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Abstract
A total of 15 fog events from two field campaigns are investigated: the High Energy Laser
in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Pre-
diction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in
both projects to sample fog droplet-size spectra, wind, turbulence, and thermodynamic prop-
erties near the surface. Concurrent measurements of visibility were made by the present
weather detector in both experiments, with the addition of a two-ended transmissometer in
the HELFOG campaign. The analyses focused first on contrasting the observed fog micro-
physics and the associated thermodynamics from fog events in the two locations. The optical
attenuation by fog was investigated using three methods: (1) derived from Mie theory using
the measured droplet-size distribution, (2) parametrized as a function of fog liquid water
content, and (3) parametrized in terms of total fog droplet number concentration. The consis-
tency of thesemethodswas investigated. TheHELFOGdata result in an empirical relationship
between the meteorological range and liquid water content. Validation of such relationship
is problematic using the C-FOG data due to the presence of rain and other factors. The
parametrization with droplet number concentration only does not provide a robust visibility
calculation since it cannot represent the effects of droplet size on visibility. Finally, a prelim-
inary analysis of the mixed fog/rain case is presented to illustrate the nature of the problem
to promote future research.
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1 Introduction

Both fog and mist are water droplets suspended in the near-surface air that result in reduced
visibility. The Glossary of Meteorology (AMS 2020) defines fog as when visibility is less
than 1 km, while visibility in mist is greater than 1 km. An upper limit of visibility to define
mist or light fog was set at 5 km (Meyer et al. 1980), above which the reduction of visibility
is attributed to haze with dry or activated aerosols. The commonly-used variables to describe
the physical characteristics of fog/mist include the droplet size spectra, total droplet number
concentration, liquid water content (LWC), and characteristics of droplet size parameters
such as effective or mean droplet diameters. The thickness of the fog layer is also used as
one of the macroscopic properties of the hygrometer layer. In this work, the term ‘fog’ is
sometimes used loosely when we refer to the attenuation media. The focus on the range of
visibility is between 0 and 5 km.

Themost prominent impact of fog on human activities is visibility degradation, a common
problem that poses safety and efficiency issues to all transportation systems. Other systems
relying on visible and infrared transmissions, such as those related to defense or commu-
nication systems, also experience performance degradation caused by fog attenuations. For
example, free-space optical (FSO) communication systems are leveraging bands in shorter
wavelengths of the electromagnetic wave spectrum, which are outside of ever-increasing
congestion in the radio and microwave frequencies (Bouchet et al. 2006, Arnon et al. 2012).
The FSO link is affected by the various weather conditions, such as fog, rain, dust, snow,
etc., with fog having a particularly consequential impact because it can attenuate signals up
to 480 dB km−1 (Demers et al. 2011). This high attenuation reduces the link availability
and causes link outage. The attenuation of visible signals through fog is also a major con-
cern for high-energy-laser (HEL) weapon systems with direct intensive narrow light beams
propagating through the atmosphere. Despite apparent advantages, effects of propagation
impairments, such as fog attenuation, can adversely affect the HEL weapon performance.
As both FSO and HEL systems gain broader use, accurate forecasts of fog events and their
impact on optical systems have become crucial.

In aviation applications, visibility, represented by themeteorological optical range (MOR),
is used to represent the intensity of fog (Gultepe et al. 2009). Visibility is directly related to
the atmospheric extinction coefficient through the Koschmieder equation

m = c

σe
, (1)

where m represents MOR, c = ln
( 1
0.05

) = 2.996 and extinction coefficient, σe, is in units
of km−1. Visibility hence can be used to represent the atmospheric attenuation of optical
signals in general and is not limited to aviation use.

Visibility is derived diagnostically from numerical weather prediction (NWP) model out-
put variables such as the LWC or droplet number concentration (Nd , if available) based on
an empirically determined visibility-fog property relationship. The accuracy of the derived
visibility depends on two factors: (1) the accuracy of the model forecast variables (LWC,
Nd , or both) as input to MOR calculations, and (2) the adequacy of the visibility algorithms
depicting visibility as a function of model predicted fog properties such as the LWC and/or
Nd . Both factors are equally important for producing accurate depictions of the impact of
fog on optical signal propagation. For the latter, the relationship between MOR and the fog
properties needs to be tested, which requires simultaneous measurement of attenuation and
fog microphysics. The visibility-fog relationship is also important to improve the numerical
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prediction of LWC by assimilating visibility data into forecast models (Clark et al. 2008;
Kim et al. 2020).

There is a long history of research relating visibility to fog properties. Since LWC is
the most common output variable from NWP models to represent warm clouds and fog, it
is used most frequently to calculate visibility (e.g., Kunkel 1984, hereafter K84, Gultepe
et al. 2006, hereafter G06). K84 analyzed 11 advective fog cases totaling 90 h of data,
which led to the K84 relationship. However, later studies by G06 found the K84 relationship
insufficient for NWPmodels using aircraft measurements from 16 flights in low-level clouds
with various mass origins. Meyer et al. (1980) identified functional relationships between
visibility and the droplet number concentration. Their approach was tested by G06 based on
aircraft measurements in low-level clouds where large variability in the cloud droplet number
concentration at a given LWCwas identified. They further suggested that the droplet number
concentration should be included in addition to LWC to form a ‘fog index’ (the product of
LWC and Nd ), which is a more appropriate parameter to obtain better accuracy in visibility
parametrization. Later studies by Gultepe and collaborators further evaluated the visibility-
fog index relationship for various case studies (Gultepe and Milbrandt 2007; Gultepe et al.
2009, 2020).

