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Abstract
In this study we introduce a novel extension of an existing Lagrangian particle disper-
sion model for application over urban areas by explicitly taking into account the urban
canopy layer. As commonly done, the original model uses the zero-plane displacement as
a lower boundary condition, while the extension reaches to the ground. To achieve this,
spatially-averaged parametrizations of flow and turbulence characteristics are created by
fitting functions to observational and numerical data. The extended model is verified with
respect to basic model assumptions (well-mixed condition) and its behaviour is investigated
for unstable/neutral/stable atmospheric stabilities. A sensitivity study shows that the newly
introduced model parameters characterizing the canopy turbulence impact the model output
less than previously existing model parameters. Comparing concentration predictions to the
Basel Urban Boundary Layer Experiment—where concentrations were measured near roof
level—shows that the modified model performs slightly better than the original model. More
importantly, the extended model can also be used to explicitly treat surface sources (traffic)
and assess concentrationswithin the urban canopy and near the surface (pedestrian level). The
small improvement with respect to roof level concentrations suggests that the parametrized
canopy profiles for flow and turbulence characteristics realistically represent the dispersion
environment on average.

Keywords Global sensitivity analysis · Pedestrian level · Turbulence parametrization ·
Urban air pollution · Well-mixed condition

1 Introduction

According to the United Nations (2018), 55% of the worldwide population currently live
in urban areas. This fraction is projected to rise to 68% by 2050. In these urban areas the
many sources of air pollution (e.g., traffic, industry, domestic heating), combined with poor
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air exchange, often lead to high concentrations of air pollutants that adversely affect human
health (e.g., US EPA 2011).

Consequently,many operational and experimental air pollution dispersionmodels are used
in urban areas to forecast air pollution concentrations. Examples include models like AER-
MOD (Cimorelli et al. 2005), QUIC-PLUME (Williams et al. 2002), MicroSpray (Tinarelli
et al. 2012, and references therein), GRAMM/GRAL (Oettl 2014, 2015), and SIRANE
(Soulhac et al. 2011). All these models have in common that they do—based on various
approaches—include the mean flow through the region between buildings, i.e., the urban
canopy layer (UCL, see Fig. 1). How they account for the between-building turbulence dif-
fers, however.

It is possible to explicitly resolve all obstacles in a type of large-eddy simulation (LES)
(e.g., Auvinen et al. 2020) and derive the turbulence characteristics from there. This, however,
is computationally highly expensive and not a suitable approach for operational applications.
Some dispersion models (e.g., QUIC, GRAMM/GRAL,MicroSpray) use types of Reynolds-
averaged Navier–Stokes approaches approaches to calculate a mean flow field and derive the
second-order moments from turbulence kinetic energy, combined with standard boundary-
layer parametrizations. We believe that parametrizations specifically designed for the urban
boundary layer could be useful for these types of models. This approach is computationally
less expensive than LES, but still associated with considerable costs. Note that the main cost
factor of all these approaches is the building-resolving flow simulation, not the dispersion.
Furthermore, if there are no building-resolving maps available for a specific city, or the
computational effort to explicitly calculate flow around resolved buildings is too high, another
solution is required to include urban effects.

In this paper, we describe a method for incorporating the UCL in horizontally homo-
geneous flow models. Specifically, we propose describing the UCL as a partially porous
medium with spatially-averaged vertical parametrizations of mean and turbulent flow. To our
best knowledge there are no previously published parametrizations of second-ordermoments,
dissipation rate, and vertical skewness specific to the UCL, even though the method of using
specialized parametrizations characteristic for the canopy layer is not new (e.g., for vegetation
canopies Baldocchi 1997).

Over a rough, urban surface, the surface layer consists of the roughness sublayer (RSL)
and the inertial sublayer (ISL), as shown on the right-hand side of Fig. 1. The RSL extends
from the surface up to the blending height z∗—the height of the maximum Reynolds stress—
and includes the urban canopy layer (UCL). Reynolds stress has been found experimentally
and through simulation to be strongly height dependent in the RSL, i.e., to decrease to very
small values close to the zero-plane displacement d . Figure 1 (left) shows the conceptual
sketch of a Reynolds stress profile in the urban boundary layer approaching in its lowest
part a ‘constant stress’ portion—as expected in the surface layer. The dashed line depicts the
corresponding decrease in magnitude of Reynolds stress in the RSL, i.e., if large roughness
elements are present. This dashed line is based on the Reynolds stress profile of the urban
RSL introduced by Rotach (2001). He showed that including this Reynolds stress profile
into a Lagrangian particle dispersion model (LPDM) has substantial impact on modelled
downwind concentrations and that the model performance improved significantly. However,
due to the chosen parametrization, the lower boundary condition had to be set to the height of
the zero-plane displacement. Thus the lowest tens of metres are still not included in themodel
domain. In this paper, we aim at explicitly introducing the UCL in the LPDM by extending
the Reynolds stress profile down to the ground, as sketched by the blue line in Fig. 1. We
also introduce similar extensions to the other necessary profiles of flow and turbulence. We
will call the original model—including its urban RSL parametrization—RSM (roughness
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Fig. 1 Sketch of the Reynolds stress (adapted from Rotach 2001) in the atmosphere above an urban area.
The solid line is the parametrization for the outer layer and the inertial sublayer from de Haan and Rotach
(1998), from the boundary-layer height zi down to the zero-plane displacement d. The dashed line is the RSL
parametrization of Rotach (2001) from the blending height z∗ down to d. The blue line is the parametrization
proposed in Sect. 4 from the mean building height zh down to the ground

sublayer model), while the present model with the extension down into the urban canopy
layer will be called ULM (urban canopy layer model). When referring to general properties
of a Lagrangian particle dispersion model, we will refer to an LPDM.

Wang et al. (2018) suggested a similar approach of including the UCL in a backward
LPDM to calculate footprint functions, but their parametrizations are base on the assumption
ofMonin–Obukhov similarity theory inside street canyons, which seems to be hard to defend
(e.g., Rotach 1999).

In this work, we test the sensitivity of the concentration output to the prescribed turbulence
and wind profiles and validate the new model using field experiment data. Ultimately, we
seek to determine whether or not a non-building resolving approach of including building
effects is viable for simulating dispersion in urban areas. Then, the model may also be used as
the core for an urban footprint model, for which it is necessary, or at least highly desirable, to
have a domain extending to the physical surface where many potential sources (e.g., traffic)
are present.

In the following, Sect. 2 summarizes the original formulation of theLPDM,Sect. 3 presents
the underlying datasets used for the UCL parametrizations, and these are then described in
Sect. 4. The ULM is verified and tested on its behaviour compared to the RSM in Sect. 5.
A validation against the the Basel Urban Boundary Layer Experiment (BUBBLE) dataset is
shown in Sect. 6.

2 Lagrangian Particle DispersionModel

This study uses an LPDM initially developed by Rotach et al. (1996), later extended by de
Haan and Rotach (1998) (crosswind dispersion), de Haan (1999) (more efficient concen-
tration calculation), and Rotach (2001) (urban RSL parametrization). Rotach et al. (2004)
compared this urban model with a specifically designed urban tracer experiment and found
the model performance to highly depend on “the exact form of the parametrization for the
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flow and turbulence structure within the urban roughness sublayer”. Gibson and Sailor (2012)
suggested several corrections tomathematical formulations in Rotach et al. (1996), but Stöckl
et al. (2018) found that most of them had been either implemented in the model code long
before or mistakes existed only in the publication, not the code. Finally, a more comprehen-
sive summary of the model and a first attempt to include the effects of street canyon flow in
the model can be found in Stöckl (2015).

The present LPDM is a one-dimensional (vertical) model with dispersion in three dimen-
sions. The model is horizontally homogeneous, stationary, and does not include chemistry or
deposition. The model’s domain ranges from the atmospheric boundary layer height zi to the
zero-plane displacement d over urban areas. As mentioned above, in this study we extend
the domain further towards the ground surface.

Rotach et al. (1996) were the first to enable their model to simulate in both convective and
stable to neutral conditions. For this, they used the approach by Thomson (1987) and defined
the necessary probability density function (p.d.f.) of the particle velocities as a mixture of
two limiting states:

Ptot = f Pu PvPw,c + (1 − f )Pu PvPwPuw . (1)

The first termdescribes the joint p.d.f. of a convective atmospherewith no correlation between
any of the wind components, Gaussian p.d.f.s Pu and Pv , and Pw,c a skewed p.d.f. for the
vertical component w′. The second term in Eq. 1 describes a neutral or stable atmosphere
with purely Gaussian p.d.f.s for u′, v′, andw′, but also a correlation between u′ andw′. Using
this combined p.d.f. with the transition function f enables the model to be valid in different
atmospheric conditions, while still fulfilling the well-mixed criterion (Thomson 1987). The
transition function f is zero everywhere in stable and neutral conditions, while in convective
conditions it ranges from one in the mixed layer to zero near the ground (see Rotach et al.
1996 for details).

