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Abstract
The surface–atmosphere turbulent exchange fluxes are experimentally determined using the
eddy-covariance method. Their estimation using profiles of the variables of interest is a less
costly alternative, although restricted to certain ranges of stability and assumed to hold for
relatively flat and homogeneous terrain. It relays usually on the prescription of the rough-
ness lengths for momentum, heat and matter, the latter two being adjustable parameters with
unclear physical significance. The relations are derived with data from screen level to a few
tens of metres upward. The application of these expressions using data only at one level in
the surface layer implies assuming zero wind speed and the land surface temperature at their
respective roughness lengths. The latter is a quantity that experimentally can only be deter-
mined radiatively with a substantial uncertainty. In this work the flux-profile relationships
for momentum and sensible heat are assessed over a flat site in moderately inhomogeneous
complex terrain in the southern pre-Pyrenees, using data between 2 m and the surface. The
main findings are that (i) the classical expressions hold in the daytime for most of the dataset,
(ii) the iterative estimations using the Obukhov length and the direct ones using the bulk
Richardson number provide very similar results, (iii) using a second observation of tem-
perature avoids a radiometric measure of land surface temperature and the prescription of
a thermal roughness length value, (iv) the estimations over wet terrain with high irradiance
depart largely from observations.

Keywords Flux–gradient relations · Heterogeneous terrain · Similarity theory · Land
surface temperature · Aerodynamic and thermal roughness lengths

1 Introduction

The exchange of momentum, energy and matter between the Earth’s surface and the atmo-
sphere takes place initially at the interface between both media (Garratt 1994). The amounts
exchanged by unit of time and unit of area are the surface fluxes. The adequate knowledge
of these transfers are key for a comprehensive description of the climate system, as they are
the effective link between its different subsystems.
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Radiative fluxes can bemeasured with a good accuracy, while conduction rules essentially
in the soil. These two mechanisms are adequately represented in numerical models, as they
have well-established ruling equations, and they are mainly sensitive to some quantities,
either physiographic parameters like soil texture or vegetation cover, or model variables such
as land-surface temperature (LST) or soil moisture.

The sensible and latent heat fluxes in the atmospheric surface layer are mostly due to
turbulent transport of thermal or mechanical origin. The only accepted theory of turbulence
is of application to homogeneous and stationary conditions (Kolmogorov 1942), which is
usually not the case near the ground, where surface heterogeneity is ubiquitous over land
and eddies display large anisotropy due to the presence of the surface. Therefore, no well-
established prognostic equations for the turbulence exist near thewall and empirical equations
are prescribed, usually imposing logarithmic-type profiles of the variables in the first metres
above the ground, an approach called MOST (Monin–Obukhov similarity theory, Monin and
Obukhov 1954).

These formulations can be obtained by relating the observed fluxes directly obtained
through eddy-covariance (EC) systems to the vertical gradients of the atmospheric variables,
providing the so-calledflux–profile relationships (Foken2008). Expressing thefluxes in terms
of vertical gradients allows a straightforward use of the expressions in numerical models and
many other applications (Louis 1979; Skamarock et al. 2019). These expressions depend on
thermal stratification and have been derived using experimental data during the last third of the
twentieth century, following the pioneering work of Businger et al. (1971) and Dyer (1974),
preluded by a decade of research (Swinbank 1964; Swinbank and Dyer 1967). Reviews of
the first experiments and MOST can be found in Hicks and Baldocchi (2020) and references
therein. Due to the diversity of measurements analyzed up to the present, new functions and
coefficients are still proposed (Sakagami et al. 2020).

Many of the original experiments were derived in relatively flat and homogeneous ter-
rain using a number of instrumented levels in the first tens of metres above the surface.
The obtained expressions shared a similar functional shape and had different coefficients.
Högström (1988), using some of those experiments, provided compact expressions, currently
widely accepted, that showed a dispersion close to 20% when compared to the different
functions proposed in the literature that he employed. The discrepancies can be related to the
uncertainty of the EC measurements (Mauder et al. 2013) and to the use of fluxes obtained
at different heights, under the basic assumption that the exchange fluxes are independent
of height close to the surface, which is often not the case (Haugen et al. 1971; Fazu and
Schwerdtfeger 1989).

The dependency on thermal stratification in the flux–profile relationships is made through
a stability parameter, either z/L where L is the Obukhov length or the Richardson number
Ri . Both L and Ri express a ratio between the thermal and mechanical source terms in the
turbulence kinetic energy equation. The resulting expressions are commonly used in parame-
terizations of the surface fluxes in numerical models (Cuxart et al. 2006). The approach is still
left with many challenges (Businger 2005), such as whether there is a constant relationship
between friction velocity and wind speed with height in the surface layer (Sun et al. 2020).

Surface fluxes can be estimated experimentally with profile measurements in different
ways. The classical approach, more than 50 years old, is to derive flux–profile relationships
through the use of measurements at a number of levels, usually installed on a tall tower
(Bosveld et al. 2020). These relationships have been used also with only two levels of mea-
surements at varying heights depending on the set-up (Berkowicz and Prahm 1982; Brotzge
and Crawford 2000). The simplest configuration is to use screen-level data (around 2m above
ground level, a.g.l.) as the upper level and estimated values close to the surface. The latter
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implies using a prescribed value for the aerodynamic and thermal roughness lengths (z0 and
z0T ), the respective heights with zero wind speed and LST as the corresponding temperature.
It is worth noting that sensible heat flux estimations using LST imply a larger dispersion
because the value of the LST has more uncertainty than temperature measurements obtained
with a standard thermometer (Simó et al. 2018). Furthermore, themeasurement of LST can be
very sensitive to the footprint of the sensor (Burns et al. 2003), specially over heterogeneous
surfaces that combine bare soil with vegetation cover (Chehbouni et al. 2001).

There are some other factors that can increase the dispersion of the results. On the one
hand, when temperature sensors are housed within naturally ventilated shields, estimated
heat fluxes can have errors up to 15% (Brotzge and Crawford 2000). In order to reduce them,
careful consideration of the effect of direct insolation and low wind speeds must be taken
into account, since lack of ventilation is an important factor (Richardson et al. 1999). On the
other hand, the dependency of the roughness length on wind direction is another important
factor (Beljaars and Bosveld 1997). Finally, the unclear conceptual definition of z0T , with
values that can vary several orders of magnitude (Sun and Mahrt 1995), oftentimes makes it
a tuning parameter.

Flux–profile relationships are derived implicitly assuming homogeneous spatial condi-
tions over flat terrain. Nevertheless, many experiments have been made in locations where
significant surface heterogeneity was present, such as land–water discontinuities (Grachev
et al. 2018) or the presence of natural and farming land (Huo et al. 2015). The local circu-
lations that these terrain discontinuities induce may add dispersion in the flux estimations
when using the classical formulations (Guo and Zuo 2017). Other perturbing factors are the
presence of relevant canopies (Novick and Katul 2020), or humidity advections (Haghighi
and Or 2015), especially in the case of contrasting semi-arid and well-watered terrains (Li
et al. 2019).