Although the various visibility-fog microphysics relationships fit the original data with
good statistics, there is a lack of ‘universal’ formulation as the coefficients differ from case to
case (see Table 4 Gultepe et al. 2021). Such inconsistency may result from multiple reasons.
Kunkel (1984) pointed out the differences in the lower and upper limit of the different droplet
spectrometers that generated the visibility data for the curve fit, resulting in uncertainties in
the estimated LWC and Nd . Similar uncertainties may exist in later research efforts when the
fog properties were obtained from different sensors. Inconsistency in the visibility measure-
ments is also a possibility. Most importantly, due to the extremely large spatial and temporal
variability in fog, the number of cases used to generate the empirical relationship is likely a
key factor.

In this paper, we intend to understand the impact of fog on visibility by examining the
visibility-fog relationship from 15 cases of observed fog events from two field campaigns
in distinctively different locations. The key instruments and the experiment set-up in both
field campaigns were nearly identical so that there were no systematic differences in the
measurements. In Sect. 2, the measurements from the two field campaigns are introduced.
The methodology used to obtain key fog parameters and visibility is described in Sect. 3
followed by results in Sect. 4. The results include the thermodynamic and microphysical
characteristics of the observed fog from the two locations, a comparison of visibility data
between point and path-integrated sensors aswell as those derived fromMie scattering theory,
and an evaluation of the several visibility parametrizations used in current NWP models or
proposed by previous work. In Sect. 5, we present initial analyses on precipitation in reducing
visibility. Summary and discussions are given in Sect. 6.

2 Observations

The field campaigns that obtained the data used in this work are briefly discussed in this
section. Since the two campaigns used the same instrument and set-up, they are described in
the same section with differences noted wherever applicable.
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Fig. 1 a The HELFOG sites at the Monterey Bay and b The Downs supersite at Ferryland during C-FOG. The
red arrows denote the two-ended transmission paths by a transmissometer and a scintillometer in HELFOG
and by a scintillometer only in C-FOG. The inset in red and orange frames show the details of the land use
over sites 1 and 2 in HELFOG

2.1 Field Campaigns for Data Collections

Measurements from two field campaigns are used in this study: the High Energy Laser
propagation in Fog (HELFOG) and the Toward Improving Coastal Fog Prediction (C-FOG)
projects. TheHELFOGproject conducted an observational study in two collection sites in the
centralMontereyBay area (Fig. 1). Site 1, located at the Salinas RiverWildlife Refuge (Fig. 1,
red dot), about 1.3 km east of the coastline, was used during 13–15 July 2018. Collection site
2 (Fig. 1 orange dot), located at Marina Municipal Airport, about 5 km from the shore, was
used during 15–24 July 2018. Both sites afforded approximately 600 m of a usable path with
site 1 (Fig. 1a) located along a dirt road in a lettuce field and site 2 (Fig. 1b) located over the
airport taxiway and ramp. These site locations and periods of the experiment warranted the
best chance of collecting data in fog while site 2 presented a secure site for 24-h operations.
Daniels (2019) gave detailed descriptions of the two sites. His analyses found few systematic
differences between the observed microphysics of fog events from the two nearby locations
of HELFOG. Hence, we do not separate the data by specific sites from HELFOG here.

A C-FOG overall summary is given in Fernando et al. (2021); its microphysical obser-
vations are described in Gultepe et al. (2021). The project was conducted near the coasts of
Avalon Peninsula, Newfoundland, and Nova Scotia, Canada as part of a multidisciplinary
team effort to explore coastal fog over land and at sea during August–October 2018. In
this work, the measurements from the C-FOG supersite at The Downs of Ferryland, New-
foundland were used. The thin peninsula protruding into the Atlantic hosted a large suite
of meteorological sensors to characterize the dynamics, thermodynamics, and microphysics
of fog with auxiliary measurements from the nearby C-FOG sites. For details of the overall
C-FOG set-up and microphysics measurements and main results, the readers are referred to
Fernando et al. (2021) and Gultepe et al. (2021).

2.2 Instrumentation

The key instrument for fog droplet-size distribution is a forward-scattering droplet-size spec-
trometer, the Cloud Droplet Probe 2 (CDP-2, DropletMeasurement Inc., Boulder, Colorado).
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Modified CDP-2 

(inside)

Modified CDP-2 

(a)

(f)

(e)

(d)

(c)

(b)

Flow meter

Fig. 2 Relevant instruments used in HELFOG and C-FOGmeasurements. a Transmitter for BLS900 (left) and
beacon for the wide angle teteradiometric transmissometer (WATT, right) in HELFOG, b BLS900 transmitter
at The Downs supersite in C-FOG, c the modified CDP-2 inside the cowling, d the tripod mast set-up in
C-FOG for meteorological measurements, e the BLS900 (left) and WATT (right) receivers in HELFOG and
f the modified CDP-2 deployed on top of a trailer hosting the Naval Postgraduate School (NPS) Aerosol
Sampling Unit (NASU) at The Downs supersite in C-FOG

The CDP-2 utilizes a 658 nm laser to illuminate droplets and the intensity of forward-scatter
is measured to quantify the droplet or particle size. The 30 user-defined diameter size bins
range from 2 to 50 µm and the CDP-2 outputs a size distribution spectrum at 1 Hz. In both
projects, the modified CDP-2 was set on top of a trailer (Fig. 2f) with the sensing volume at
about 4 m above ground.