The model uses an explicit Euler forward scheme to calculate the next position of each
particle from the current position t :

xt+1
i = xti + ut+1

i dt, and (2)

ut+1
i = uti + dui , (3)

where i = 1, 2, 3 for the three Cartesian directions, xi is the position and ui the velocity
of the particle, and dui is a velocity increment. This velocity increment or acceleration is
derived with the Langevin equation:

dui = aidt + bi jdξ j , (4)

where dt is the timestep, ai the correlated and bi j the random part of the acceleration. Here,
ξ j describes a Wiener process with mean zero and variance dt (Rotach et al. 1996). Since
this equation cannot be solved analytically, Rotach et al. (1996) followed Thomson (1987)
in using the stationary Fokker–Planck equation,

ai Ptot = ∂

∂ui

(
1

2
b2i j Ptot

)
−

∫
∂

∂xi
(ui Ptot) dui︸ ︷︷ ︸
�i

, (5)

to describe the same process as Eq. 4. Here Ptot is the total p.d.f. of the particle velocities
(Eq. 1), as well as the p.d.f. of the Eulerian fluid velocities under the well-mixed assumption
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(Thomson 1987). See Rotach et al. (1996) for details on the analytical solution:

ai = 1

Ptot

(
C0ε

2

∂Ptot
∂ui

+ �i

)
, (6)

and

bi j = √
(C0ε)χi, j (7)

The functions �i are given in Rotach et al. (1996) and C0 = 3 is the universal inertial
subrange constant, see Rotach et al. (1996) for a discussion.

Themodel is completed by assumingvertical profiles of flowand turbulence characteristics
—including the dissipation rate of turbulence kinetic energy ε—and thereby defining all
p.d.f.s used in Eq. 1, although it would be possible to use output from a numerical model
instead (see, e.g., Weil et al. 2004).

3 Urban Canopy Layer Data

To achieve the goals outlined in Sect. 1, values of ε, u, u′w′, u′2, v′2, w′2, and w′3 are
required for every possible (vertical) position in the model domain. Our model is horizontally
homogeneous and thus does not rely on information on topography or building geometry.
Insteadwe use spatially-averaged, vertical profiles over the widest feasible spread of different
urban areas as possible, similar to the work of Raupach et al. (1996) for vegetation canopies.
Up to date, vertical profiles for a representative spatial average from full-scale experiments are
still scarce. Hence most of the following datasets originate from wind tunnel or numerical
studies. Note that we refrain from using the classical <> spatial averaging notation for
brevity. Unless noted otherwise, all profiles are spatially averaged.

Concerning spatial averages in the UCL, it is critical to distinguish between two types,
which we will call ‘intrinsic’ and ‘superficial’ after Schmid et al. (2019). An intrinsic spatial
average ignores the volume filled by assumed solid obstacles and averages only over the
fluid volume. In contrast, a superficial spatial average takes the volume filled by obstacles
into account and therefore also depends on the porosity of the city. In principle, it would be
preferable to use superficial averages (as explained by Xie and Fuka 2018), because then the
canopy could be treated as a homogeneous, porous medium (Böhm et al. 2013). However,
most of the datasets only provide the intrinsic averages and not enough data to use porosity to
convert. Instead, we average intrinsically and account for the ‘missing’ building volumes by
adjusting the lower boundary condition at ‘the surface’. Usually, particles are ‘reflected’ at
the lower domain boundary zr by inverting the sign ofw′ and u′, as well as adjusting the new
z-position in such a way that the total distance traveled in this timestep remains the same,
but the particle ends up above zr instead of below (Thomson and Montgomery 1994). This
sustains the particles in themodel domain and is done similarly at the top domain boundary zi.
In our approach we introduce an elevated partial reflection level at the mean building height
zh, where particles are reflected with a chance of λp when arriving from above. Here, λp is
the plan area fraction of roughness elements (Grimmond and Oke 1999) and thus mimics
roof reflection.

The datasets used in this study are briefly introduced in the following. Coceal et al. (2006)
(from now on CTCB06ST: staggered, CTCB06AL: aligned, CTCB06SQ: square array) and
Coceal et al. (2007) (CDTB07) used direct numerical simulations to predict the flow over
uniform cubes in regular grids of different layouts (staggered, aligned, square). We used data
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from their Figs. 20 and 2, respectively. Auvinen et al. (2020) simulated synoptically forced
wind from the sea into the coastal city Helsinki, Finland, with an LES model and shared
their spatially-averaged data with us (HEL). Xie and Castro (2009) simulated flow through
an intersection in London, UK, (DAPPLE project site) using an LES model and reported
the spatially-averaged profiles in their Fig. 9 (XC09). Carpentieri et al. (2009) simulated the
same intersection as Xie and Castro (2009) in a wind tunnel (1:200 scale) and shared 14
profiles from different locations indicated in their Fig. 3 with us (CRB09).

Harman et al. (2016) studied the flow between a model canopy of regularly spaced, thin
‘tombstone’ obstacles in a wind tunnel. We used data from their Figs. 2, 3, and 4 (HBFH16).
Böhm et al. (2013) showed profiles within and above a canopy of solid tree-shaped obstacles
(light bulbs) in their wind tunnel that “share[s] characteristics of both vegetation and urban
canopies” in their Fig. 10 (BFRH13). Kastner-Klein and Rotach (2004) investigated a model
of Nantes, France, in a wind tunnel and measured vertical profiles. We used up to 42 of them
to calculate the spatial average, depending on the specific variable (KKR04).

In field studies it is prohibitively difficult and expensive tomeasure enough vertical profiles
for spatial averaging, hence we are unaware of any such measurement campaigns. However,
Rotach (1993) argued that averaging over multiple profiles of few towers can be used as a
raw estimate for a spatial average, considering the wind direction and therefore the upstream
geometry changes. Christen (2005) followed this approach for the BUBBLE project in Basel,
Switzerland (Rotach et al. 2005), and provided his dataset from two towers (BUBBLEU1 and
BUBBLEU2). Since spring 2017, highly resolved fluxes of momentum, shear, water vapour
and chemical compounds have been measured by the Innsbruck Atmospheric Observatory
(IAO) at the University of Innsbruck, Austria (Karl et al. 2020; Ward et al. 2022). Data
from two sonic anemometers outside the RSL (42.2m a.g.l. and 39.6m a.g.l.) and one street-
level sonic anemometer (3.0m a.g.l.) were used herein (ACINN). Although the two upper
measurements were outside the RSL, we still chose to use the data of the street level to
have more data sources for ε in the UCL. These real-world datasets are, on the one hand,
suitable for our purpose because they reflect reality. On the other hand, they do almost
certainly not represent true spatial averages, so care has to be taken not to over-interpret them.
Giometto et al. (2016) investigated the suitability of a single tower measurement as source of
spatial average and concluded that the single tower may be severely biased and is therefore
unsuitable. However, they arrived at this conclusion by looking at LESs in comparison to
a tower measurement, but only looked at two simulations with differing wind directions.
Considering more wind directions may somewhat alleviate these results.

An overview of the data sources can be found in Table 1.
Since these data are from different sources, their normalizations, scalings, and rotations

differ as well. We rotated the profiles into the prevailing wind direction with a single rotation,
where appropriate. If the scaling and normalization corresponded to those used herein (see
below), they were left as is. Otherwise the profiles were scaled and normalized, as explained
in the following paragraphs.

Traditionally, the atmospheric boundary layer is scaled with zi, at least for the outer layer
(e.g., Stull 1988), and so are our model’s parametrizations too, as described in Rotach et al.
(1996). In the urban RSL the height is scaled with z∗ instead, which corresponds to defining
z∗ as the height of maximum (magnitude) Reynolds stress, such that the peaks of Reynolds
stress collapse. Canopy scaling for vegetation canopies is usually done via the mean canopy
height zh (e.g., Raupach et al. 1996; Rannik et al. 2003), but there the top of the canopy often
coincides with the peak of Reynolds stress and therefore incorporates the entire RSL. This
means that in classical canopy scaling (e.g., Raupach et al. 1996) the peaks of Reynolds stress
and velocity variances are situated at z/zh = 1. Urban geometries with uniform height show
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Table 1 Overview of data sources for the spatially averaged profiles in the UCL

Name Publication Type Stability Other profiles

BFRH13 Böhm et al. (2013) WT, idealized Neutral w′2,Skw

CTCB06ST Coceal et al. (2006, staggered) DNS, idealized Neutral v′2, w′2

CTCB06AL Coceal et al. (2006, aligned) DNS, idealized Neutral v′2, w′2

CTCB06SQ Coceal et al. (2006, square) DNS, idealized Neutral v′2, w′2

CDTB07 Coceal et al. (2007) DNS, idealized Neutral w′2

HBFH16 Harman et al. (2016) WT, idealized Neutral v′2, w′2, Skw

KKR04 Kastner-Klein and Rotach (2004) WT, realistic Neutral v′2, w′2

CRB09 Carpentieri et al. (2009) WT, realistic Neutral v′2, w′2

BUBBLEU2 Christen (2005, U2) FS, realistic All v′2, ε, w′2,Skw

BUBBLEU1 Christen (2005, U1) FS, realistic All v′2, ε, w′2,Skw

HEL Auvinen et al. (2020) LES, realistic Neutral v′2, w′2, Skw

IAO Karl et al. (2020) FS, realistic Mostly convective v′2, ε, w′2,Skw

Ward et al. (2022)

XC09 Xie and Castro (2009) LES, realistic Neutral v′2, w′2

All sources deliver profiles of u, u′w′, and u′2, ‘additional profiles’ in the last column refer to additional
variables provided. WT means wind tunnel, FS full scale experiment, LES large-eddy simulation, DNS direct
numerical simulation

similar characteristics, but several studies have noted that this is not true for city geometries
with non-uniform height (Xie et al. 2008;Xie andCastro 2009; Carpentieri andRobins 2015),
where the peaks are positioned further aloft. This the origin of the z∗ definition. Multiple
studies suggest the use of the tallest upstream building as scaling height (Xie et al. 2008;
Xie and Castro 2009; Kanda et al. 2013; Inagaki et al. 2017; Sützl et al. 2020) instead.
Alternatively, it has been suggested (Martilli et al. 2000, as mentioned in Rotach 2001), to
use zh +σh as scaling height, where σh is the standard deviation of the building heights. Here
we find that zh + 1.5σh fit our datasets best (not shown). Hence, we use z∗ = zh + 1.5σh
when RSL scaling is required.