Finally, the studies addressing similarity scaling in the surface layer inmountainous terrain
are scarce (Stiperski and Rotach 2016) and suggest that MOST does not apply since, at least,
one of the required conditions (i.e. surface fluxes must be constant with height) is not fulfilled
(Nadeau et al. 2013; Sfyri et al. 2018; Stiperski et al. 2020). However, it must be taken into
account that these experiments were made in a variety of conditions. In the case of Nadeau
et al. (2013), observations over a steep slope are used, while Sfyri et al. (2018) analyze
different sites distributed within an alpine valley at heights above 4 m above ground level
(a.g.l.), and Stiperski et al. (2020) focus on mesoscale katabatic flows developed in the stable
regime with measurements taken much higher up.

In the current work the applicability of flux–gradient relationships is explored for data
obtained very close to the surface over moderately inhomogeneous complex terrain. The site
is at the bottom flat area of a pre-Pyrenean valley in the Iberian Peninsula by the city of
Iruñea in Navarre (Cantero et al. 2019; Santos et al. 2020). The challenge is to see to what
degree expressions derived for flat homogeneous terrain can be used in other conditions. In
applications such as numerical models these expressions are used in every grid point over
the surface, therefore it is of interest to check their applicability for complex terrain.

This exercise is made using 30-min data for an eight-month period in 2018 for the fluxes
of momentum and sensible heat with the aim to discriminate for what range of thermal
stratification and surface conditions the standard relations hold. Furthermore relationships
for the fluxes, gradients and stability parameters are explored for the whole range of data.
Finally the sensitivity of the results to the use of LST or air temperature at a second level
is explored, as the second option allows to skip the prescription of a value for the thermal
roughness length.
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Fig. 1 Topographical map of Elortz valley with the measurement site (white dot) in the centre next to the
village of Zabalegui. The colourbar represents the height above mean sea level (in m) based on lidar aerial
scans in UTM30 WGS84 (Arroyo 2019)

2 Data Generation and Treatment

2.1 Experimental Site

The current work uses data from the Alaitz experiment (ALEX17, Cantero et al. 2019; Santos
et al. 2020) devoted to wind energy in complex terrain. The field campaign took place in the
Elortz valley, located in the south-west pre-Pyrenees in Navarre, at 450 m above sea level
(a.s.l.) following a south-east/north-west orientation with the river flowing westward (Fig. 1).
The bottom of the valley is devoted to agriculture with fields of a typical scale of 500 m to
1 km, limited at both sides by mountain slopes at a distance of about 2 km. The southern
part of the valley is defined by the Alaitz mountain range, peaking at 1285 m a.s.l., with an
average elevation of 550 m above the valley floor that configures a steep slope facing to the
north. The northern part is flanked by the low Tajonar ridge that is elevated about 200 m
above the valley floor. The mountain range at the south is usually able to block and divert
perpendicular flows, while the northern range only modifies the low-level flows.

A description of the main circulations in the valley is given in Santos et al. (2020) and
Cantero et al. (2019). Here, the analysis will focus on those periods selected to test the
stability functions, consisting in two time frames considered approximately stationary during
day (1100–1400 UTC) and night (0000–0300 UTC) and for a defined range of stabilities (see
more details in Sect. 2.3). Figure 2 contains the wind roses at 2 m a.g.l. in the centre of
the valley (Fig. 1) for the period April–December 2018. The prevalence of directions from
the north-west sector is caused by the generation of upvalley winds (west-north-west/north-
west) and the presence of northerly flows that here are forced by the Pyrenees to take a
north-north-west direction. At night, the most common directions correspond to downvalley
flows (east-south-east/south-east), southern synoptic channelled winds (south-east or west-
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(a) (b)

Fig. 2 Wind roses of 30-min averaged data observed at 2 m a.g.l. in the centre of the valley for the period
of study (Apr–Dec 2018) and for a limited range of stabilities during a day (1100–1400 UTC) and b night
(0000–0300 UTC). Each cone contains a 18◦ wind direction interval and circular grid indicates the percentage
of occurrence in intervals of 5%

Fig. 3 Time evolution of the latent heat flux (LE, dots) and the soil volumetric water content (VWC, solid line)
between 1100 and 1400 UTC throughout the entire experimental period of ALEX17. The colours indicate the
amount of incoming shortwave radiation (Rsw) and the horizontal line displays a value of VWC of 14%

south-west) and downslope flows from the Alaitz mountain range (south-west). The largest
wind speeds occurring during the presence of south-east channelled flows are probably due
to a funnel effect caused by the valley structure since its cross-section increases to the west
(Santos et al. 2020).

Figure 3 displays the time evolution for the soil moisture (through the volumetric water
content, VWC) and the latent heat flux (LE) between 1100 and 1400UTC at the same location
for the analyzed period, the latter coloured depending on the incoming shortwave radiation
(Rsw). The valley floor had enough moisture in the soil to sustain natural green vegetation
until the second half of July, the water content recovering together with plant regrowth at the
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end of October. The evolution of LE along the year is also influenced by soil moisture. Until
mid July, LE experienced a wide range of values, reachingmaximum quantities (between 300
and 400 W m−2) for those days when incoming solar radiation was also large. We mark the
summer period of dryness as the onewith a soil volumetric water content below 0.14m3 m−3,
whenmost crops have been harvested and the natural terrain is in arid conditions, with mostly
bare soil at the bottom of the valley, bushes over the slopes and some coniferous forest areas.
During this period, LE was usually below 100 W m−2 due to the lack of water in the upper
soil. In November, soil moisture recovered due to the autumn rains and consequently LE
increased significantly, although not reaching the high values of spring since incoming solar
radiation is smaller this time of the year.

2.2 Instrumentation

During ALEX17 a network of nine surface-layer stations (SLSs) was installed to provide
both atmospheric and soil measurements throughout the valley. A SLS contains observations
for the wind at 2 m a.g.l., two levels of air temperature and humidity at 2 m and 0.36 m and a
soil kit with the soil heat flux at a depth of 8 cm, plus the soil moisture and temperature both
at 5 cm depth (Table 1). The hygrothermometers are housed within a self-made radiation
shield, the entire system providing an error of 0.3 K and 0.2 g kg−1 for air temperature and
humidity, respectively (Simó et al. 2019). The wind is measured by a two-dimensional (2D)
sonic anemometer that shows an estimated error of 0.1m s−1 at 5m s−1 and an angle error
of 3◦ (CampbellSci. 2017).

The stations are fully autonomous as they are self-powered with solar panels. To optimize
the energy use and data storage, sensors are interrogated once every 5 min. For the wind,
the interrogation is performed over 30 s at 1-Hz sampling rate; while for air temperature and
humidity sensors, 20 measurements are acquired over 1 min. Soil data is interrogated once
every 5min. This configuration provides 5-min time serieswith samples of soilmeasurements
(temperature, humidity and heat flux), 1-min averages of air temperature and humidity and
30-s averages of wind speed and direction. Finally, the current analysis uses 30-min averages
performed over the raw 5-min time series.