The CDP-2, originally designed for research aircraft deployment, was modified for land-
based static use. The sensor was housed in a cowling with one open end and a fan on the
opposing side to provide forced aspiration through the CDP-2 sampling volume. A mechan-
ical ‘flip-flop’ flowmeter that measures the airspeed is housed within the cowling and below
the sampling volume, shown in Fig. 2c. As air flows through, the flip-flop swings back and
forth caused by the restoring force of the fin. A small arm extends between a light-emitting
diode and photodiode path, which blocks and unblocks the light, exciting a periodic square
wave signal on the output of the photodiode as air flows through the cowling. The flip-
flop anemometer can be modelled as a second-order system; hence, the square wave signal
frequency is directly proportional to the flow speed. The flip-flop flowmeter frequency was
calibrated against a hot wire anemometer before deployment. The CDP-2 and flip-flop photo-
diode signals are synchronouslymeasuredwith a data acquisition system (CR3000, Campbell
Scientific Inc., Logan, Utah). Combining the raw droplet number size spectra, flow speed,
and known sampling volume yields the droplet size spectra. Figure 3 shows the variation
of the flow speed measured by the flow meter at the sampling volume during HELFOG.
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Fig. 3 The flow speed measured
close to the sampling volume of
the modified CDP-2. The data
shown are 10-min averages

Although we oriented the cowling with the predominant wind direction, the flow speed still
varied considerably. Since the CDP-2 is the key instrument that quantified the fog droplets,
the addition of the flow speed measurements ensures the quality of the measured droplet
spectra.

In HELFOG, optical transmission is quantified using two methods: a direct extinction
measurement from a two-terminal transmissometer, the Wide Angle Teteradiometric Trans-
missometer (WATT, custom-built, Naval Air Warfare Center Weapons Division, China Lake,
U.S.), and a Vaisala Present Weather and Visibility Sensor (PWD10, Helsinki, Finland). In
C-FOG, only the Vaisala Present Weather and Visibility Sensor (PWD22, Helsinki, Finland)
was used. The PWD sensors use a light source at 875 nm and obtain the scattering coefficients
of the droplets by detecting light scattered at an angle of 45o. This angle is considered to pro-
duce a stable response in various types of fog droplets (Vasaila, PWDmanual) in a sampling
volume of about 0.1 L (100 cm3). The PWD sensors output visibility at 1- and 10-min inter-
vals. The WATT instrument is used to measure optical transmission along the path between
the transmitter and the receiver. It is composed of a power-stabilized near-infrared 1.064 µm
laser beacon and custom-designed optical telescope with a rear-mounted charged-coupled
device (CCD) sensor. Using image-processing methods, the WATT instrument measures the
attenuated signal of the beacon transmitter by calculating the path-averaged extinction, which
should include attenuation through scattering and absorption bymolecules, droplets, and par-
ticulates along the path. For fog/mist conditions, the main attenuation for the wavelength at
1.064 µm are the results of droplet scattering in the Mie scattering regime. In HELFOG, the
WATT transmitter and receiver were separated by about 600 m. The measurements ended
on 21 July 2018 while the rest of the measurements continued until 25 July 2018. It is noted
that the two sensors measure atmospheric extinction differently. The PWD is considered a
point measurement while the WATT instrument provides a path-integrated measurement. In
the case of spatial inhomogeneity, the difference in the volumes of the sampled air may be a
direct cause of some inconsistency in the results. To develop the parametrization, a volume
average in the model grid is ideal but not realistically feasible for any existing sampling
approaches. Consequently, significant representation errors must be considered for visibility
observations used for model evaluation.
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The tripod mast (Fig. 2d) utilized a three-dimensional ultrasonic wind anemometer and
infrared gas analyzer combination sensor (IRGASON, Campbell Scientific, Logan, Utah).
The IRGASON measured water vapour density and CO2 concentration, three-dimensional
wind velocity, and temperature derived from the speed of sound within the same sampling
volume and sampled synchronously at 50 Hz. Slower response sensors were deployed along
the mast to measure the bulk air temperature, relative humidity, barometric pressure, ground
temperature, net irradiance, and wind speed and direction, which are used to support the
analyses on fog evolution and microphysics. Rawinsonde launches were also made during
both HELFOG and C-FOG using Vaisala RS41 sondes (Radiosonde RS4, Vaisala, Helsinki,
Finland) to measure vertical variations of temperature, humidity, pressure, wind speed, and
wind direction.

3 Method of Study

3.1 CloudMicrophysical Relationship

The key microphysical variables used in visibility parametrization are LWC (ql) and total
droplet number concentration (Nd). The droplet sizes can be represented using several vari-
ables, namely, the mean droplet radius (Rm), the effective droplet radius (Re), and the mean
volume radius (MVR, Rv). The raw measured droplet number count in each size bin was
converted to a droplet size spectrum, n(r) in the units of cm−3 µm−1 in each bin by dividing
the volume of the flow based on the measured flow speed, the CDP-2 sampling area, and the
bin width. Here, r is the radius of a fog droplet. All microphysical variables can be obtained
from the CDP-2 droplet spectra, originally sampled at 1 Hz, through Eq. 2

Nd =
∫

n(r)dr , ql =
∫

4

3
πρwn(r)r3dr

Rm =
∫
n(r)rdr

∫
n(r)dr

, Re =
∫
n(r)r3dr

∫
n(r)r2dr

, Rv =
(∫

n(r)r3dr
∫
n(r)dr

)1/3

(2)

The effective radius, defined as a ratio of the third moment to the second moment of the size
spectra, is considered the best single parameter describing the scattered light (Hansen and
Travis 1974) and has been examined extensively to study the effects of cloud droplets on
cloud albedo known as the indirect effects of aerosols through cloud processes (e.g., Reid
et al. 1999; Peng et al. 2002). This area-weight droplet size is hence themost relevant variable
associated with the radiative properties of the droplets. On the other hand, the MVR (Rv) is
directly related to LWC and Nd by

ql =
∫

4

3
πρwn(r)r3dr = 4

3
πρwR3

v

∫
n(r)dr = 4

3
πρwR3

vNd . (3)

Equation 3 suggests that there are only two independent variables amongLWC, the number
of droplets and the droplet size. This is an important point to keep in mind when deriving
visibility parametrizations.