To extend the RSL scaling of Rotach (2001) down to the surface we use canopy scal-
ing (z/zh) for heights z < zh. The transition from the RSL parametrization to the UCL
parametrization thus occurs at z = zh. If z∗ is expressed in terms of zh, we can present the
entire RSL profiles as a function of z/zh.

The variables of interest are normalized with powers of u∗,I SL (e.g., Raupach et al. 1996),
where the roughness velocity in the inertial sublayer (ISL) u∗,I SL is obtained via the method
of Kastner-Klein and Rotach (2004). Two notable exceptions are themeanwind speed, which
is scaled by its value at zh (e.g., Raupach et al. 1996), and the skewness of the vertical velocity
component, which is not scaled.

Figure 2 shows a summary of all datasets mentioned previously, specifically profiles of
interest in their intrinsically spatially-averaged scaled and normalized forms. As mentioned,
the canopy scaling is only intended to be useful for heights below z/zh = 1, hence the profiles
are not expected to collapse for z > zh.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 2 ‘Family portrait’ of a collection of datasets (see Sect. 3) for: a u/uh, b u′w′/u2∗ISL, c kεzh/u3∗ISL, d
Skw , e u′2/u2∗ISL, f v′2/u2∗ISL, g w′2/u2∗ISL. Note the different vertical axis in d, where zh + 1.5σh ≈ z∗.
The numbers in the legend are σh/zh, indicating the uniformity of the height distribution. To avoid visual
overload, only a selection of data points are shown with markers

In Fig. 2a, normalization and scaling causes all profiles of the mean wind speed to collapse
onto (1,1). Below zh most profiles exhibit similar behaviour (reminiscent of an exponential
profile) and group together tightly, with the exception of three measurement points from
real world datasets. The low scatter implies that the scaling and normalization is successful.
However, our dataset is too sparse to evaluatewhether or not aum scaleswithλp , as sometimes
suggested (e.g., Castro 2017 for a discussion).

Figure 2b shows the covariances u′w′, which exhibit their minima at different heights.
However, all profiles have their minima at or above zh, with the exception of CRB09, which
is the wind-tunnel simulation of a real urban area with a focus of one intersection, where all
measured profiles are located within or around this intersection. Therefore the profiles are
not ideally placed for a spatial average, because that was never the intention of Carpentieri
et al. (2009). We have decided to include these profiles nevertheless, because datasets with
non-idealized geometries are rare. The configuration of buildings directly upstream of the
intersection may have lead to a non-representative zh for our spatial average, given the fact
that most of these buildings are uncharacteristically low, leading to an extremum of u′w′ even
below the nominal zh. Furthermore, a thin tower on top of one building directly upstream
results in a second local minimum at z/zh = 1.7 to 2.0. Interestingly, all profiles based on
uniform-height geometry, which means σh = 0 (see legend of Fig. 2), indeed exhibit their
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minimum in Reynolds stress at or slightly above zh, while cities with non-uniform heights
have their minimum much higher up (except CRB09).

There are far fewer data available for the dissipation rate of turbulence kinetic energy ε

(Fig. 2c), but the dissipation rate seems to decrease in the UCL. More research would be
needed.

Contrary to the other profiles, the skewness of the vertical velocity component Skw

(Fig. 2d) is scaled with RSL scaling instead of canopy scaling. For a detailed justification
see Sect. 4.4. Near zh, the values are clustered close to zero, reflecting the Gaussianity of the
mechanically induced shear turbulence. Below, in the UCL, it is noticeable that all profiles
exhibit negative values of Skw, similar to vegetation canopies (Raupach et al. 1996). Near
the ground, the values appear to return to zero.

Figure 2e shows profiles of the longitudinal velocity variance u′2. Similar to u′w′, they
peak—this time a maximum—at or above zh. In the UCL the curvature of the profiles seems
to range from positive to negative, most likely depending on the specific city geometry.
For example, the contrast between CTCB06ST and CTCB06AL is striking, despite the fact
that the only difference between them is the different cube layout in Coceal et al. (2006).
However, most real cities would not conform to either end of these extremes and in fact the
profiles CRB09, HEL, and KKR04, all more or less reflecting real cities, are somewhat in
the middle of the spread. Conversely, XC09 is also a simulation with real city geometry but
on the extreme left of the spread. Nevertheless, the general shape of peaking at or above zh
and then declining towards the ground can be observed in all profiles.

The lateral velocity variance v′2 in Fig. 2f exhibits similar characteristics as u′2, except
that the curvature of the declining profiles is more or less always the same. The same is
true for w′2 in Fig. 2g. Here the profiles seem to collapse best, except that both KKR04 and
CRB09 show substantially larger values for w′2 within the UCL.

4 Urban Canopy Layer Parametrizations

The following sections introduce the turbulence profile parametrizations necessary to run the
LPDM. They are all devised by imposing a shape that is inspired by the respective profiles
in Fig. 2 and additionally through necessary boundary conditions. With a given function and
boundary conditions, each profile is then numerically fitted to the literature data described in
Sect. 3.

One common boundary condition is continuity with the existing profiles aloft at height
zh, with the exception of w′3, which is continuous at z∗. The ‘transition value’ (denoted by
subscript ‘h’) of each profile is the value of the individual RSL parametrization at height zh.

Since the profiles (i.e., their parametrizations) in the RSL depend on the (variable) mete-
orological conditions and on urban geometry (building height), continuity of those profiles
towards the UCL parametrization would require a fit of the canopy profiles for each simu-
lation separately. To avoid doing this during each model run, we scaled height with zh and
normalized all values of the experimental data with their value at z = zh, thus forcing all the
data (and the corresponding parametrizations) through (1, 1). This point (1, 1) is then the
point where the profiles transition from RSL parametrization above to UCL parametrization
below. To keep the numerical fitting algorithm independent of the amount of data points per
profile, the data points are weighted in such a way that each individual profile has equal
impact.

123
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 UCL parametrizations (black lines) with fitted parameters for the different variables a u, b u′w′, c ε, d
Skw , e u′2, f v′2, g w′2, h f in canopy scaling representation, enforcing each variable to go through the point
(1, 1) (except Skw and f ), when height is scaled with zh and the variable with its respective value at zh. Note
the different vertical axes in d, h, where zh + 1.5σh ≈ z∗. Data from Sect. 3 as blue dots (intensity increases
with the number of data points per individual profile); The orange shaded range encompasses the uncertainty
range to be used in Sect. 5.3 for the sensitivity analysis

Since we aim to test the model’s sensitivity to the fitted parameters (see below, Sect. 5.3),
we need a range of possible values for each parameter. We individually fitted the range
of the parameters to encompass the approximate range of the available dataset. This range
approximates both the uncertainty introduced by having only a few datasets, measurement
and simulation uncertainty, as well as uncertainties introduced by the fitting procedure.

The profiles in Fig. 2 also diverge above zh, which cannot be taken into account using the
set-up in this work. Since we normalize all profiles to unity at zh and use another parametriza-
tion aloft, it does not matter for our purpose that they diverge further aloft. Furthermore, not
all profiles of second-order moments peak at height zh. Generally speaking, canopies with
uniform heights have a lower maximum of the Reynolds stress and velocity variances com-
pared tomore realistic city geometries. However, at height zh all types of profiles are declining
from the peak, which means that the general shape of the profile below zh is conserved (see
Fig. 3).

In the following, the details of the parametrizations are outlined separately for each vari-
able. The resulting parametrizations are—together with the datasets from Fig. 2—displayed
in Fig. 3.
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4.1 MeanWind Speed

Mean wind speed in the UCL is parametrized with the exponential function:

u(z) = uh exp(aum[z/zh − 1]) (8)

following common practice in vegetation canopies (Cionco 1965). Castro (2017) has ques-
tioned the adequacy of exponential urban canopy profiles for mean wind—his argumentation
largely being based on the assumptions needed for its derivation not being fulfilled, and on
the failure of some experimental profiles being exponential. Among the alternatives he dis-
cusses, there is the approach by Yang et al. (2016), who propose combining a logarithmic
profile above the canopywith an exponential profile, i.e., exactly corresponding to the general
approach followed herein. Yang et al. (2016) show that for different values of λp = λ f (for
cubes at a non-oblique approach-flow angle) and σh, an exponential function is a good fit to
their simulated wind profiles in the upper 70–80% of the UCL—and even suggest that the
validity of the exponential profile might be extendable closer down to the surface (Yang et al.
2016). λ f is the frontal area density after Grimmond and Oke (1999).

Wang et al. (2018) use the same Eq. 8 and a method proposed by Macdonald (2000) to
determine aum based on building geometry. However, this approach depends on knowledge
of the height profile of the sectional drag coefficient and a mixing length scale, both of which
are difficult to determine for non-idealized real urban geometries—and therefore unknown
for most of the datasets used here.