One of the SLSwas located at the centre of the valley (Fig. 1) near the village of Zabalegui
together with a surface energy balance (SEB) station that provided turbulent fluxes through
the EC technique. The SEB instrumentation (Table 1) was composed of a three-dimensional
(3D) sonic anemometer and an open-path gas analyzer at 1.7 m a.g.l., a four-component
net radiometer at 1.2 m, a thermohygrometer at 1.5 m (housed with a Gill-type radiation
shield), and four ground-heat-flux plates at different locations (Cantero et al. 2019), allowing
to determine the fluxes of momentum, heat and water vapour experimentally. The sonic
anemometer was oriented with the positive x-axis forming an azimuth angle of 100◦ with
respect to the geographical north. Data sampling have a frequency of 10 Hz for all sensors.

After the experiment, an offline data assessment has been undertaken generating new
files with averaged intervals of 30 min. The EC data consist in 30-min averaged turbulent
fluxes processed with the TK3.11 software package (Mauder and Foken 2015), that allowed
to correct and perform a quality control of the dataset. High-frequency data are de-spiked
through a threshold of seven standard deviations and only 30-min periodswith less than a 10%
of missing or bad values are used to compute the turbulence statistics after applying a block
averaging. In addition, planar fit (Schotanus et al. 1983;Moore 1986;Wilczak et al. 2001) and
density corrections (Webb et al. 1980)were applied, togetherwith a cross-correlation analysis
tomaximize covariances. Finally, stationarity and integral tests on developed turbulence allow
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Table 1 List of instruments (including type and model) installed at the SLS and SEB station, indicating their
heights (h, positive values) or depths (d, negative values)

Instrumentation Model h or d [cm]

SLS

2D sonic anemometer Windsonic1, Gill Instruments 230

Thermohygrometer HYT271, IST Technology 200, 36

Soil water content reflectometer cs655/650, Campbell Scientific − 5

Heat flux plate HFP01, Hukseflux − 8

SEB

4-Component net radiometer CNR1, Kipp & Zonen 122

Open-path gas analyzer LI7500, LI-COR 170

3D sonic anemometer CSAT3, Campbell Scientific 170

Thermohygrometer HMP45C, Vaisala 150

Soil temperature probes TCAV, Campbell Scientific − 2, − 6

Soil water content reflectance CS616, Campbell Scientific − 2.5

Heat flux plates HFP01SC, Hukseflux − 8

to identify turbulent fluxes with a quality flag, ranging from 0 to 2, the former corresponding
to suitable data for fundamental research (Mauder et al. 2013). In the current analysis only
EC data flagged with 0 have been used for the comparison against estimated fluxes with the
gradient approach.

2.3 Strategy of Comparison and Data Filtering

With the disposition of the SLS instrumentation, estimations of the surface fluxes of momen-
tum and sensible heat can be obtained through the flux–gradient approach using MOST. This
methodology is validated at the centre of the valley (Fig. 1), where both SLS and SEB station
were operating together during the ALEX17 experiment.

In order to get as close as possible to ideal conditions, a number of restrictions have been
imposed to select the data that will be treated in the next sections. These requirements can
be grouped in three categories:

Restrictions Due to Monin–Obukhov Similarity Theory Applicability

– Stationarity:Half-hourly averages between 1100 and 1400 UTC and between 0000 and
0300 UTC are selected for daytime and night-time computations, respectively. These
periods are considered to be the ones closer to stationary conditions and avoid morning
and evening transitions at any time of the year.

– Limited Range of Stabilities: Since the range for which the similarity functions are
supposed to hold is −2 < z/L < 1, we restrain the comparison for values of z/L in this
range, computed with the EC fluxes. Cases with z/L > 1 fall well into the z-less regime
and those functions become constant (Wyngaard 1973), whereas for z/L < −2 data is
entering into the local-free-convection regime (Tennekes 1970).

– Limitations in the Definition of Experimental Functions: The original flux–profile
relationships were built upon experimental data for which wind measurements could not
provide meaningful values under 1 m s−1 since they were performed by cup vanes with
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mechanical inertia (Businger et al. 1971; Högström 1988). Here we restrict ourselves to
wind speeds of at least 1 m s−1 even if the measurements of the sonic anemometers are
trustable for weaker values.

Restrictions Due to the Eddy-Covariance Technique

– Mast Perturbation on the Turbulent Flow: Due to sonic anemometer orientation, an
airflow from 70◦ to 130◦ is perturbed by the station structure before reaching the sensor
head, providing not suitable turbulent fluxes for the current comparison. A similar range
of directions (± 30◦ with respect to the orientation of the sonic positive x-axis) was used
in Mauder and Zeeman (2018). In addition, the error analysis done for the momentum
flux between MOST estimations and EC results confirms that the application of a larger
cone of influence does not provide better results.

– Limitations of the EC Accuracy: Following the recommendation of Mauder et al.
(2020), EC sensible heat fluxes with absolute values smaller than 10 W m−2 are not
considered since the uncertainty is usually larger than the value itself.

– Restriction to High-Quality Data: As mentioned in a previous section, the current
analysis is limited to high quality data provided by the EC system, considering only the
30-min statistics flaggedwith 0.Thus, caseswith large temporal variability are eliminated,
as a shower event or intermittent cloud passing, together with those that do not properly
follow a flux–variance similarity (Foken 2008).

Restrictions Due to Instrumental Issues

– Limitations in Naturally Ventilated Radiation Shields:When passive shields are used
to protect the sensors of temperature and humidity, it has been observed that sometimes
ventilation is insufficient for the level closest to the surface, especially for weak wind
speeds (Erell et al. 2005). Therefore, for the comparisons using two levels of temperature
from a SLS, we choose to eliminate the daylight points that fall outside one standard
deviation of a linear relationship between the vertical gradient of air temperature and the
incoming solar radiation (Fig. 4), attributing them to an excess of radiation heating in the
lowest level.

The original dataset contains 1281 cases during the daytime period (1100–1400 UTC)
and 1247 at night (0000–0300 UTC). After the application of the rest of aforementioned
restrictions, 58% of data points remain for the momentum flux and 51% for the sensible heat
flux during the day. At night, these percentages are reduced to 36% and 14%, respectively.
The restriction that has a major impact on the filtering process corresponds to the EC flag,
followed during the day by the lack of ventilation of the lower radiation shield and, at night, the
omission of small sensible heat fluxes (|H | < 10 Wm−2) and the wind direction restriction.

The large reduction of cases at night firstly responds to a failure in the stationarity test
of the turbulent fluxes calculated over a 30-min window. A smaller averaging period of
few minutes would be more appropriate in the nocturnal regime to avoid the influence of
small-scale mesoscale motions of diverse origin (Mahrt 2007). However, in the present study
we apply a homogeneous average period to the entire dataset as all stability regimes are
considered.

