiation. Using a feed-forward back propagation neural
network with an input layer, output layer as well as a hidden layer and output layer, Qin et al.
(2005a) found a similar agreement of LH with the observations as in our study. In Qin
et al. (2005b), they operated a least-squares support vector machine and achieve a similar
performance with respect to LH . Qin et al. (2010) performed a sophisticated importance
weighting based on the automatic relevance determination (ARD). ARD is another technique
to determine the importance of input features by constructing a hyper-parameter accounting
to the inverse variance of all weights that are connected to the respective input. A small value
of the hyper-parameter means large influence of the input feature on the output. According
to their analysis, the feature importance for LH turned out to be V PD > W > L AI >

T > PAR. In our study, we also found a dependence on AW . However, we have not yet
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Fig. 17 Upper panel: Observed and retrieved LH in dependence on net radiation. Bottom panel: Observed
and retrieved LH in dependence on shortwave incoming radiation. Blue: MOST, green: BRN, orange: XGB,
red: MLP

investigated V PD and L AI . Obviously, this was also not necessary because MLP and XGB
explain the driving variables mainly with net and shortwave incoming radiations.

Concerning V PD, we considered the moisture gradient as more important information.
The very good prediction of LH using our input data set substantiates this approach. Also, our
strong dependence on net radiation likely corresponds to the significant impact of PAR. In
the future, we plan to enhance these importance weighting analyses and add further variables.
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Safa et al. (2018) investigated sensible and latent heat fluxes with an MLP approach
based on multiyear data sets of fluxes and L–A variables over maize. They also performed
a sensitivity analysis, which was based on the computation of 5-% incremental changes of
the input data with respect to the output (Nourani and Sayad Fard 2012). Momentum fluxes
were not investigated. They demonstrated promising training results similar to Qin et al.
(2010); however, they obtained a different importance weighting for LH with Rn > L AI >

V PD > U and Rn > U > T > L AI > V PD for SH . Whereas the results for LH are in
better agreement with our results, the dependence on net radiation for SH strongly disagree
with our findings. A fundamental issue in these studies is the absence of the investigation
of gradients with respect to T and q . Particularly, the temperature gradient turned out as
most important input variables for SH in our study. Also, we suggest always including a
comparison with the performance of MOST and BRN. Furthermore, the momentum flux
should be studied.

Leufen and Schädler (2019) used an extensive set of tower data and compared these with
retrievals of MOST and an MLP. They investigated the surface momentum and sensible
heat fluxes, simultaneously. For the MOST retrievals, they also worked with the integrated
similarity functions. After training the MLP using the data of one tower with six input
variables and application of the training results to an independent data set of another tower,
Leufen and Schädler (2019) found comparable performance of MOST and MLP. It is likely
that the advanced results of our ML methods are due to the larger input data set such as the
surface temperature gradient and radiation variables. Leufen and Schädler (2019) did not
investigate latent heat fluxes and they did not perform a sensitivity study with respect to the
MLP.

In summary, the comparison of our work shows correspondence with previous results
although the input data sets for the various ML methods were different. In the future, it is
important to compare the performance of ML methods at more sites and to use harmonized
data sets as input variables in order to make the results comparable. In any case, our work
demonstrates the importance of the incorporation of gradient information in combination
with a large suite of potential driving variables as well as the structural deficits of MOST and
BRN retrievals with respect to SH and LH .

7 Summary

In this work, we applied data of three towers operated during LAFE for one month in August
2017 in order to study retrievals of the friction velocity u∗, the surface heat flux SH , and
the latent heat flux LH under unstable conditions during daytime. The retrievals were based
on MOST and BRN relationships as well as two ML methods, the multilayer perceptron
(MLP) and the extreme gradient boosting (XGB). For the determination of the fluxes using
similarity relationships, we incorporated the observations in the MOST and BRN equations
including fits of the specific parameters of the similarity functions as well as the integrated
gradient functions for MOST.

Specifically, we are able to answer the scientific questions posed above:

1. How accurate are the fluxes derived by MOST and BRN using appropriate data analy-
ses? In spite of deriving the best parameters of MOST and BRN to fit their similarity
functions to the observations, their approximations of the fluxes u∗, SH , and LH show
increasingly significant deviations. These deviations were already visible for u∗, partic-
ularly in the slopes of the regression lines. The agreement with the observations of SH
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degraded further substantiated by an increase of RMSE, a reduction of the regression
coefficient, a further deviation of the slopes from one, and an increase of the intercepts.
Here BRN performed clearly better than MOST, particularly with respect to the slope.
The strongest deviations in MOST and BRN retrievals were founded with respect to LH .
Both MOST and BRN were not able to reproduce the weak dependence of LH on the
moisture gradient. The slopes of the regression lines were far off the observations; the
structural constraints due to the shapes of the similarity functions were not able to recover
the pattern of the observations. Here MOST performed better than BRN, though still with
overall unsatisfactory performance.

2. How do the derived fluxes from MOST and BRN compare with the output of the ML
techniques? For all fluxes, u∗, SH , and LH , the ML methods outperformed both MOST
and BRN significantly. Whereas the improvement was rather weak with respect to u∗, it
increased further for SH and LH . Particularly striking was that the MLP and the XGB
were able to produce slopes of the regression lines that closely approximated one and
yielded small intercepts. This is very promising for future studies. This performance was
maintained, if only the first three input variables according to the importance weighting
were taken for the ML training. The substantial improvements of SH and LH , in spite
of the lack of additional ABL variables, point to structural deficits of MOST and BRN
concerning the shape of the similarity functions and/or the definition of the scaling vari-
ables. Particularly, in the case of LH , the importance weighting indicates that flux–L–A
variable relationship should be modified and should include mainly net and/or shortwave
incoming radiation as well as soil moisture variables.

3. Can we use ML techniques to generate improved results and an identification of the most
important drivers of the fluxes? Yes, the key is to incorporate and to apply techniques
for importance weighting like the ones introduced in this work, or related techniques,
such as automatic relevance determination. The results also highlight that ML techniques
should not be considered to constitute pure black boxes. Importance weighting methods
can provide key insights into the factors that critically influence L-A dynamics, such as
the main drivers of fluxes. For instance, the importance weighting confirmed the expected
main dependencies of u∗ on the surface wind and its gradients as well as the major
dependency of SH on the temperature gradient. However, also a significant dependency
on U3m was detected. For LH , in contrast to the basic assumptions of MOST and BRN,
the main driving variables turned out to be the net radiation as well as the incoming and
outgoing shortwave radiations.

At this stage, it is not possible yet to claim or to study a universality of our results.
Therefore, in the future, we will test ourMLmethods onmore tower data from other sites and
include additional variables such as V PD and L AI . Furthermore, we suggest to harmonize
these efforts internationally by the development and application of common data sets for the
training of ML methods. A very important role will play the importance weighting analyses.
Using these results at different sites all over the Earth, we are confident thatMLmethods, such
as MLP and XGB, are fundamental tools for the derivation of advanced parameterizations
of surface fluxes and their incorporation in L–A system models.
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