Consequently, we determine aum using the boundary condition for the canopy profile, i.e.,
the requirement for a smooth transition at zh. For this we normalize Eq. 8 with uh and scale
it with zh, resulting in:

ûUCL(z′) = exp
(
aum

[
z′ − 1

])
, (9)

for z′ = z
zh
. Then, we fit Eq. 9 to the UCL data gathered from literature (see Fig. 2) and

thus determine aum = 1.97 with an uncertainty range of [0.64, 3.31] (see orange shaded
area in Fig. 3a). Based on the range of aum in the literature, Macdonald (2000) suggests
aum = 9.6λ f , which would correspond to about 3 to 4 for the datasets used in this study.
Ramirez et al. (2018) report values < 2. Note that this profile does not generally satisfy the
no-slip condition, but a shallow reflection layer at the bottom (see Sect. 4.7) circumvents this.

4.2 Turbulent Fluxes

The LPDM assumes no directional shear (i.e., v′w′ = 0) in the surface layer and uses

u∗ =
√

−u′w′. Rotach (2001) derived the profile of the local u∗,l = 4
√
u′w′2 + v′w′2 and

then used this in the RSL as basis for all other turbulence profiles. We define the velocity
variances, skewness, etc. separately in this study and therefore the profile of u∗,l has far
less influence in the UCL. Furthermore, not all datasets provided v′w′ and thus we chose
consistency over completeness and did not include v′w′ in u∗UCL. It is noted that neglecting
v′w′ is not supported by many of the datasets introduced in Sect. 3 and remains an inherent
limitation of the model itself that will be addressed in a future study.

The shape of the data in Fig. 2b suggests a function of the form u∗UCL = a1
(

z
zh

)1/aRe +a3
to be useful, which is subject to the boundary conditions (i) u∗UCL(zh) = u∗RSL(zh) = u∗h
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Fig. 4 Profiles of the ratio between dispersive stress and Reynolds stress taken from various sources (all
simulations). Lines represent values from realistic city geometries, stars from staggered cubes, dots from
aligned cubes and square one outlier. The black line is the suggested parametrization and is zero everywhere
above z∗ (1.5zh in this example). The numbers in the legend are σh/zh, indicating the uniformity of the height
distribution

and (ii) u∗UCL(z = 0) = 0 This leaves aRe as the single tuning parameter and leads to:

u∗UCL = u∗h
(

z

zh

) 1
aRe

, (10)

which—normalized, scaled, and converted to u′w′—yields:

ˆu′w′
UCL = −

[
z
′ 1
aRe

]2
. (11)

Once fitted to data in Fig. 3b, aRe = 0.75, with uncertainty range [0.29, 2.82].
Due to spatial and temporal averaging, the covariances, such as u′w′ contain an additional

contribution, i.e., the dispersive stress (Raupach and Shaw 1982). Note that we will use
<> to denote spatial averaging in the next three paragraphs, hence u′w′ →< u′w′ >. The
wind components can be decomposed into, e.g., u =< u > + u′′ + u′, where u is the
instantaneous flow quantity, < u > its spatial and temporal mean, u′′ = u − < u > the
spatial fluctuation around the time-space mean, and u′ the turbulent fluctuation in both time
and space. Given this, a product of two velocity components averaged over time and space
becomes, e.g., < uw >=< u >< w > + < u′w′ > + < u′′w′′ >, where < u′′w′′ > is
the so-called ‘dispersive stress’ contribution, which essentially describes spatial deviations
from time averaged flow. Similar to Reynolds stress, dispersive stress represents momentum
transport, for example by a canyon vortex.

Without immediate effect of obstacles, dispersive stress is zero, but in urban areas it is non-
negligible (Coceal et al. 2006, 2007; Martilli and Santiago 2007; Xie et al. 2008; Giometto
et al. 2016; Simón-Moral et al. 2017; Xie and Fuka 2018). Generally, the value of dispersive
stress appears to depend strongly on the city geometry (Coceal et al. 2006, 2007). Xie et al.
(2008) demonstrate the impact of the standard deviation of canopy height on dispersive stress:
for uniform-height canopies it vanishes right above zh, while it only gradually approaches
zero for their non-uniform-height canopy. Figure 4 shows this by displaying the ratio of
dispersive stress to Reynolds stress taken from various sources approaching zero rapidly
above zh for the profiles shown in markers, which stem from canopies of uniform height.
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Since the Reynolds stress is always negative for these specific profiles, one can also deduce
the sign of the dispersive stress. Dispersive stress is negative for all studies using staggered
cubes (stars) and realistic city geometries (coloured lines), but for aligned cubes (dots) it
is predominantly positive. This is caused by coherent vortices (Martilli and Santiago 2007)
forming in the idealized cube geometries. However, Simón-Moral et al. (2017) show that
convective conditions can lead to negative dispersive stresses even for aligned cubes (see
Fig. 4), even though their neutral run (not shown) producedmostly positive dispersive stresses.
Since we are primarily interested in realistic geometries, we ignore positive dispersive stress.

To investigate the impact of dispersive stress, we have designed a crude description of the
ratio between the dispersive stress and the Reynolds stress (black line in Fig. 4). Then, the
Reynolds stress parametrization ismultiplied by 1+ <u′′w′′>

<u′w′> , essentially adding the dispersive
stress to the Reynolds stress. Since the dispersive stress appears to strongly depend on the
canopy, it is even more unlikely than for other variables that a more general parametrization
is possible. The results show hardly any difference between switching dispersive stress on
or off (not shown). Firstly, this is due to the rapidly decreasing magnitude of < u′w′ >

within the UCL (Fig. 3b) and the therefore small impact of the factor 1+ <u′′w′′>
<u′w′> . Secondly,

Reynolds stress as a whole has small impact, as shown in Sect. 5.3. Given the large canopy-
to-canopy variability of the dispersive stress and the relatively minor impact its inclusion has
on dispersion within the canopy we decided not to include the dispersive stress contribution
into the parametrized profile of Reynolds stress.

For the parametrization of sensible heat fluxw′θ ′ weuse the formulation ofChristen (2005)
in his Equations 4.41 and 4.42. Note that this parametrization is only valid for convective
cases and thus only used in such. This parametrization only affects the convective velocity
scale w∗, by giving it a local value in the RSL. This w∗ is used by the LPDM to determine
turbulence profiles of RSL, inertial sublayer, and mixed layer in convective situations. Note
that the UCL parametrizations do not depend on stability. The dataset in Sect. 3 is too limited
to separate it according to atmospheric stability and fit profiles depending on stability. Thus,
the profile ofw′θ ′ does not influence the UCL parametrizations directly, but it does influence
the RSL parametrizations and therefore the transition values to the UCL below.

4.3 Dissipation Rate of Turbulence Kinetic Energy

Since the data available are scarce (see Sect. 3), the shape of the profile is more uncertain
than for other profiles. Nevertheless, the available data suggests a decreasing ε from the RSL
downwards, so we choose the same general function as uUCL:

εUCL = εh exp(aε[z′ − 1]) (12)

where εh = εUCL(zh) = εRSL(zh) ensures continuity to the RSL and aε can be numerically
fitted to data after canopy-scaling and normalizing with εh. The result can be seen in Fig. 3c
and leads to aε = 1.01 with uncertainty range [−0.18, 2.90]. Note that Giometto et al. (2016)
shows ε in their Fig. 10 too, but not spatially averaged. Nevertheless, the behaviour in their
figure is similar to Fig. 3c, with the exception of a second local minimum close to the ground
that is most likely hidden by our reflection layer. Di Bernardino et al. (2020) find that the
dissipation rate is not strongly dependent on λp , above the canopy (see their Fig. 8).
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4.4 Vertical Skewness

Asmentioned earlier, the skewness of the vertical velocity Skw is negative in the whole RSL.
Since the Rotach (2001) approach of including RSL effects only modifies u∗, Skw remained
unchanged from Rotach et al. (1996), because their Skw parametrization does not depend on
u∗. Consequently, we choose to have the new parametrization of Skw affect the whole RSL.
Furthermore, it is more common to find profiles of Skw than w′3 in the literature. Therefore,
we show and parametrize Skw here as well, although the model internally uses w′3. This is
simply addressed by de-normalizing w′3 = Skww′2

3
2 in the model.

Originally, the p.d.f. Ptot was designed to incorporate the effect of convection in themixing
layer, i.e., yielding Skw > 0. Appendix 1 demonstrates that the same formulation can also
be used in the UCL to yield a negative skewness.

Unlike the other parametrizations, it is not reasonably possible to collapse all profiles
onto (1, 1), because Skw ≈ 0 at height z∗ (see Fig. 2d), which means that both positive and
negative values are possible. We choose a parabolic shape SkwUCL = a1(z + a2)2 + a3 with
boundary conditions (i) SkwUCL(z∗) = SkwRSL(z∗) = Skwt , (ii) SkwUCL(0) = 0, and (iii)
SkwUCL( z∗2 ) = −aSk. The last condition is not necessary to fit the function, but without it
the minimum of the fitted function depends not only on the free tuning parameter aSk, but
also on the value of z∗, which results in Skw profiles strongly varying with z∗. Condition (iii)
also helps to keep the resulting function from being strongly dependent on the value of Skwt ,
which is unknown at fit-time and changes from city to city. Since it is not possible to collapse
the profiles and the function onto (1, 1) as for the other variables, this was a major concern,
because that would mean that the function to be fitted is no longer independent of the specific
model run. The third condition alleviates this problem. Taking aSk as free parameter leads
to:

SkwUCL = (2Skwt + 4aSk)

(
z

z∗

)2

− (Skwt + 4aSk)

(
z

z∗

)
, (13)

which can be scaled via z′ = z
z∗ . We choose Skwt = 0.05 as somewhat arbitrary transition

value, but—as mentioned before—the function is designed not to be sensitive to this choice.
Figure 3d shows the resulting function for aSk = 0.48 with uncertainty range [0.11, 0.70].