3 The Similarity Functions

A theoretical background has been developed using MOST to estimate the vertical turbulent
fluxes within the surface layer with non-dimensional parameters. Indeed, the theory relates
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Fig. 4 Correlation between incoming shortwave radiation (Rsw) and temperature difference between 2 and
0.36 m a.g.l. Grey dots represent the entire period of study (Apr–Oct 2018) for all 30-min cases with Rsw >

10 Wm−2 while the subset of data between 1100 and 1400 UTC are represented in black. Black and red lines
correspond to the linear fit± one standard deviation, respectively. Dots falling outside the area limited by both
red lines are discarded from the current analysis

the turbulent flux of a quantity with its mean vertical gradient through a so-called universal
function φ that depends on the stability regime. Such a relationship must be determined
experimentally and numerous field campaigns have been used to propose functions with
different forms and coefficients (Foken 2008). Wangara 1967 (Australia, Clarke et al. 1971;
Hess et al. 1981) and Kansas 1968 (USA, Kaimal and Wyngaard 1990) were among the first
experiments that related vertical profiles of wind and temperature with the turbulent fluxes in
the surface layer. They used instrumented towers with cup anemometers and thermohygrom-
eters at different levels, from 0.5 to 16 m, over relatively homogeneous terrain with short
vegetation.

The flux–profile relationships for momentum (τ ) and sensible heat (H ) fluxes within the
surface layer can be expressed as Businger (1988)

√
τ

ρ
= u∗ = κz

φm

∂ ū

∂z
, (1)

H

ρcp
= (w′θ ′

v)0 = −κu∗z
φh

∂θ̄v

∂z
, (2)

where the former flux has been expressed in terms of friction velocity u∗ and a coordinate
system aligned with the mean wind direction is taken. We use the Reynolds notation where
overbar and primes distinguish respectively an averaged quantity from its fluctuating part.
Therefore, ū and θ̄v correspond respectively to the mean longitudinal wind component and
virtual potential temperature of an atmospheric flow with an air density ρ and a specific heat
capacity cp, while κ = 0.4 refers to the von Kármán constant. Finally, φm and φh represent
the universal functions that depend on the dynamic stability, generally expressed in terms of
either the Obukhov length L through the non-dimensional height (z/L),

L = − u3∗
κ

g
θv

H
ρcp

, (3)
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or the gradient Richardson number Ri ,

Ri = g

θ̄v

∂θ̄v/∂z

(∂ ū/∂z)2
. (4)

The experimental determination of the universal functionsφ has been an intense research topic
in the last 50 years and a vast amount of expressions have been suggested as the best adjusted
coefficients depend on the experiment location. Nevertheless, the Businger–Dyer expressions
represent a set of functions widely used in the literature (Moene and vanDam2014), although
the exact values of their coefficients depend on the version used (Businger 1988). Högström
(1988) reviewed all these expressions together with others and tried to homogenize them
by fixing the values of external parameters such as the von Kármán constant or the Prandtl
number. Even after this effort, the expressions compared for φm differ around a ±20% for
both stability regimes, while the differences forφh range between 10 and 25% for the unstable
cases, increasing to 35% for the stable regime (Högström 1996).

In the current study different versions of the Businger–Dyer relationships have been tested
and the results are shown for those functions that provide the best estimated fluxes with our
dataset. In the following sections, the analytical background needed to estimate the turbulent
fluxes is specified for those expressions that use z/L or Ri as stability parameters.

3.1 Similarity Functions Depending on z/L

To derive the turbulent fluxes from the similarity functions expressed in terms of z/L , Moene
and van Dam (2014) suggest to use the integrated form of Eqs. (1)–(2)

ū(zu) − ū(z0) = u∗
κ

[ln(zu/z0) − �m (zu/L) + �m (z0/L)] , (5)

θ̄v(zθ2) − θ̄v(zθ1) = θ∗
κ

[
ln(zθ2/zθ1) − �h

(
zθ2/L

) + �h
(
zθ1/L

)]
, (6)

where θ∗ = −H/(ρcpu∗) and z0 is the aerodynamic roughness length. The heights zu , zθ2
and zθ1 indicate the level where wind is observed and the two levels where temperature are
measured, respectively.

The integrated version of the universal functions (�m,�h) used in the current work are the
Businger expressions (Businger et al. 1971), with the coefficients re-calculated by Högström
(1988). Under unstable conditions (z/L < 0), they take the form

�m(z/L) = ln

[(
1 + x2

2

) (
1 + x

2

)2
]

− 2 tan−1(x) + π/2, (7)

�h(z/L) = 2 ln

(
1 + y

2

)
, (8)

with x = (1 − 19.3z/L)1/4 and y = 0.95(1 − 11.6z/L)1/2.
For stable regimes (z/L ≥ 0), the functions are written as

�m(z/L) = −6z/L, (9)

�h(z/L) = −7.8z/L. (10)

Note that the application of the equations above requires an iterative process that eventually
converges into a single solution.
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3.2 Stability Functions Depending on Ri

Alternatively towhat is described in the previous section, the turbulent fluxes can be expressed
in terms of finite differences by approximating the former Eqs. 1–2

u∗ � κ
ū(zu)

ln(zu/z0)
(φm)−1, (11)

H � −ρcpκ
2 ū(zu)

ln(zu/z0)

θ̄v(zθ2) − θ̄v(zθ1)

ln(zθ2/zθ1)
(φmφh)

−1. (12)

These expressions have been derived after converting the vertical derivatives in finite dif-
ferences and considering z in Eqs. 1–2 as the logarithmic mean height of the observational
levels (Arya 2001), i.e.,

z = (z2 − z1)/ ln(z2/z1), (13)

although other approaches such as the geometric height could be equally made (Garratt and
Pearman 2020).

The current work uses the Dyer universal functions (Dyer and Hicks 1970; Dyer 1974) but
with Ri as the stability parameter instead of z/L . Following Arya (2001), taking z/L = Ri
and z/L = Ri/(1 − 5Ri) for unstable (Ri < 0) and stable (Ri > 0) cases respectively,
yields the following expressions

φm = (1 − 16Ri)−1/4, Ri < 0, (14)

φh = (1 − 16Ri)−1/2, Ri < 0, (15)

φh = φm = (1 − 5Ri)−1, Ri > 0. (16)

The current experimental set-up, in which there are two levels of temperature and one level
of wind, requires to use the bulk Richardson number:

RiB = g

θ̂

{
θ̄v(zθ2) − θ̄v(zθ1)

}
(zu − z0)2

ū2
(
zθ2 − zθ1

) , (17)

with θ̂ = (
θ̄v(zθ1) + θ̄v(zθ2)

)
/2.