3.2 Optical Attenuation

Radiative energy propagating through the atmosphere is affected by absorption and scattering
by air molecules and suspended particles, such as aerosol and fog. Based on Beer–Lambert’s
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law, the received irradiance (ER) at a distance L from the light source (transmitter) is related
to the transmitted irradiance (ET ) at the source by Eq. 4

τ(λ, L) = ER

ET
= exp(−σe(λ)L), (4)

where σe is the extinction coefficient (m−1) as in Eq. 1, and τ(λ, L) is the transmittance of
the atmosphere at wavelength λ for the given propagation path length L. The total extinction
coefficient is the sum of the absorption (σa) and the scattering (σs) coefficients (σe =
σs+σa). These coefficients are functions of themolecular constituents, physical and chemical
properties of suspended hydrometers/aerosols, and the wavelength of incident irradiance. In
the case of fog, the extinction is dominated by scattering by fog droplets and is insensitive
to the incident wavelength up to approximately1.55 µm (Isaac et al. 2001).

Optical attenuation was obtained from three independent methods using different mea-
surements: theWATT instrument, the PWDsensors, and calculated from theMie theory based
on measured fog droplet spectra. For the first method, the WATT transmissometer-measured
transmittance was used to derive transmittance based on the definition in Eq. 4. The result is
the extinction coefficient along the given path length. It is hence a path-averaged scattering
coefficient assuming negligible absorption (Isaac et al. 2001). The MOR from the WATT
measurements is further obtained from Eq. 1.

In the secondmethod, optical attenuationwas obtained through the visibilitymeasurement
by the PWD-10 (HELFOG) or the PWD-22 (C-FOG). The PWD sensors directly measure
the scattering coefficient from a sampling volume of 0.1 L (100 cm3), and hence are essen-
tially point measurements. The same assumptions of dominant water droplet scattering and
negligible absorption allow the calculation ofMOR directly from Eq. 1. Note that the built-in
conversion of the PWD sensors is the Koschmieder relationship in Eq. 1, although using a
slightly different c value of 3. This subtle difference in the choice of c is ignored in the
analyses. The MOR is used consistently here to represent optical attenuation.

The third method for calculating optical attenuation is to use the full Mie theory applied
to a medium with distributions of scatterers (Petty 2004), in which the scattering coefficient
is given by

σs =
r2∫

r1

πr2Qsct

(
mr ,

r

λ

)
n(r)dr , (5)

where mr is the real part of the refractive index, and Qsct is the scattering efficiency. The
water droplet refractive indexwas calculated at 20 °C and a density of 1000 kgm−3 following
the formulation in IAPWS (1997) and programmed by Schaarsberg (2021). The droplet size
spectrum n(r) was obtained from the CDP-2 droplet spectra measurements. The limits of
the integration (r1 and r2) cover the full range of the CDP-2 spectrometer measurements
(2 to 50 µm in diameter). The calculation of of the scattering coefficient σs uses the Mie
code developed by Matzler (2002) based on the formulation in Bohren and Huffman (1983).
Again, assuming dominant scattering by fog droplets, the coefficient σs is used in Eq. 1 in
place of σe to obtain MOR.

3.3 Data Processing

Extensive data quality control was made throughout and data consistency checks. Some
spurious data points such as an extremely large number of droplets at a single time instance
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were removed in this step. To remove the noise floor in the data, all statistics of fog shown
in Eq. 2 were calculated by removing data points with Nd < 1 cm−3 or ql < 0.001 gm−3

to stay within the reasonable range for fog following Gultepe et al. (2006). However, the
LWC used to derive the fog-visibility relationship included the full measurements. Because
of the strong spatial and temporal variability in fog and the associated visibility and the
large range of variation of droplet number, different averaging approaches may produce
significantly different results. Since the PWD provides 1-min data, when deriving the fog-
visibility relationship, 1-min averaging was applied to obtain the fog microphysics variables.
The fog spectra were averaged over the entire fog period. In some of the figures, the data
were decimated for presentation purposes to avoid too many data points clustering in the
figure. The statistical results, however, were calculated using the full range of the respective
data.

4 Results

The results are displayed here in two subsections: (1) a comparison of fog microphysics and
thermodynamic properties from two geographic locations; (2) the relationship between fog
microphysics properties and visibility. Preliminary results in rain/fog are presented in Sect. 5.