4.5 Velocity Variances

Since the profiles in Fig. 2e are of similar shape to the mean wind speed profiles in Fig. 2a,
we choose to use the same general function,

u′2
UCL = u′2

h exp
au2(z′−1), (14)

for the longitudinal velocity variance. With canopy scaling this yields

ˆ
u′2

UCL = expau2(z
′−1) , (15)

which is then fitted to similarly scaled and normalized data. The result is au2 = 1.30 with
uncertainty range [0.04, 4.43] and can be seen in Fig. 3e.

Using the same arguments as for u′2
UCL,

v′2
UCL = v′2

h exp
av2(z′−1) , (16)
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which—when scaled an normalized as in Eq. 15—leads to av2 = 0.72 with uncertainty range
[−0.26, 3.17] [Fig. 3f].

For the vertical velocity variance we note that for all the profiles in Fig. 2g reaching
the ground, w′2(z = 0) = 0. Thus we choose w′2

UCL = (a1z)1/aw2 + a2 with aw2 the
free parameter and the boundary conditions (i) w′2

UCL(zh) = w′2
RSL(zh) = w′2

h and (ii)
w′2

UCL(0) = 0. This leads to:

w′2
UCL = w′2

h

(
z

zh

) 1
aw2

, (17)

and can be scaled and normalized to:

ŵ′2
UCL = (

z′
) 1
aw2 , (18)

Fitting Eq. 18 to data results in aw2 = 2.06 with uncertainty range [1.10, 5.89] [Fig. 3g].

4.6 Transition Function

Rotach et al. (1996) designed the function f for the transition of the p.d.f. Ptot from convective
to neutral and stable conditions. Since we have already repurposed the convective form of
the p.d.f. for w′ (Pw,c) to achieve the necessary negative skewness in the UCL, we also
have to redesign f to activate this skewed part of the p.d.f. If f would stay near zero close
to the ground as proposed in Rotach et al. (1996) for the RSL, the skewness of w′ would
have no effect and the resulting Eulerian p.d.f. of model particles would not be skewed.
Consequently, we choose a function that reaches unity quickly, descending from z∗. Note
that this choice is arbitrary, because the only way to determine it objectively would be to
measure the height profile of the w′ p.d.f. horizontally averaged in the UCL and then find
a function f such that the resulting Lagrangian p.d.f. of the model particles agrees with the
measured Eulerian p.d.f. of the real-world flow for a given Skw profile. To our best knowledge
no such data can be found in the literature. The boundary conditions are continuity at z∗ (i)
fUCL(z∗) = fRSL(z∗) = ft and (ii) f (0) = 1 for a function of the form fUCL = a1+a2ea f z ,
with a f as free parameter, which leads to:

fUCL = 1 + ( ft − 1)
1 − ea f z

1 − ea f z∗ . (19)

We choose a f = 0.4 and [0.01, 2.0] for the uncertainty range. The resulting functions can be
seen in Fig. 3h, although without measurements. Note fUCL being unity at the bottom does
not mean that the Eulerian p.d.f. ofw′ is necessarily skewed; this also depends on the value of
w′3, which approaches zero close to the ground in any case. Additionally, fUCL approaching
one towards the ground is consistent with u′w′ approaching zero near the ground.

4.7 Aspects Not Accounted For

Several of the parametrizations presented are problematic directly at the ground: uUCL does
not satisfy the no-slip condition; w′2

UCL is zero at z = 0, which leads to a divide-by-zero
error in Eq. 23 and Pw (not shown); u∗UCL is also zero at z = 0, also leading to a divide-
by-zero error (not shown). To circumvent these issues, the model does not allow particles
to reach all the way to the ground, but reflects them slightly higher up at z0. This mimics a
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shallow surface layer near the ground, where the wind speed decays rapidly to zero (Yang
et al. 2016) and where most likely an entire set of new parametrizations would be needed.

While v′w′ is generally small over smooth surfaces or far above rough surfaces—in a
wind-following coordinate system—it is not so in the UCL. Unfortunately, our model cannot
represent this.

Not taken into account at all in this study is the effect of wind direction and wind direction
changes, which are a major factor in plume dispersion (e.g., Michioka et al. 2019).

Ideally, the parametrizations would be able to take different types of urban areas into
account, because it is likely that a central business district has different profiles than a sparse
suburban area (e.g., Badas et al. 2019). To model this, we attempted to use the mean building
height, standard deviation of building height, plan area density λp and frontal area density λ f

(Grimmond and Oke 1999) by trying to find possible scaling relationships that improve the
collapse of the profiles. Unfortunately, these efforts did not significantly improve the scatter
in Fig. 2 when using the datasets of Sect. 3. We did find an estimate for the blending height
z∗ = zh + 1.5σh, which is used in scaling the height of the w′3 profile (see Sect. 4.4). Perret
et al. (2019) were similarly unsuccessful in collapsing σ 2

u by scaling, although they did not
use spatially averaged profiles. On the other hand, the Rotach (2001) RSL parametrizations
successfully use the zero-plane displacement d , z∗, and z0, which depend on the build-
ing geometry (Grimmond and Oke 1999). Since the UCL profiles are continuous to the RSL
profiles and thus also depend on those factors, they also indirectly affect theUCLparametriza-
tions. It is possible that more data or more realistic data would help in finding appropriate
scaling parameters for differing geometries.

An additional limitation of the chosen approach is missing the multi-scale roughness,
because the obstacles in wind-tunnel studies or simulations are most often aerodynamically
smooth, in contrast to real buildings. However, Vanderwel and Ganapathisubramani (2019)
indicated that small-scale roughness elements have a negligibly small effect on drag.

5 Verification

In this section the model’s basic assumptions are verified and its general sensitivities are
investigated.

5.1 Well-Mixed Criterion

The most fundamental test for an LPDM is the well-mixed criterion after Thomson (1987). If
a model fulfills this criterion, it does not unmix once the particles are well-mixed in physical
and velocity space. To test whether the modified model fulfills this criterion, we initialize the
ULM with particles uniformly distributed in height and given a velocity randomly sampled
from the local velocity density function. Then the ULM simulates the dispersion for an
extended amount of time (in our case about 1 day of simulated time).

The resulting height distribution of particles—similar to, e.g., Bahlali et al. (2020)—is
shown in Fig. 5 for the three test cases in Table 2. The normalized concentration in Fig. 5
is not calculated using the kernel method (de Haan 1999) like in the rest of this work. To
avoid any smoothing, we simply calculated a histogram over height-bins and normalized
the particle count by the the mean particle count in a perfectly uniform distribution. Note
that the figure only shows the lower 7.5% (stable), 1.5% (neutral), and 0.8% (convective) of
the model domain. Aloft and up to the boundary-layer height zi the value of the normalized
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Fig. 5 Vertical distribution of particles after 90,000 simulated seconds of the three test cases in Table 2,
initialized with well-mixed particles. The particle counts are binned (bin size = 1m) and normalized with their
theoretical value for each height range. A perfect result would be 1 (dotted line) everywhere. The figure shows
only the lower part of the model domain

concentration fluctuates around 1, as expected (not shown). Below the mean building height
zh, the normalized concentration of particles is calculated only for the fluid volume, analog to
intrinsic spatial averages in Sect. 3. This necessitates normalizing the particles by their mean
count (as above) and then multiplying by 1 − λp . After this, the normalized concentration
fluctuates around 1, proving the well-mixed state.

5.2 Comparison of Urban-Canopy Layer Model and Roughness Sublayer Model

To investigate the impact of the UCL on the simulated concentration fields, we use three
synthetic cases taken from Kljun et al. (2015). The relevant values are listed in Table 2.
Note that the source height is 1 m above the mean building height. A source height in
the street canyon might possibly produce more pronounced differences between the two
models. However, as RSM is restricted to heights z > d , we decided to use a source height
representative for domestic heating (‘chimney height’).

Figure 6 shows selected vertical profiles of the crosswind-integrated concentration CIC,
the maximum value along an arc ARCMAX and the standard deviation of particle spread in
the lateral direction σy . Note that we use the term ‘arcs’, but utilize a Cartesian grid, so that
the ‘arc’ strictly speaking refers to a line perpendicular to the mean wind direction. We use
the term ‘arc’ for historical reasons. Themodel can calculate the concentration at any point in
the model domain independent from other points, so the shape of the grid is not important, as
long as the resolution is not too low. Also note that the source distances shown vary between
the three stability conditions. In all three conditions—stable, neutral, and convective—the
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(d) (e) (f)

(a) (b) (c)

(g) (h) (i)

Fig. 6 Vertical profiles of CIC (blue), ARCMAX (orange), and σy (green) for three different stabilities (rows,
see Table 2) and different source distances (x , note that the source distances shown vary between the three
stability conditions). The values of the ULM are solid lines, the RSM values are dashed andmarked by ‘x’. The
profiles are taken at the lateral center of the plume. All CIC values are normalized by 3.65×10−3 ng m−2, all
ARCMAX values by 1.47× 10−4 ngm−3, and all σy values by 130m. Horizontal dotted lines indicate mean
building height zh. Note that the RSM cannot simulate to the ground, so the lowest model level at zero-plane
displacement d = 10 m is extrapolated to the ground (dotted lines)
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Table 2 Test scenarios, after Kljun et al. (2015)

Scenario u∗ (m s−1) w∗ (m s−1) L (m) zi (m)

Stable 0.3 – 84 200

Neutral 0.5 0.0 inf 1000

Convective 0.2 1.4 −15 2000

Note that the mean building height zh = 15 m, zero-plane displacement d = 10 m, z∗
zh

= 1.5, roughness
length z0 = 1 m and source height zini = 16 m for all three scenarios

peak value of the CIC near the source at approximately roof level is smaller for the ULM
(Fig. 6a, d, g). This is not offset by increased vertical dispersion, because the CIC values
aloft are highly similar and those below do not compensate either. Since the lateral dispersion
measured in σy is similar for both models at these heights, the reduced dispersion of the ULM
must be in the longitudinal direction. This is possible even though the model is horizontally
homogeneous, because there is a stochastic effect on u′ and the mean transport changes
between the two models, due to changes in domain size and wind speed profile.