There are several approaches that relate Ri with RiB, the most simple consisting in
assuming both parameters to be equivalent (Ri = RiB, Oke 2002). However, Byun (1990)
develops a complex analytical relationship between both parameters, although it may fail
for extremely unstable or free convection. The same work also provides a simplified version
(Ri = z

z−z0
ln(z/z0)RiB) that Lee (1997) modifies with a multiplying factor η. In our case,

the relationship used follows the same approach with η = 0.5,

Ri = 0.5
z

z − z0
ln(z/z0)RiB. (18)

This relation is the one that provides the smallest discrepancies against the ECmeasurements,
leading to similar results as for the z/L formulation described in Sect. 3.1.

4 The Lower Boundary Conditions

The estimation of turbulent fluxes through conventional data normally uses observations at
several levels, for instance from a mast, to adjust a function from which the gradients are
obtained. For the bulk approach described above only two levels are available and therefore
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Table 2 Monthly values of z0 (units of m) selected for the ALEX17 campaign, extending from April to
December 2018

April May June July Aug Sept Oct Nov Dec

z0 0.020 0.040 0.040 0.010 0.010 0.010 0.005 0.005 0.005

finite differences are taken, instead of obtaining the gradients using an empirical function. As
described above, when only one measurement at a single height is present, the second level is
taken at the roughness length. The current dataset, with wind and temperature measurements
at one and two levels respectively, requires the determination of z0 but also allows to assess
using LST and z0T as the lower boundary condition.

The aerodynamic roughness length z0 can be determined either by using tabulated values
or by adjusting a neutrally stratified profile for the location of interest. Table 2 shows the
monthly values obtained for the Zabalegui station, using the turbulent momentum fluxes for
events near neutrality (−0.01 < z/L < 0.01) with wind speeds above 2.5 m s−1, refining
the value in a way that it minimizes the error between estimated and observed u∗.

The latter step is only possible when an EC station is available. However, it has been
applied to avoid a dispersion in the results attributable to an inaccurate value of z0, as this
issue falls outside the scope of the current study.

The yearly evolution of z0 is consistent with the observed height of the vegetation, which
is tallest in spring (0.3 m), when the crops develop, lower in summer (0.10m), when crops are
senescent and harvesting takes place, and small in fall, after the fields are ploughed (0.05 m).
According to Arya (2001), z0 = 0.15 h0 where h0 is the vegetation depth, which would
provide consistent values for our estimations of z0, since a vegetation depth of 30 cm yields
z0 = 0.045 m and, a depth of 5 cm, z0 = 0.008 m.

When only one measurement of air temperature is available, it is customary to use LST
at the thermal roughness length z0T as the second level (Beljaars and Holtslag 1991), a
temperature that in models is an output of the land-surface model, and in observational
studies is a quantity derived from the budget of the infrared radiation near the surface. This
value can be obtained experimentally at the ground surface, although it is possible to estimate
it through remote sensing techniques (García-Santos et al. 2019). Here, in situ LST is obtained
using observations from the four-component net radiometer of the SEB station as (Simó et al.
2018)

LST4 = Lms − (1 − ε)Ldn

εσ
, (19)

with σ = 5.67 × 10−8 W m−2 K−4 representing the Stefan–Boltzman constant, Lms being
the radiance measured by the longwave sensor pointing to the surface and Ldn, the reflected
downward longwave radiation coming from the sky. The surface emissivity ε is set to 0.97
corresponding to senescent sparse shrubs (Snyder et al. 1998), a value applied at similar sites
(García-Santos et al. 2019).

Measurements of LST have a typical uncertainty of 2–3 K due to radiometer sensitivity
(Simó et al. 2018) and surface emissivity (Coll et al. 2005).Apriori this associated errorwould
introduce also huge uncertainties in the determination of the estimated fluxes, especiallywhen
thermal gradients are small. Furthermore this value has to be applied at the thermal roughness
height z0T , which is a quantity difficult to define conceptually.

In order to reduce the additional uncertainty given by the prescription of z0T , in the current
analysis this parameter is defined as a constant factor of z0, z0T = μ z0. For our dataset,
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μ = 0.4 is found to provide the best estimates for the sensible heat fluxwithout increasing the
error in the estimation of u∗. This value falls between the range provided by Garratt (1994),
where μ = 0.5 is considered for smooth surfaces and μ = 0.14 for randomly distributed
elements. A similar discussion could be made concerning the estimation of the latent heat
flux and the prescription of surface humidity. However this topic falls beyond the scope of
the current work.

5 Assessment of the Similarity Functions

The remaining set of half-hourly data is inspected in this section to assess if the traditional
similarity approach, developed for seemingly flat and nearly homogenous conditions, is of
application for the ALEX17 site, which is locally flat, mildly heterogenous and surrounded
by significant topography nearby. Since the dataset extends from spring to early winter, a
large variety of meteorological and surface conditions occurs, which makes the comparison
more general than if the study was focused in a temporally restricted dataset of a few days
or weeks.

The analysis is intended to show in which conditions the standard empirical theory holds
while identifying the conditions in which data and theory depart significantly. Turbulent
fluxes of momentum and sensible heat will be the subject of our study, leaving the analysis
of the latent heat flux for a later stage. Let us recall here that we will inspect the behaviour
of both fluxes for 3-h intervals at day and at night that are expected to be the closest to
stationary in a classical diurnal cycle, which will allow the investigation of the performance
of the theory in unstably and stably stratified conditions, respectively. The analysis will show
that the theory holds most of the time in the daytime, except for the sensible heat flux when
the soil is saturated and the incident solar radiation is high (Fig. 3).

In the direct comparison between measured and estimated values we establish two thresh-
olds of quality. First we will indicate with a line the 20% error, because this uncertainty is
of the same order as the one that the similarity equations provide, as indicated in Högström
(1996). Therefore if a value has an error lower than 20% we will consider it “good". Then
we indicate the 50% error as a “tolerance limit" that may be still of use, whereas values with
errors larger than 50% are considered a failure of the theory for our site. Stiperski and Rotach
(2016) evaluate the statistical uncertainty of a measured EC flux, considering 50% an optimal
compromise between data quality and data loss in mountainous terrain as the ideal 20% is
too stringent in such complex environments.

The computation of the momentum and sensible heat fluxes is made through the similarity
theory equations introduced in Sect. 3, using both stability parameters (either z/L or RiB).
The observations of wind and temperature are taken at 2 m a.g.l. The second level for the
wind is obtained prescribing a zero value at z0 for each month (Sect. 4), while the second
level of temperature is taken at 0.36 m (indicated from now on as T36). For the stability
functions depending on z/L , an additional estimation is done using LST at z0T instead of
T36 as the second level of temperature. All three estimations (z/L , RiB and LST) have been
performed at day and night to assess which method provides the best results.