4.1 FogMicrophysics and Environmental Conditions

A total of eight fog events in HELFOG and seven in C-FOG were identified and their mean
properties are summarized in Table 1. The start and end of each fog event were nominally
determined based on the presence of detectable droplets in the CDP-2 measurements of Nd .
The HELFOG events lasted between 3.2 and 17.3 h, while the C-FOG events range from 5.6
to 31.3 h in duration. The data analyzed in this study contains 89/96 h of measurements in
fog and/or mist during HELFOG/C-FOG projects. Figure 4a shows the temporal variation
of LWC (ql ), total number concentration (Nd ), and the effective radius (Re). All fog events
are denoted at the top panel of Fig. 4 preceded with letters H and C denoting HELFOG
and C-FOG events, respectively. For presentation purposes, all microphysical quantities in
Fig. 4 were 5-min averaged to reduce the noise while retaining the correct magnitude for
each variable. The statistical fog properties for each event are shown in the columns of Table
1 where the fog events are restricted to those data points with Nd >1 cm-3 and ql > 0.001 g
m-3.

Some distinct differences in fog characteristics in the two geographic locations are seen
in Fig. 4 and Table 1. Figure 4 shows that the LWC of the fog events from both locations
is low and comparable in magnitude. The fog events observed from the same location can
vary substantially especially in C-FOG where the vertical axis for Nd needs to be plotted in
logarithmic scale. Fog properties from the two locations are significantly different in droplet
number concentration. The HELFOG cases show the mean droplet number concentration
to be less than 10 cm−3 (except for the event H8) in general (Table 1), whereas in C-FOG,
all identified fog events had a significantly larger number in the range of O(10) cm−3. The
effective radius in HELFOG, on the other hand, is much larger than those in C-FOG.

The HELFOG fog events were consistently observed in weak westerly or south-westerly
onshore flow, denoting their marine origin. Most of the fog events started in the late evening
or later (H1, 3, and 6–8, local time= UTC –7 h) and the remaining initiated in the afternoon
(H2, 4, and 5). All HELFOG fog events dissipated in the morning, with the latest (H1) at
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Fig. 4 An overview of the observed fog properties. All variables shown were derived from the CDP-2 mea-
surements averaged over a moving window of one minute. a HELFOG, and b C-FOG. Plotted is the LWC
(ql , g m

−3), droplet number concentration (Nd , cm
−3), and effective radius (Re , µm). The names for all fog

events are shown at the top panels. Some non-fog periods were removed from (b) to allow sufficient space for
the fog events on the time axis

around 1100 LT. The last event, H8, has the highest LWC and Nd and is a stark deviation
from the other events. The wind direction and droplet size show this event may not be of
marine origin, which is usually advection fog with larger droplets (Muhammad et al. 2007;
Duthon et al. 2019). The C-FOG events do not show any correlation with a diurnal variation
or associated specific wind direction. Aside from the variability in LWC, the C-FOG events
show drastic variations in the mean droplet number concentration ranging between 8.3 and
63.2 cm−3 (Table 1).Despite the diversity in droplet number concentration, themean effective
radius of the droplets is consistently small at around 4.5–7.5 µm compared to the HELFOG
droplets at 9.1–12.4. Overall, the variation of droplet size in each location is relatively small
while there are large differences between HELFOG and C-FOG. The fog water at the same
location is hence loosely determined by the droplet number concentration.

Mean droplet size spectra from all the fog events in Table 1 are shown in Fig. 5. Each
spectrum in Fig. 5 is obtained by averaging each bin over the identified fog period. The
HELFOG spectra show a bimodal distribution in six of the eight events with two local peaks
at about 4-µm and 10-µm diameter, respectively. Overall, the 10 µm peak dominates the
spectra. The H8 event was the dense fog event fromHELFOGwith a significantly large value
of Nd . It shows a single peak around 10 µm and large number of droplets between 6 and
28 µm. The H7 event was the other event that did not follow the bi-modal distribution, but
with a single peak at 4 µm, consistent with the other HELFOG events. Notably, this was also
the most short-lived fog event in all observed cases. The C-FOG spectra are just as diverse as
their number concentration. In general, for most of the events, small size droplets dominate
the spectra, except for the C1 and C3 events. Interestingly, these are the two events without
observed drizzle/rain, which were often found in the C-FOG fog events. The C5 and C6
events were under the influences of persistent rainfall (Sect. 5, Figs. 13 and 15). These two
events had the highest number concentration in the small size range (Fig. 5b). However, the
size distribution does not indicatemeasurable enhanced droplet concentration beyond 25µm,
likely because of the low sensor height above the ground (about 4 m). It is also possible that
the rain/drizzle was from the saturated layer (cloud) above the fog layer, which was often
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Fig. 5 Mean droplet size distribution measured by the modified CDP-2 probe from (a) HELFOG and (b) C-
FOG. The legends correspond to the fog events in Table 1. Each spectrum was obtained by averaging over the
entire period for each event given in Table 1

Fig. 6 Temporal variation of a LWC (g m−3), b droplet number concentration (# cm−3), c effective radius
(µm); and d visibility (km) from the C3 event in C-FOG between 2338 Sept 13 and 0542 Sept 14, 2018, from
The Downs, Ferryland, Newfoundland. The red dash line in (d) denotes visibility at 1 km. The two green
double-arrow lines denote a fog period when visibility is less than 1 km

present in C-FOG. Note Fig. 5 shows the size distribution as a function of droplet diameter.
All droplet sizes discussed from this figure refer to diameter in µm.