The quantity σy sometimes displays artifacts when too few particles are available at certain
heights. This can be seen in Fig. 6a, b, d, at heights where σy differs for the RSM and the
ULM. CIC and ARCMAX are not affected, because their calculation is not as susceptible to
few and strongly different values.

At some distance from the source (Fig. 6b, e, h), the roof level CIC and ARCMAX
are smaller with the ULM than with the RSM. For the largest distances downstream, the
concentrations of the two model versions start to overlap (Fig. 6c, f) due to approaching a
well-mixed state.

Another important result is the slanted profile of CIC and ARCMAX in the UCL for
ULM in nearly all stabilities and distances, at least until the whole profile starts to be well-
mixed. In contrast, the RSM must make an assumption about the profile below d and this
was historically a well-mixed assumption. This is shown in Fig. 6 by extending the profile of
RSM uniformly down to the ground, as dotted lines. However, the slanted profiles of ULM
in the UCL indicate that the assumption of a uniformly distributed concentration in the UCL
does not hold.

5.3 Sensitivity Analysis

The chosen UCL parametrizations are based on data with considerable spread. A sensitiv-
ity study is therefore conducted in order to assess the impact the newly introduced profile
parameters (‘UCL parameters’ in the following) (see Sect. 4) exhibit on the output (i.e., the
modelled concentrations). Due to the non-negligible computational effort per model run, the
state-of-the-art approach, i.e., a variance decomposition method, is unfeasible. Instead, we
follow Saltelli et al. (2008) and choose ‘Morris sampling’, after Morris (1991), enhanced
by Campolongo et al. (2007). The method is also called the ‘elementary effects method’
and employs one-factor-at-a-time changes (OAT), but alleviates many of the disadvantages
of OAT-based methods (Saltelli et al. 2008). Unfortunately, Morris sampling requires scalar
outputs, while in the present case we have concentration distributions. We therefore consider
four scalars describing the concentration distribution.

The four scalars are shown in Fig. 7: �CIC, the maximum of the crosswind-integrated
concentration; �width, the width in metres of the CIC peak, defined as the distance between
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Fig. 7 Schematic of crosswind-integrated concentration CIC (upper panel) and lateral spread σy (lower panel)
with increasing source distances. The four blue labels describe four scalars characterizing the plume

the points where the linearly interpolated CIC curve reaches 75% of�CIC;�σ y , the standard
deviation of particle spread in the lateral direction at the distance of �CIC occurence; and
�dσ y , the derivative of �σ y with respect to the streamwise direction x .

We test all UCL parameters, as described in Sect. 4. These are aum, aRe, au2, av2, aw2, aSk,
a f , and aε . Furthermore, we vary λp from 0 to 1, which governs the reflection at roof level
from 0 to 100%. For consistency with the other parameters, it is denoted by alp in the follow-
ing. Additionally we also vary some parameters of the original RSL parametrization(‘RSL
parameters’ in the following), to give context to the new parameters. These are ad, which
varies the zero-plane displacement d from 0.5 to 0.9 of zh; azs, which varies z∗

zh
from 1.2 to

5.0; and aa, which is the parameter a in Eq. 1 in Rotach (2001) and determines the shape of
the RSL parametrization of the local u∗,l .

For details regarding the implementation of the Morris method, see “Appendix 2”. Basi-
cally, it returns a summary statistic μ∗ (Eq. 27 in the “Appendix 2”), which measures the
impact a parameter has on the overall model output; lower means less impact. In addition to
μ∗ we used arithmetically averaged μ∗ to jointly asses the impact of (i) the aforementioned
four output scalars (�CIC, �width, �σ y , �dσ y); (ii) four heights where the concentrations
are calculated (1 m, 16 m, 31 m, 46 m), 1 m above ground and roof, equidistant above; (iii)
three meteorological situations (see Table 2); (iv) three source heights (2 m, 16 m, 40 m),
deep within the canyon, above zh and in the upper part of the RSL (depending on azs.

Figure 8 singles out the three stability cases in the first three panels and combines all cases
in the fourth. Generally speaking, the RSL parameters (in lighter colours) have a slightly
higher impact on the output than the UCL parameters. This result is fortunate, because the
UCL parameters are highly uncertain, due to the large spread of the profiles (Fig. 2). Themost
important individual parameter is azs, with the highest impact in the neutral and especially
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Fig. 8 Aggregated impact, μ∗ (higher value signify higher influence), of model parameters according to the
Morris method for the three stability groups (blue bars) and all combined (orange bars). UCL parameters in
dark colours; RSL parameters in lighter colour. Vertical black lines indicate one standard deviation

the stable cases and still considerable impact in the convective case. Already Rotach (2001)
noted the importance of this parameter and showed that it is less impactful in convective
conditions. With the explicit treatment of the UCL, the impact of ad becomes less important
than that of azs, while in the RSM (Rotach 2001) it had been similar. In contrast to azs, ad has
a stronger impact when stability decreases. The RSL parameter aa is most impactful in the
neutral case and less so for stable and convective situations. The convective case is especially
interesting, because there aa is even less impactful than some of the UCL parameters. This
is in spite of aa governing all turbulence profiles in the RSL and—due to continuity at
the roof level—therefore also all turbulence profiles in the UCL. However, in convective
situations the impact of u∗ on the RSL parametrizations is diminished in the model, because
they additionally depend on w∗. The impact of alp is not overly large, despite alp’s property
of varying the roof-top reflection from 0% to 100%, thereby in the extreme cases even
turning the UCL parametrizations on or off. We suspect that this is caused by the plume not
dispersing strongly in the stable and neutral cases and therefore not many particles actually
reaching the measurement layers far away from the source height. This is corroborated by
the high importance in the convective case with much higher vertical dispersion. See also the
discussion of Fig. 9.

Of the new parameters, aum and av2 are the most important. On one hand, aum governs the
mean flow thus explaining its importance. On the other hand, the relatively large impact of
av2 is not due to us choosing two scalars describing the lateral dispersion (�σ y and �dσ y),
because removing�dσ y does not change the relative importance of av2 much (not shown). Of
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Fig. 9 As Fig. 8 split by source height (blue) and all combined (orange)

medium importance among the UCL parameters are au2, aw2, and a f . Since the latter is not
based on data (Sect. 4), its medium impact calls for more work with respect to the suitability
of describing the velocity p.d.f. in the UCL using the function f (Eq. 1) in combination with
the vertical velocity skewness. aRe, aSk and aε are of least importance, so that the lack of
data for at least aSk and aε (Fig. 2) does not add a major source of uncertainty for the UCL
simulations. Among the two parameters influencing the Reynolds stress profile, aRe as an
UCL parameter is of minor importance, while its RSL counterpart (aa) is among the most
influential. This is because in the RSL parametrization Rotach (2001) all turbulence profiles
depend on u∗,l , while in the UCL parametrization of this study, they do not. Consequently,
aRe only modifies a profile that rapidly approaches zero with decreasing height and its effect
is apparently small. This is further amplified by the relatively small spread of the profiles in
Fig. 3b, compared to that for, e.g., the velocity variances in Fig. 3e, f.

When we separate the results of the sensitivity study for the different emission heights
(Fig. 9), we see a different pattern. Note that the ‘combined’ panel is identical to that of Fig. 8.
Clearly, some parameters affect model runs with different emission height differently. It is
interesting to note that the UCL parameters in the runs with a high source affect the output
similarly than in runs with a lower source, despite only affecting the layer below 15 m. The
high importance of azs and the other RSL parameters is due to their impact on the entire
profiles over the buildings, which is the majority of the model domain. The parameter alp
shows that the reflection at the roof level is less impactful if the particles already start below
this level. Also interesting is a much higher separation between important and less important
parameters for lower sources than for higher sources. This is likely related to the fact that in
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those cases the UCL parametrization directly influences all particles at the start, instead of
only when they are transported into the UCL.

6 Validation

To properly test the UCL parametrization, the model performance is evaluated for a real
dispersion experiment. Required input is mean wind speed at an arbitrary height, mean wind
direction, u∗, w∗ (if convective), zi, Obukhov length L , mean building height, plan area
density λp , zero-plane displacement d , roughness length z0, and the blending height z∗. For
the validation, the coordinates and strength of the source and the positions and concentration
measurements of the samplers are also required. Here we use data from the Basel UrBan
Boundary Layer Experiment (BUBBLE, Rotach et al. 2005). We chose BUBBLE, because
wewanted a tracer experiment that approximates the steady state of themodel and has a source
as low as possible, but not below the zero-plane displacement d . Otherwise the comparison
with the RSM would be compromised, because it cannot start particles below d .