5.1 Momentum Flux

Some statistics of the direct comparison of the measured and estimated values of the momen-
tum flux are displayed in Table 3. The differences between the daytime (unstably stratified)
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Table 3 Statistics of the comparison between estimated and observed values of friction velocity u∗ and sensible
heat flux H under unstable and stable regimes

Variable Units Method ME SDD p20% p50% N

u∗ Unstable [m s−1] z/L 0.005 0.053 74 96 742

RiB 0.010 0.053 73 96

LST 0.008 0.053 75 96

H Dry [W m−2] z/L 10 36 73 96 262

Unstable RiB − 7 36 73 97

LST − 6 37 71 98

H Humid [W m−2] z/L 49 60 25 50 387

Unstable RiB 40 62 27 52

LST 20 65 24 65

u∗ Stable [m s−1] z/L − 0.001 0.046 61 92 443

RiB − 0.015 0.056 51 80

LST 0.020 0.045 52 86

H Stable [W m−2] z/L 6 11 25 58 149

RiB 7 12 26 50

LST 17 19 2 13

For the sensible heat flux under unstable conditions, cases are separated between dry and humid cases (see
Sect. 5.2), while for stable conditions, statistics are only considered when observed H is between − 10 and
− 30 W m−2. The third column specifies the methodology used for the estimation of turbulent fluxes, where
z/L and RiB refer to the stability parameter used in the similarity theory equations with two levels of air
temperature at 2 and 0.36 m a.g.l. and one wind measurement at 2 m a.g.l. LST indicates that turbulent fluxes
are estimated with z/L as the stability function and LST at the heat roughness height z0T instead of air
temperature at 0.36 m. The rest of columns refer to: mean error (ME), standard deviation of the difference
(SDD), percentage of experimental points with respect to the total with a relative error less or equal to 20%
(p20%) and 50% (p50%), and number of points used for the statistics (N)

and the night-time (stably stratified) are small for mean error or standard deviation. However,
it is noteworthy that the percentage of good estimates is close to 75% in unstable conditions,
with very similar values regardless of the form of the stability function (z/L or RiB) or the
use of LST or T36 as the lower temperature level. Regarding the 50% tolerance limit, we
see that most of the estimates (96%) are below it, which indicates that the theory is of wide
applicability for our site in the daytime.

The night-time statistics in terms of tolerated error are worse, even if most of the difficult
cases have been eliminated. After the removal of EC low quality records, weak wind cases
and very stable stratification points, only 36% of the records are left. Of the latter, 50 to 60%
of the kept records have an error below 20% and the tolerance limit of 50% is reached by
80 to 92% of the records depending on the method. The best statistics correspond to the use
of the functions with z/L and the lower temperature level as T36, while the worst results
are performed when RiB is used, since this method underestimates u∗ for weak winds (not
shown). Therefore the performance at night is not as good as in the daytime, but this is in
line with the well-known behaviour of the similarity theory at night everywhere.

Figure 5a, b depicts the distribution of daytime and night-time data, respectively. The
results are shown for z/L , but they are indistinguishable of those obtained using RiB. The
proportion of points with an error below 20% increases with wind speed within the u∗ range
of 0.15 to 0.40 m s−1. The distribution is very similar at night, with the largest departure
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(a) (b)

Fig. 5 Error for the friction velocity u∗ computed through the difference between the estimated u∗(z/L)

calculated with similarity equations depending on z/L and the observed u∗(EC) obtained from the EC system
with respect to the observed value u∗(EC) for a unstably and b stably stratified conditions. Colour scale
indicates wind speed and symbols correspond to different ranges for wind direction (dir). Dashed lines delimit
the area with a relative error of 20% (inner cone) and 50% (outer cone)

observed for large values of wind and u∗, respectively above 7.5 and 0.4 m s−1, which
supposedly correspond to weakly stable conditions since the turbulent mixing is strong.

These large wind cases have a direction of 135◦ (triangles in Fig. 5), that correspond to
the southern general flow funnelled through the valley. Santos et al. (2020) show that the
normalized vertical wind profiles within the valley floor for this wind sector vary depending
on the stability regime, pointing to differences in the perceived surface roughness due to a
more heterogeneous surface at this part of the valley as the most plausible cause. This fact
may be responsible for the higher error in the estimation of u∗ in our case, as seen in Beljaars
and Holtslag (1991).

Although cases with wind speeds below 1m s−1 have been filtered out, the error for points
slightly above this threshold (black symbols in Fig. 5b) is larger than for the rest of cases.
Weak-wind stable conditions are not well characterized by the standard theory and receive a
separate consideration in the literature (Mahrt 2008). However, an upper limit for the value of
wind speed that may fall within this category is difficult to determine. Finally, it is interesting
to indicate that a plot of u∗ versus ln(z/z0) for all the stable cases (not shown) yields to an
almost linear distribution with a slope close to κ = 0.4, pointing to an observed behaviour
close to neutrality.

The experimental points for φm under unstably and stably stratified conditions are dis-
played in Fig. 6 against the logarithm of z/L , together with the Businger curve of the form
presented by Högström (1988), and specified in Table 4. The points are well distributed
following the similarity expressions, departing from them more as the relative error of the
estimation becomes larger. As anticipated in the analysis of the statistics, there is a good
agreement for the well-behaved cases in stably and unstably stratified regimes. However it
is clear in this representation that the points with an error larger than 20% correspond to
situations that are not in agreement with MOST basic hypotheses, most likely due to the
influence of the surrounding topography.

As a preliminary conclusion, these results show that the surface momentum flux is gen-
erally well characterized by the bulk approach of similarity theory for any of the forms
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(a) (b)

Fig. 6 Experimental data forφm against stability (z/L) for a unstably and b stably stratified conditions. Colour
scale indicates the relative error of u∗ and symbols discriminate between dry (circles) and humid (triangles)
cases. Solid black line corresponds to the Businger curve (B) with the coefficients re-calculated by Högström
(1988) and specified in Table 4

Table 4 Universal functions following the Businger–Dyer relationships for momentum (φm) and sensible heat
(φh) fluxes for the unstable (z < L) and stable (z > L) regimes

Regime Function Source α β

z/L < 0 φm = α(1 − βz/L)−1/4 Businger (B) 1.00 19.3

z/L < 0 φh = α(1 − βz/L)−1/2 Businger (B) 0.95 11.6

Unst. Dry (UD) 1.07 14.1

Unst. Humid (UH) 2.10 65.8

z/L > 0 φm = α(1 + βz/L) Businger (B) 1.00 6.0

z/L > 0 φh = α(1 + βz/L) Businger (B) 0.95 7.8

Stable (S) 1.00 3.6

The coefficients α and β are specified for the original formulation of Businger (B) recalculated by Högström
(1988). In addition, for φh, α and β coefficients are displayed for the best-fitting curves calculated with the
unstable dry (UD) and unstable humid (UH) experimental datasets in daytime as well as for the stable cases
(S) with φh > 0 in night-time, all of them represented in Figs. 8 and 11

used (z/L , RiB or LST). A proper characterisation of u∗ at screen level (i.e. at 1.5 and 5 m
a.g.l.) has also been reported for the Cooperative Atmospheric–Surface Exchange Study—
1999 (CASES-99) field experiment (Sun et al. 2020). In our analysis, very stable weak-wind
conditions are ruled out and the remaining weak wind stable cases provide worse statistics
since most probably the wind field is dominated by non-stationary mesoscale flows (Mahrt
2008). Deviations also arise at night for strong winds from the eastern sector that may be
linked to strong channelled flow originated by the topography, a regime not typical of flat
homogeneous conditions.
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(a) (b)

Fig. 7 a Error for the sensible heat flux H under unstably stratified conditions computed through the difference
between the estimated H(z/L) calculatedwith similarity equations depending on z/L and the observed H (EC)
obtained from the EC system with respect to the observed value H (EC), b differences between the estimated
values using similarity equations depending on z/L or on RiB with respect to the observed H through the
EC system. Colour scale indicates the observed latent heat flux LE and symbols discriminate between dry
(circles) and humid (triangles) cases. Dashed lines delimit the area with a relative error of 20% (inner cone)
and 50% (outer cone)

5.2 Sensible Heat Flux

Analyzing the data for the sensible heat flux as just made with the momentum heat flux,
different conclusions are reached. Since in general larger errors are found, a slight sensitivity
to the method used to compute the stability function exists and there are large discrepan-
cies between theory and observations when the soil is moist, especially under large solar
irradiation.