A time-series view of a single fog event from C-FOG is shown in Fig. 6 to illustrate the
temporal variability of the microphysical properties of fog and visibility. Table 1 shows that
the C3 event was a dense fog event compared to the others in C-FOG, with a mean LWC close
to 0.04 g m−3. The mean droplet number concentration from the C3 event also tops all other
fog events with peak values exceeding 100 cm−3, a significant contrast to the advection fog
observed in HELFOG. Figure 6 shows that the C3 event is composed of two fog patches with
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Fig. 7 Temporal C-FOG C3 event shown in Fig. 6. a Temperature (T , °C) and relative humidity (RH, %),
b downward infrared radiation (LWd, W m−2), c wind speed (WS, m s−1), and d the vertical velocity
component (w, m s−1). The green double arrows denote periods of fog when visibility was lower than 1 km

a short break in between. The two patches are different in their droplet size, about 5 µm of
the effective radius during 0130 to 0240 UTC (first patch), and about 7µmbetween 0300 and
0450 UTC (the second patch). The mean over the entire fog patch is about 6.4 µm (Table 1).
It is interesting to note that the non-fog periods before and after each fog patch have a large
droplet effective radius at about 11µm, indicating the presence of mainly large droplets. The
processes leading to the non-existence of the small droplets are worth exploring in future
research with more data samples. Figure 6 also shows strong temporal variation within each
fog patch. The short-lived sub-patches can be identified in both LWC and Nd plots, each
lasting between 10 and 25 min.

The mean meteorological and turbulence conditions during the same fog event are shown
in Fig. 7. As expected, the relative humidity is very close to 100% around the fog period and
decreases slightly before and after, while there was no discernible variability of temperature
associated with the event (Fig. 7a). The downward longwave radiation (Fig. 7b) was nearly
constant except during the short break between the two fog patches with a slight decrease
and variable downward longwave radiative flux. Both wind speed and the vertical velocity
component (Fig. 7c, d) show reduced variability during the fog event, signalling reduced
turbulence as suggested by many previous studies (e.g., Gultepe et al. 2021).

The temporal evolution of the vertical variation of temperature, humidity, and winds dur-
ing the fog events can be seen from the time-height plots in Fig. 8 using data from multiple
soundings. The thermodynamics of the low-level atmosphere have distinctive characteristics
during the two field campaigns in different geographic locations. The HELFOG period cov-
ering the events H2 and H3 and C4 in C-FOG were selected because of the availability of
multiple soundings. They also represent the typical vertical variations seen in each respective
project.

Figure 8 shows that the fog layer observed in HELFOG is quite uniform with a top at
about 400 m persistently within each event. The layer is capped by a strong temperature
inversion and a moisture lapse, and both the events H2 and H3 were in a relatively low wind
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Fig. 8 Time-height plots of potential temperature, relative humidity, and wind speed from radiosonde measure-
ments. The top panels are results from HELFOG covering H2 and H3 periods. The bottom panels are from
the period C4 of C-FOG. The red downward triangles denote the fog layer top, the green downward and the
blue upward triangles denote the cloud top and bottom, respectively, above the fog layer, all identified from
the soundings by comparison of temperature and dewpoint temperature. The time of soundings used in the
plots is shown as the short vertical magenta dash lines at the top of each subplot (14 soundings from HELFOG
and six from C-FOG). The turquoise line on the potential temperature plot from C-FOG denotes the measured
rainfall rate (R) from PWD-22 shown in centimeter per day (left axis). Fog/mist microphysical properties from
the CDP-2, namely LWC (ql ), droplet number concentration (Nd ), and effective radius (Re) are shown on
the right axes (brown lines on each plot). All microphysical data shown were 10-min averaged to smooth out
the short period variability solely for clarity purposes

speed of 2–4 m s−1. On the microscale, we still observed strong temporal variation of fog
LWC and Nd , while the effective radius varied between 7 and 15 µm. Similar measurements
from Newfoundland show strong temporal variability in the layers above. Event C4 shown
in Fig. 8 was preceded by two rain events, each lasting for about an hour. The rain was no
longer detectable when fog LWC and number concentration started to ramp up after 1430
UTC. The event C4 fog was always topped by a cloud layer. During the fog development
stage, the cloud layer and the fog layer could not be distinguished from relative humidity
alone as the entire layer was saturated. However, the temperature, wind speed, and direction
(not shown) indicated the presence of two layers, which is evident in Fig. 9b (right panels)
as an example. Figure 9b shows a shallow layer that is relatively well-mixed in potential
temperature with the weak northerly wind at about 5 m s−1. This is the layer identified as
the fog layer. The cloud layer aloft is stably stratified with respect to potential temperature
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Fig. 9 Examples of the vertical profiles of wind and thermodynamic variables in (left) HELFOG (0755 UTC
17 July 2018), and (right) C-FOG (1935 UTC, 16 Sept 2018). The multi-layered vertical structure is shown
in the C-FOG sounding in all variables

and with significant wind shear. Although this cloud layer is also capped by an inversion,
the inversion and moisture lapse strength are significantly weaker than the HELFOG case
(Fig. 9a, left panels). The layering is vaguely present in the colour contours in Fig. 8. The fog
layer top seemed to follow the 287 K potential temperature contour, while the cloud layer
was slightly warmer. The clear region between the fog and the cloud layer aloft is very close
to saturation if it existed. The C-FOG case also indicates that the fog layer dissipated quickly
when the dry air mass (about 60% relative humidity) approached the area. The cloud base
also lowered substantially resulting in a low ceiling at approximately 190m above the surface
towards the end of the fog event. It is also interesting to note that the C-FOG sounding on
26 September 2018 also shows two more layers above the cloud layer: each has correlated
signals in potential temperature, relative humidity, and wind speed. This observation reveals
the complexity of low-level airmass origin in this region, which may be one of the reasons for
the large variation in fog microphysics observed in C-FOG. The evolution of the fog layers
is likely tightly associated with mesoscale forcing and the associated horizontal advection.