6.1 Basel UrBan Boundary Layer Experiment

Gryning et al. (2005) describes the BUBBLE campaign in Basel, Switzerland, from 2001 to
2002. This campaign contains both long-term tower measurements as well as tracer experi-
ments (see also Sect. 3). The tracer experiments took place during four convective days with
a thermally driven, local wind phenomenon. Release and most measurements were near roof
level. Mean building height in the area is about 15m. Rotach et al. (2004) used the same
LPDM to compare with the BUBBLE dataset and investigated three different averaging peri-
ods for the concentration measurements. In order to have the largest possible amount of data
for the analysis, we choose the original measurement period of 30 min for our simulations,
instead of the 3-h average that Rotach et al. (2004) chose. This decreases the statistical agree-
ment betweenmodel andmeasurements, but gives us more data to work with. Meteorological
data were collected at a tower with sonic anemometers. The tower stood within the area cov-
ered by the samplers for the concentration measurements. All together, 24 30-min convective
periods are available for analysis.

6.2 Acceptance Criteria After Hanna and Chang (2012)

Hanna and Chang (2012) provide acceptance criteria for urban dispersion model evaluations.
They define the fractional bias (FB), the normalized mean square error (NMSE), and the
factor-of-2 (F2). See “Appendix 3” for their definitions. Note that these error measures for
the acceptance criteria are not calculated for all points, but only for the maximum value
along each arc (ARCMAX), which leads to far better statistical agreement than point-to-
point comparisons. The measurements were taken from the highest value along each arc
during BUBBLE (see Rotach et al. 2004). Furthermore, Hanna and Chang (2012) define
the threshold-based normalized absolute difference (TBNAD, called NAD in their work) for
point-to-point comparison if both simulated and observed values are above the threshold of
three times the limit of quantification of the measuring instrument. The so-defined statistics
are summarized in Table 3.

The RSM already shows a strong performance, fulfilling all four criteria when aggregated
over all BUBBLE cases. Only the TBNAD-criterion shows non-optimal performance. When
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Table 3 Performance measures according to the acceptance criteria of Hanna and Chang (2012)

Performance measure Acceptance criteria Aggregated value Individual acceptance ratio criteria

RSM ULM RSM ULM

FB |FB| < 0.67 −0.63 −0.46 15 of 24 = 0.63 17 of 24 = 0.71

NMSE NMSE < 6 2.95 2.04 23 of 24 = 0.96 23 of 24 = 0.96

F2 F2 > 0.30 0.63 0.70 18 of 24 = 0.75 20 of 24 = 0.83

TBNAD TBNAD < 0.50 0.49 0.48 9 of 24 = 0.38 9 of 24 = 0.38

Note that FB, NMSE, and F2 are calculated on the basis of ARCMAX values, whereas the TBNAD is a
point-to-point comparison. The values in the middle column of the table are a summary over all BUBBLE
simulations. Individual performance measure values for each of the 24 BUBBLE cases are not shown, but the
fraction that meet the acceptance criteria are listed in the right column. Hanna and Chang (2012) require a
model to meet the acceptance criteria in 50% of cases. All measures that fulfill a criterion are printed in bold

looking at the performance measures for each case individually (last column), the FB-,
NMSE-, and F2-criteria are accepted in well above the 50% of cases required by Hanna and
Chang (2012). Conversely, for both model versions, the TBNAD-criterion is only accepted
in 38% of cases, confirming the earlier, worse model performance when looking at TBNAD.
Including the UCL does not change the model performance; in general a slight improvement
is found.

6.3 Visual Comparison with Field Measurements

Figure 10 compares measured and modelled concentrations, both for the RSM (blue crosses)
and the ULM (orange squares). Due to the logarithmic nature of the plot and the fact that
the model simulates values near zero to floating point precision—far smaller than the exper-
imental detection limit—the scale is limited to the instrument’s limit of detection (LOD =
5ng m−3). All values smaller than LOD (simulated or measured) are set to LOD. Gener-
ally, the ULM included produces slightly smaller concentrations than the RSM. This will be
shown more clearly in Sect. 6.4. However, the distribution of values is highly similar, indi-
cating that the implementation of the UCL does not fundamentally alter the concentration
distribution—at least above roof level where the measurements were performed.

To the side and the top of Fig. 10 aremarginal histograms of the distributions. Note that the
bins of the histogram follow the same logarithmic scale as the scatter plot. These distributions
do not correspond to any theoretical expectation, since they aremostly governed by the choice
ofmeasurement locations during theBUBBLEcampaign.Bothmodels (right panel in Fig. 10)
fail to reproduce the local peak in the observations (top panel in Fig. 10) at 3×10−2 mgm−3.
At a large number of sites, where this most frequently observed concentration is measured,
both models return a value below the LOD (note the roughly doubled number of LODs in
the simulations, as compared to the observations). To quantify the difference between the
two simulated distributions and the measured distribution, we use the earth mover’s distance
(EMD, calculated after Pele andWerman 2008, 2009). It is ameasure for the distance between
two distributions. A larger value indicates that the difference between two distributions is
larger. When we calculate the EMD for each model’s distribution compared to the measured
distribution, the ULM has a slightly lower value, indicating a slightly better performance.
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Fig. 10 Measured versus modelled concentrations from all (four) BUBBLE tracer experiments. All values
smaller than the LOD are set to LOD (grey dotted line) and displayed as dots instead of the usual marker
(legend). EMD is the earth mover’s distance (see text). The panel to the side and the top display the marginal
histograms. The outliers at the LOD in those panels have the same value for both models

6.4 Statistical Comparison with Field Measurements

Measured and simulated data points are co-located in space and time, even if co-location in
timemight be debatable since the LPDMassumes stationarity.We use the RelativeDifference
(RD), the Fractional Bias (FB), the Normalized Mean Square Error (NMSE), the correlation
coefficient (CORR), the Factor of 2 (F2), the Factor of 5 (F5), the Bounded Normalized
Mean Square Error (BNMSE), and the Threshold-Based Normalized Absolute Difference
(TBNAD), all of which are detailed in the Appendix 3, Eqs. 28–34. We use a bootstrapping
procedure to judge significance of these statistical measures, also detailed in Appendix 3.

Table 4 shows the error statistics for the simulation of the BUBBLE tracer experiments
with the two model versions. The ULM shows better values for all measures and roughly
half the improvements are statistically significant (98% level). The RSM overpredicts the
concentrations (negative FB). Since the ULM delivers slightly lower concentration than
the RSM, this improves the statistical agreement due to reduced overprediction. The NMSE,
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Table 4 Statistical comparison of two model versions with BUBBLE measurements

Experiment FB NMSE CORR RD F2 F5 BNMSE TBNAD

RSM -0.63 9.09 0.56 2.74 0.29 0.53 0.46 0.49
ULM -0.41 5.35 0.60 2.28 0.31 0.56 0.44 0.48

A bold value signies the best value in the corresponding column. Signicance is shown in colour: grey is the
basis for comparison, green means signicantly better at the 98% level. None of the values are signicantly worse

CORR, F2, F5, andBNMSE indicate that the scatter of the simulations is also slightly reduced
by the ULM. Even though these comparisons are based on only few experimental data, they
show explicitly including the UCL did not substantially change, but slightly improve the
model performance. Larger impact of including the UCL can be expected for street level or
within-canopy measurements or sources. Corresponding tracer experiments can of course
only adequately be simulated with the present ULM version and a proper validation for such
cases will be left for a future study.

7 Conclusion and Outlook

An existing Lagrangian particle dispersion model (called RSM) with parametrized flow and
turbulence characteristics for the urban roughness sublayer (RSL), andmodel domain starting
at the zero-plane displacement, was extended down into the urban canopy layer (UCL). The
model with the UCL included is called ULM. For this, spatially averaged profiles of flow and
turbulencewere collected from the literature,mostly fromwind-tunnel and numerical studies,
but also including a few full-scale experiments. The profiles show considerable spread, but
nevertheless parametrizations for the mean wind speed u; Reynold’s stress u′w′; dissipation
rate of turbulence kinetic energy ε; skewness of the vertical wind component Skw; velocity
variances u′2, v′2, and w′2; and a model-specific transition function f are proposed. These
parametrizations are continuous to the parametrizations in the RSL aloft and are intrinsic in
nature, i.e., only averaged over the fluid volume—excluding the buildings. For this reason a
reflection of probability λp is introduced at the mean building height. The parametrizations
are horizontally homogeneous and independent of wind direction.

The ULM still fulfills the well-mixed criterion, with the peculiarity in the UCL that the
normalized particle concentration assumes the value of 1 − λp instead of 1, which is due to
the particle reflection mentioned before.

A sensitivity analysis using the Morris method shows that the parameters describing the
UCL turbulence have a smaller impact on the concentration distribution and plume char-
acteristics than have those parameters which characterize the RSL turbulence profiles. This
reduces the uncertainty introduced through the relatively large spread of the parametrized
UCL turbulence profiles.

A comparison of the ULM and the RSM shows slight changes in the model output, but
generally the same dispersion behaviour. The longitudinal dispersion is somewhat diminished
by the inclusion of the UCL parametrizations. An immediate corollary of this finding is the
result that the concentration profiles in the UCL appear to be non-constant with height.
This means that assuming uniformly height-distributed concentrations below the zero-plane
displacement is questionable.

The RSM and the ULM both fulfill the acceptance criteria after Hanna and Chang (2012).
When tested against concentration measurements of the BUBBLE dataset, the ULM shows
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slightly improved concentration predictions compared to the RSM. Some of the improve-
ments in the error measures are statistically significant, but the overall differences are
relatively small.