In Fig. 7a the estimations computed using Eq. 6 with the integrated stability functions
in terms of z/L are shown. We observe that there is a large amount of points for values
of H under 200 W m−2 that are located outside the 50% limit. The inspection of the data
shows that these points correspond mostly to large values of LE (above 250 W m−2) for a
soil with large available humidity (soil moisture above 0.14 m3 m−3). Most of these records
correspond to large values of solar irradiation (Fig. 3) and to low values of the Bowen ratio
(not shown).

5.2.1 Daytime Cases with Dry Soil

In order to assess the goodness of the stability functions for the sensible heat flux we will first
concentrate on cases with relatively dry soils. These conditions are similar, at least looking
at the climatological precipitation amounts, to the ones that were used by Businger and Dyer
to derive their expressions, corresponding to data from, respectively, summer in Colorado
(USA) and winter in a dry area of Australia.

When the soil VWC value is below 0.14 m3 m−3, data are considered to be under dry
conditions, indicated by circles in Figs. 7, 8, 9, 10 and 11. Most of the daytime dry cases in
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Fig. 8 The same as in Fig. 6a but for φh during the day. Colour scale indicates the Bowen ratio (Bo) and
symbols discriminate between dry (circles) and humid (triangles) cases. Solid black line corresponds to the
Businger curve (B) with the coefficients re-calculated by Högström (1988). Red and blue curves indicate the
best fitting functions for unstable dry (UD) and unstable humid (UH) cases, respectively. Coefficients for all
functions are specified in Table 4

(a) (b)

Fig. 9 Observed kinematic flux of sensible heat (w′θ ′) against the temperature gradient between a 2 and
0.36 m a.g.l. or b 2 m and at the heat roughness height z0T for dry cases. Colour scale indicates the observed
LE from the EC system. Black solid lines correspond to the best fitting line at each panel: aw′θ ′ = −0.0186+
0.185(T2 − T36)/(z2 − z36), b: w′θ ′ = 0.020 − 0.043(T2 − LST )/(z2 − z0T )

Fig. 7a (using the stability function with z/L) show errors below 20%, with Bowen ratios
(Bo) close or larger than 1, meaning that sensible heat flux H is similar or larger than latent
heat flux LE . In Fig. 7b the difference of the results using the similarity function with RiB
indicates that in general the latter provides slightly lower estimations than for z/L , although
the differences are of the order of a few tens of W m−2 at most, usually below 10% of the
EC value and similar to the sum of the mean error of both methods.
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(a) (b)

Fig. 10 As in Fig. 7 but under stably stratified conditions

Fig. 11 As in Fig. 8 but for the night-time. Colour scale indicates the observed LE from the EC system. Solid
black line corresponds to the Businger curve (B) with the coefficients re-calculated byHögström (1988). Green
curve indicates the best fitting function for night-time cases with φh ≥ 0 (S). Coefficients for all functions are
specified in Table 4

Figure 8 shows experimental φh values against z/L in logarithmic scale for the unstable
regime up to z/L = −0.001, indicating the Bowen ratio with a colour code and separating
dry frommoist cases with symbols. Dry cases (in circles) are distributed close to the standard
similarity function, considered here the Businger formulation re-calculated by Högström
(1988). The plot also shows the adjusting functions for dry and humid datasets and Table 4
indicates the values for their respective coefficients. The adjusting function for dry cases
(red line) presents minor changes in its α coefficient with respect to Businger’s, while β

is the same as the value found in Dyer and Bradley (1982) for an additional experiment
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done in Australia. Nonetheless, the latter falls approximately within the 20% of tolerated
discrepancies among the different accepted formulations (Högström 1996).

Therefore we can conclude that the standard similarity equations, both using z/L or RiB ,
can be applied to our site when the soil is relatively dry in the daytime. This is also supported
by the statistics in Table 3, where it is seen that all methods (including the use of LST instead
of T36 for z/L) display 71-73% of the data below the 20% error and are considered good,
while the amount reaches 96-98% if we allow a 50% error. It is clear that the performance of
themethods for the sensible heat flux in dry conditions is as good as the one of themomentum
flux in all cases.

As an interesting supplementary information, Fig. 9a indicates that there is a relation very
close to linearity between the kinematic flux and the temperature gradient between 2 and
0.36 m a.g.l., corresponding to an increase of 0.1 K m s−1 every increase of 0.5 K m−1 in the
gradient, regardless of the intensity of stratification. The linearity is less clear when using
LST at a height z0T (Fig. 9b), as there is more dispersion likely linked to the uncertainty of
the method for obtaining LST (see Sect. 4 for more details). Still, the fitted line increases
approximately 0.1 K m s−1 for every 2.5 K m−1. The difference between both fitted lines is
due to the largest amplitude in the daily cycle of LST with respect to T36, generally providing
around noon stronger thermal gradients between 2 m and the surface. Nonetheless, this result
is very similar qualitatively to the one in Simó et al. (2018), where LST is used as the lowest
temperature level.

5.2.2 Night-Time Cases with Either Dry or Moist Soil

The estimation of H at night is done for a smaller dataset since the remaining cases after
filtering consist only of 14% of the total, essentially weakly to moderately stable cases.
Figure 10a shows that most of the points fall within a range of H between − 10 and −
30Wm−2, the rest corresponding to strong wind cases in autumn induced by the topography.
These selected events have only a 25–26% of cases considered good (error below 20%) and
50-58% below 50% error when using similarity functions depending on z/L or RiB with T36
as the lower temperature level (Table 3). The statistics are much worse when LST is used
instead, pointing to a failure in either themeasurement of this parameter at night probably due
to its sensitivity to the particular footprint of the radiometer (Mahrt 2008), or the extension of
the temperature profile to a warm surface during most part of the experimental period (Simó
et al. 2018). For this regime the wetness of the soil does not appear to be a relevant factor,
contrarily to the daytime. The fact that there is condensation or evaporation (whether there
is negative or positive LE , respectively) does not seem to imply a distinct behaviour in the
results either (Fig. 10a).