4.2 Optical Attenuation and FogMicrophysics

Figure 6 shows an example of the variability of visibility with fog microphysical properties
such as the LWC, number concentration, and effective radius. In this section, measurements
from all 14 fog events are used to statistically evaluate the dependence of visibility on fog
properties.

4.2.1 Visibility from Point and Path-integrated Measurements andMie Theory

As discussed in Sect. 3.2, optical attenuation was obtained from three methods using dif-
ferent sampling principles. They each result in different variables to describe attenuation:
transmittance (WATT) or scattering coefficients (PWD sensors, and Mie calculation based
on measured droplet spectra). For comparison, results from all three methods are reduced to
MOR based on Eq. 1 and shown in Fig. 10a using the HELFOG data. Note that the Vaisala
PWD-10 has an upper limit of 2 km in its visibility measurements. The period with light
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Fig. 10 Variation of visibility (MOR) with LWC (ql ) from a HELFOG, and b C-FOG fog events. Results from
the C6 event are shown in the inset. The blue dots are from the PWD sensors, red from WATT (HELFOG
only) and all green dots are results from the Mie calculation. Data shown here are 1-min averages

fog/mist where visibility is larger than 2 km was made by WATT transmittance measure-
ments. The WATT transmissometer was not available after 21 July 2018 during HELFOG;
luckily, the fog events in the remaining days resulted in low visibility within the PWD-10
sampling range. The transmission data from HELFOG are hence a combination of the two
sensors.

Visibility is significantly affected by the scattering phase function of the
air/particle/hydrometeor distribution and is thus directionally dependent (Petty 2004,
Sect. 11.5.2). Both PWD-10 and PWD-22 measure light from forward scattering particles,
which means the shape of the scattering phase function affects the measurements. TheWATT
transmissometer is affected by multiple scattering which also can be directionally dependent.
This directional dependence in the intensity of light, even in conditions that seem isotropic to
the human, could be the cause of some of the differences seen in the different types of MOR
quantifications. Nevertheless, Fig. 10a shows that the MOR derived from the WATT and the
PWD-10 were consistent when they overlap although their principle of measurements are
different and they operate at different frequencies (875 nm for PWD-10 and 1064 nm for
WATT). This result supports the notion that fog scattering is insensitive to wavelength (Isaac
et al. 2001) in the visible/near-infrared wavelength range and the effects of multiple scatter-
ing are likely small or about equivalent in both sensors. We further compared the scattering
coefficients using the Mie scattering calculation at the two wavelengths and found negligible
differences. The combination of the WATT and PWD-10 measurements hence make up the
‘observed’ MOR for HELFOGwithout the need to differentiate the source of measurements.

The MOR–LWC plots in Fig. 10 show significant scattering, but a general trend of MOR
decreasing with LWC is evident in data from both HELFOG and C-FOG. In HELFOG, a
well-defined relationship between LWC and MOR is clearly seen, particularly in fog and
mist conditions when MOR is less than 2 km. Substantial scattering is seen in high visibility
conditions. These results are consistent with the dominant effects of liquid hygrometers in
the ‘fog’ condition as defined by MOR < 1 km and the increasing role of aerosol attenuation
as fog LWC decreases. The aerosol attenuation thus is one of the sources of the apparent
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scatters in the measured data points. An increased level of variability in the corresponding
data from C-FOG is observed for six of the seven events: the correlation between MOR and
LWC is weak in all visibility conditions although one still sees the general trend of increasing
visibility with decreasing LWC. An added cause for the scatter of data points in C-FOG is
precipitation, which tends to result in enhanced visibility attenuation. The inset in Fig. 10b
depicts the case of C6 where the strongest impact of rain was found. The low visibility in
this case seems to be independent of fog LWC. This case is further examined in Sect. 5.

Figure 10 also shows the comparison of the MOR from the two optical sensors with those
calculated by the Mie theory based on the measured 1-min averaged droplet spectra. The
Mie results follow the general trend of the observed MOR well, albeit with clear differences.
In HELFOG, the MOR from the Mie calculation does not show significant variabilities
compared to theC-FOGdata, a consequenceof larger variations in the fogdroplet spectra inC-
FOG. In visibility regimes dominated by fog andmist, nominally whenMOR< 2 km, theMie
calculation represents theWATT/PWD-derivedMORwell inHELFOGalthoughMie tends to
underestimateMORwhenLWCexceeds 0.02gm−3 (Fig. 10a). It is not clearwhethermultiple
scattering (not included in the Mie calculation) can explain this difference as the sampling
volume of the PWD-10 is quite small and most of the HELFOG measurements occurred at
night (weak effects of the ambient light source). Another possibility is the difference in the
scattering phase function at different angles. However, testing this hypothesis is practically
challenging.

In cases of MOR > 2 km, the same magnitude of MOR was observed in a broad range of
LWC, many were lower than what is normally considered to have meaningful liquid water as
fog/mist. Aerosols in haze must have contributed to the reduced visibility in the absence of
precipitation detected in the HELFOG cases. Aerosol scattering/absorption becomes critical
in determining visibility when MOR is greater than 5 km (Meyer et al. 1980). However, the
CDP-2 measurements do not cover the small-sized dry and/or swollen aerosols. Therefore,
scattering by aerosols is not included in the Mie calculation, resulting in Mie depicting the
upper bound of the measured MOR seen in Fig. 10.