In summary, the analysis has demonstrated that spatially-averaged canopy turbulence can
be introduced into an LPDMwithout violating the well-mixed condition. Due to the fact that
the spatial variability of turbulence characteristics is considerable and hence spatial averages
bear a huge uncertainty range, application of the model for near-surface sources to determine
near-surface (pedestrian level) concentrations will result in correspondingly uncertain point
predictions. Comparison to data from an above-canopy urban tracer experiment, conversely,
shows that modelled concentrations are not strongly affected (even slightly improved) when
allowing for the UCL to be explicitly included in the model domain. This to some degree
reflects the results from the Morris sensitivity analysis, which has demonstrated that the
uncertainty of the concentration estimates are to a lesser degree affected by the canopy
turbulence parameters than those describing the bulk urban fabric. Thus, the ULM is likely
more suitable for modeling dispersion from average street level sources than the RSM.

Furthermore, extending the model domain down to the physical surface will make it
feasible to use the dispersion model as a core for a footprint model. Footprints are often
required for pedestrian or surface level and hence sensitive to near-surface turbulence. This
makes a dispersion model with explicit treatment of UCL turbulence particularly suited for
this purpose. However, they are not easily validated directly, so the present results add support
to the validity of using the ULM for future footprint modeling applications over urban areas.

Source code of the LPDM, scripts used to normalize, scale and fit the UCL parametriza-
tions, as well as scripts used to analyze the model output are available (Stöckl 2021). The
datasets used to drive the LPDMmodel are available (Stöckl 2021). The UCL profile datasets
taken from other studies are available from the corresponding author on reasonable request.
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Appendix 1: Convective Probability Density Functions with Negative
Skewness ofw

Rotach et al. (1996) define a velocity p.d.f. that can incorporate a range of atmospheric
conditions from stable to convective. This is achieved by defining a profile of w′3 with
positive values in convective conditions, a transition function f close to one and a convective
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version of the w′-p.d.f. called

Pw,c = APA + BPB , (20)

where A and B stand for up- and down-drafts, respectively (Luhar 1989). They are defined
after Bærentsen (1984) through their p.d.f.s

PA = 1√
2πσA

exp

[
−1

2

(
w − σA

σA

)2
]

and (21)

PB = 1√
2πσB

exp

[
−1

2

(
w + σB

σB

)2
]

, (22)

where

σB =
√

(w′3)2 + 8 f 2(w′2)3 − w′3

4 f w′2 , (23)

σA = w′2
2σB

, (24)

A = qσB

σA + σB
and B = qσA

σA + σB
(25)

with q = 1√
1−ρ2

and ρ the correlation coefficient between the Gaussian u′ and w′ after
Rotach et al. (1996), modified from Luhar (1989). Note that these formulations were only
ever meant to model positive skewness for convective conditions. It is, however, possible to
use the same formulations to achieve a negatively skewed p.d.f. for w′ if w′3 in Eq. 23 is
negative. Compared to a positive value of w′3, σB in Eq. 23 increases, while σA in Eq. 24
decreases when w′3 is negative. This also leads to a smaller B and larger A in Eq. 25. σA

and σB are both the scale and location parameter of the corresponding p.d.f. PA and PB ,
respectively (note the reversed sign of the location parameter in PB ). Altogether, this means
that there are now smaller areas of stronger downdrafts and larger areas of weaker updrafts
in Eq. 20. Consequently, the p.d.f. of w′ is skewed negatively.

Appendix 2: Morris Method of Global Sensitivity Analysis

This section provides a short overview of the Morris or elementary effects method (EE)
used in the sensitivity study, as well as implementation details. The method requires a scalar
output and Sect. 5.3 describes how to derive scalar output from the LPDM. Furthermore, the
method requires deterministic output, because noise from random output errors is difficult to
distinguish from small effects. However, our model—and therefore its output—is stochastic
in nature, not deterministic. To alleviate this, we increase the number of particles and thus
reduce the random error of the output. Daniel (1973) states that one-at-a-time (OAT)methods,
which are similar but less powerful than the Morris method, can only show effect sizes that
are larger than four times the standard deviation of the output. To test this, we ran the model
100 times using identical settings for various numbers of particles and calculated the standard
deviation of the scalar outputs. The standard deviation decreases with increasing number of
particles (not shown), which proves that given enough particles, it is possible to distinguish
effect sizes that are larger than the stochastic variation. We chose enough particles to make
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this matter of no concern, especially since the bulk of our analysis is based on an aggregate
measure that does not take the spread into account (see Eq. 27).

Morris (1991) explains how to distinguish between three types of effects amodel parameter
can have on the output: (i) negligible, (ii) linear and additive, and (iii) nonlinear or involved
with interactions with other parameters. To find out into which each of the k-many input
parameters belongs, an elementary effect

di (X) =
⎧⎨
⎩

y(X1,...,Xi−1,X
+Δ
i ,Xi+1,...,Xk )−y(X)

Δ
1
σy

when increasing the i-th parameter
y(X)−y(X1,...,Xi−1,X

−Δ
i ,Xi+1,...,Xk )

Δ
1
σy

when decreasing the i − th parameter
(26)

is calculated from a pair of scalar model outputs y that depend on the vector of input parame-
tersX, where the i-th parameter was changed by stepping up or down by Δ in its distribution
andσy is the standard deviation of themodel output y. Depending on the parameter’s direction
of change (step-up or step-down), the subtraction is flipped, as shown in Eq. 26 (Saltelli et al.
2008). The distribution of the parameters are assumed as uniform and linearly transformed
to the interval [0, 1] with p many discrete positions. We choose p = 6, thus the step size
Δ = p

2(p−1) = 3
5 after Morris (1991). Saltelli et al. (2008) give a visual explanation why this

Δ leads to uniform coverage of the parameter space. The normalization by σy is not from
Morris (1991), because he only looked at one output scalar y in this work.We, however, want
to compare more than one model output and the normalization increases the comparability of
the elementary effects of each of the output-types (Sin and Gernaey 2009). Note that unlike
Sin and Gernaey (2009), we do not normalize Δ, because we transformed each parameter
range to the interval [0, 1] as described by Morris (1991). Since the actual value of Δ does
not directly influence the output y, only which discrete point in the parameter distribution is
chosen, this is not necessary, as long as Δ remains unit free.

To calculate more than one di , naively, one could now create a large number of pairs with
different input parameter vectors X and compare two at a time. However, the novel concept
of Morris (1991) is to randomly generate a ‘trajectory’ in the k-dimensional parameter space,
where each following step changes exactly one parameter and each parameter is only changed
once, such that a trajectory has k+1-many points (see Saltelli et al. (2008) for an illustration).
This means that only k + 1 simulations lead to k-many di , one per input parameter. Then
the same procedure is repeated r times with different (random) trajectories, until there are
r -many d j

i and simple statistics over the distribution of d j
i can be calculated. For the exact

method of generating the trajectories see Morris (1991), except that we also allow a step-
up of Δ (instead of only step-down), as implemented in the R-package ‘sensitivity’ (Iooss
et al. 2019). Note that we use an additional improvement over the original method of Morris
(1991) and generate 1000 trajectories before selecting the r = 20 with the largest summed
Euclidean distance between the selected trajectories for increased coverage of the parameter
space (Campolongo et al. 2007). The amount of 20 trajectories is fairly arbitrary and was
chosen as a compromise between computational effort and quality of the result. See Khare
et al. (2015) for a short review on the number of trajectories used in literature, as well as
a study on the suitability of the Campolongo et al. (2007) method to select the trajectories
(called OT in Khare et al. 2015).

The arithmetic mean μi and the sample standard deviation σi of the d j
i distributions

(for each i = 1 . . . k) are the classic Morris sensitivity measures and have to be looked at
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simultaneously. Campolongo et al. (2007) suggest the use of

μ∗
i =

r∑
j=1

|d j
i | (27)

as a summary statistic with some loss of information, but increased ease of use.

Appendix 3: Statistical Treatment

We use the following definitions to measure error statistics:

RD = 1

n

n∑
i=1

|oi − si |
si

(28)

FB = 2(o − s)

o + s
(29)

NMSE = 1

nos

n∑
i=1

(oi − si )
2 (30)

CORR = 1

σoσs

n∑
i=1

(oi − o)(si − s) (31)

Fx = 1

n

n∑
i=1

{
1 if 1/x ≤ si

oi
≤ x for x ∈ {2; 5}

0 else
(32)

BNMSE = 1

n

n∑
i=1

(oi − si )2

(oi + si )2
(33)

TBNAD = AF

AF + AOV
(34)

where o is the observed concentration and s the simulated concentration, both observed at a
receptor. AF is the number of false-positive and false-negative predictions, where both model
and measurements are judged on whether or not they exceed a threshold, defined as three
times the measurement device’s limit of detection (LOD). AOV is the number of OVerlapping
predictions, meaning where both or none of the values exceed the threshold.

To be able to judge the significance of differing statistical measures, we use a bootstrap-
ping procedure (Tukey 1987), where we calculate the statistical measure for 50,000 random
samples with replacement of the simulation-observation pair vectors. These 50,000 statistical
measures form the bootstrap distribution. The exact procedure is listed in Stöckl (2015), but
generally we follow the ‘moment bootstrap’ of Hanna (1989). Additionally, we do not com-
pare the confidence intervals of the two bootstrap distributions directly, but instead bootstrap
the difference of the error measure between the two model variants for the ‘same sample’
(Irwin 2001). The ‘same sample’ means that we randomly draw rows of the two simulation
and the one observation vectors. If the 98% confidence interval of the difference between the
two comparative error measures does not contain the value zero, the difference in the error
measure is significant.
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