Figure 10b shows the differences of the estimated H between z/L and Ri-based stability
functions,with a dispersion smaller than inFig. 10a, indicating that the results are independent
of the stability parameter. In Fig. 11, the experimentalφh values for stably stratified conditions
against a logarithmic z/L > 0.001 is depicted, discriminating the observed LE with colours.
The Businger (black) and fitted (green) curves (Table 4) are also included, the latter built upon
the experimental points with φh ≥ 0. The plot shows that for weak stabilities the standard
Businger function applies to our data, when counter-gradient cases are excluded (φh < 0).
When stability increases (z/L larger than 0.03), most of the condensation cases appear and
the formulation would require a modified equation. Yet the dispersion of φh for the entire
stability range is similar to other analyzed datasets, as in Yagüe et al. (2006).

A plot of the vertical temperature gradient against the EC turbulent sensible heat flux does
not display any correlation (not shown). The largest fluxes are due to high winds and are
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present due to the topographical characteristics of the location. A preliminary conclusion
for stably stratified conditions is that the standard similarity formulation is adequate for our
site in weakly stable conditions when evaporation prevails, while its applicability in strongly
stably stratified situations with dominance of condensation is questionable. However, the few
points available in this regime after filtering and excluding the counter-gradient cases suggest
to take this conclusion with caution.

5.2.3 Daytime Cases with Moist Soil

The fact that themain discrepancywith the standard theory is linked to the amount ofmoisture
in the soil deserves a more detailed inspection.

As shown in Fig. 3 in spring (between April and June) it is common to have very intense
incident solar radiation and a well-watered soil (nearing field capacity as soil VWC is larger
than 0.3 m3 m−3), with a heterogeneous distribution of vegetated soil. Many of these cases
are characterized by large values of LE and low values of the Bowen ratio. Table 3 indicates
that moist cases have a bad behaviour statistically when using the standard stability functions,
as the good estimates are just 24–27% compared to the 71–73% of the dry soil cases, as can
also be seen in Fig. 7a.

The distinct behaviour of the moist soil cases is evident in Fig. 8, where the corresponding
data diverge from the standard curve for values of −z/L smaller than 0.1 or Bowen ratios
smaller than 0.5. In such casesmost of the energy received from the Sun is used in evaporation
and the resulting vertical temperature gradient may not be directly governed by turbulent
mixing in the same way as it is when the solar irradiation is smaller or the soil is drier. The
fitted curve upon the moist experimental data (blue line) gives a value of φh at neutrality
much higher ((φh)z/L=0 = α = 2.1, Table 4) than the Businger expression (α = 0.95). In
the same direction, Lee and Buban (2020) provide a value higher than 1.5 for this coefficient
with experimental data taken in summer from three towers over soybean fields or grasslands
at northern Oklahoma (USA). A rainfall at the beginning of their experiment provided a
dataset with high soil water conditions, Bowen ratios close to or lower than one and a high
solar irradiation that resemble the environmental conditions of our moist data.

As it is evident in Figs. 7a and 8, for these cases the standard similarity functions estimate
fluxes that are about two times larger than the EC observations. Therefore wet soils under
intense solar radiation allow larger temperature gradients than would be sustained in dry
conditions, as here the turbulence mixing of thermal origin is reduced by the presence of
evaporation. The footprint is expected to be short formeasurements below2m (approximately
200 m around the station), and variations in the soil water content can be assumed to be small
for a non-irrigated area.However, one can not rule out that surface heterogeneity could explain
partly the obtained results, especially without the presence of additional observations in the
very close surroundings. Therefore, this issue is still inconclusive and focus is to be put on
the subject in further research efforts by exploring databases for other locations.

The absence of explicit documentation of this effect in the literature might be related to the
fact that wet soils with short vegetation and large solar irradiation are not so common [being
the aforementioned work of Lee and Buban (2020) an exception]. The pioneering works of
Businger or Dyer were made essentially over dry terrain. The reference sites in northern
Europe usually lack long episodes of intense solar irradiation, because of their latitude and
the more common presence of clouds. In the tropics both conditions can be found, especially
in the savannah during and shortly after the rainy season. Instead at the tropical jungles a
dense canopy is found above the surface and the physical processes are different. If this

123



526 B. Martí et al.

preliminary finding is confirmed, adjusted empirical equations for these conditions like the
one obtained in Fig. 8 should be applied.

6 Conclusions

To assess to what degree the standard similarity equations for the turbulent momentum and
sensible heat flux apply to complex terrain, they have been computed with screen level
values and surface conditions using an 8-month long database obtained at the flat bottom of
a mountain valley. Data screening according to MOST conditions and instrumental errors
leads to a large reduction of the available cases at night, specially for the sensible heat flux,
yielding night-time results that mostly correspond to weakly stratified conditions. A reduced
averaging period of few minutes would be more appropriate in a dedicated night-time study
due to the usual lack of stationarity for longer time scales, probably increasing also the
number of available cases that would pass the quality flag of measured fluxes (see Sect. 2.3).

The estimated momentum fluxes compare well with the EC measurements, especially in
the daytime. Night-time comparisons are satisfactory except for weak winds or for strong
winds forced by the topography. A key parameter is the aerodynamic roughness length,
determinedmonthly for the site’s evolving surface characteristics. Similar results are obtained
regardless of the stability parameter used in the stability function (i.e. either the Obukhov
length or Richardson number) and of the use of either LST at z0T or a second level of air
temperature close to the surface.

Similarly the estimates of the sensible heat flux are good in relatively dry soil conditions
in the daytime, with little sensitivity to the method used in the computation of the stability
function. A well defined linear relation between the observed flux and the temperature gra-
dient between 2 and 0.36 m a.g.l. is obtained, and also reproduced for LST although with
more scatter due to its larger uncertainty. Therefore, the use of two levels of air temperature
is recommended since it also skips the prescription of a thermal roughness length.

At night the estimates for the weakly stable regime are acceptable, independently of the
soil moisture content, showing the largest dispersion for weak winds and strong stratification.

The sensible heat flux in the daytime with moist soil and large solar irradiation deserves
separated conclusions, as the estimates depart significantly from the measurements. This
regime, dominated by large latent heat fluxes, seems to allow vertical temperature gradients
larger than those found when the turbulent sensible heat flux exchange is the dominating
process.

The results found for this particular site support the use of standard similarity functions
over a locally flat surface in moderately inhomogeneous complex terrain for measurements
sufficiently close to the ground, sharing similar limitations as in flat and nearly homogeneous
surfaces. In contrast, for very complex terrain or over slopes, recent studies have found that
MOST fails as fluxes are not constant with height. The large departure of the estimated
sensible heat flux for moist soils and large solar irradiation will be further inspected with
other databases, together with the assessment of the estimated latent heat flux. Finally, the
current study has not considered an important number of nocturnal cases with weak winds
where turbulence is not the dominant factor. This subset of data will be the subject of a further
work.
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