Interestingly, the overestimation of visibility by Mie calculation when MOR is above
2 km and the underestimate when MOR is below 2 km are both consistent with a similar
study by Kunkel (1981) where droplet spectra were measured by an aspirated FSSP-100 on a
tower. Hence, the result in Fig. 10 not only provides a better understanding of the MOR from
different measurement sources but also provides confidence in our droplet measurements
using the modified CDP-2.

4.2.2 Optical Attenuation and Liquid Water Content

TheHELFOGdata showagood correlation betweenLWCandvisibility to allow the establish-
ment of an empirical relationship. An exponential least-squares fit was made to the observed
MOR–LWC data shown as the thick turquoise line (W21ql) in Fig. 11. The combined mea-
surements of WATT and PWD-10 from HELFOG are shown as blue dots, and the PWD-20
measurements from C-FOG during the two non-precipitating fog cases (C1 and C3) are
shown in red. The empirical best-fit function for the HELFOG data can be expressed as

m = aqbl (6)

where a = 0.146 and b = −0.63, the MOR m is in km and ql in g m−3. The root-mean-
square error (r.m.s.e.) for the fit is 0.95 km. Note this fitted function is for the MOR range
up to about 7 km, much larger than the MOR range for fog/mist. The r.m.s.e. should be
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Fig. 11 Visibility and LWC
relationship with the HELFOG
(blue dot) and C-FOG (red dot)
data. The thick turquoise line
(W21ql) denotes the fitted
relationship from this study using
the HELFOG data only. K84,
G06, and G21 denote results from
Kunkel (1984), Gultepe et al.
(2006), and Gultepe et al. (2020),
respectively

much smaller if the relationship is obtained for the fog/mist regime. For comparison, the
results derived from K84 and G06 are also shown in Fig. 11. K84 provided an empirical
relationship between the scattering extinction coefficient and LWC based on measurements
in several fog events given as σs = 0.1447q0.88l where σs and ql are in units of km−1 and g
m−3. The resultant values of σs was converted to m through Eq. 1 using c = 3.0. The K84
formulation has been widely used for visibility calculations based on fog LWC forecast (e.g.,
Stoelinga and Warner 1999) in mesoscale model simulations. Our results from HELFOG
seem to depict a steeper increase of visibility with decreasing LWC in the fog/mist regime
compared to the other parametrizations. As a result, K84 andG06 both seem to underestimate
MOR in fog/mist conditions while G06 predicts a similar relationship of MORwith ql above
4 km in MOR. Recent work by Gultepe et al. (2021, hereafter G21) proposed MOR as a
function of the fog index defined as the inverse product of LWC and Nd using the C-FOG
measurements from the ship or at a coastal site close to the Downs at Ferryland. The G21
parametrization is not directly comparable with the parametrization in the discussion here
because only the LWC factor is considered in Eq. 6. However, using our measurements from
C-FOGnon-precipitating fog cases (C1 andC3), we fitted a relationship ofNd as a function of
the observed LWC. Hence, the function in G21 can be empirically converted to aMOR–LWC
relationship shown also in Fig. 11. We can see that the G21 parametrization is very similar to
K84, with both tending to underestimate visibility for a given LWC in the HELFOG cases.
Note both K84 and G21 used measurements from the east coast with similar mean volume
diameter (See Table 3 in K84 and compare to Table 1 for C-FOG here). The data used in G06
were also collected on the east coast, by a research aircraft mostly from low-level clouds.
All three previous results from the east coast show similar parametrizations especially in fog
cases (m < 1 km). Compared to all three parametrizations based on the east coast fog/cloud
data, the west coast HELFOG data and parametrization (W21ql) show a stronger dependence
of MOR on LWC in fog/mist conditions.

Results of visibility variation with LWC from in C-FOG non-precipitating fog events
are also shown in Fig. 11 (red dots). Here the C-FOG data points are very scattered in all
visibility regimes. At LWC greater than 0.02 g cm−3, visibility was significantly reduced
in most cases and appears to be consistent with the observations in HELFOG. However,
there were also some instances with much larger MOR, which is not well-explained. Overall,
the MOR–LWC relationship in C-FOG is not well defined even in cases with no detectable
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precipitation. We thus did not attempt to derive an empirical fit to this dataset. Nevertheless,
all empirical relationships previously derived from the east coast measurements seem to fit
the C-FOG measurements better than W21ql derived from the west coast fog with a larger
droplet diameter. Hence, the MOR–LWC parametrization works well in general, but one
should still explore an improved parametrization that is capable of representing MOR in a
broad range of fog conditions.

4.2.3 Optical Attenuation and Droplet Number Concentration

Another category of visibility parametrization in foggy conditions relates MOR or scattering
extinction (σs) to the fog droplet number concentration (Nd). This is expected given that
LWC and Nd are linearly related with a factor of R3

v (Eq. 3). Based on this relationship,
MOR and Nd should follow the same power relationship as in the MOR–LWC relationship
in Eq. 5 except with R3

v in the coefficient

m = aqbl = a

(
4

3
πR3

vNd

)b

= a

(
4

3
πρwR3

v

)b

Nb
d (7)

Equation 7 indicates that MOR can be represented as a function of Nd only if the values of
Rv stays relatively constant. Indeed, the fog events observed in the same geographic region
have similar droplet sizes, although the regional differences can be quite large, as seen in
Table 1 between HELFOG and C-FOG. As such, one can expect some success using the
MOR–Nd parametrization, but such a relationship is limited to fog cases with similar Rv ,
and prior knowledge of Rv is needed. The related variables that should go into the visibility
parametrization have been extensively discussed in Gultepe et al. (2006, 2009, 2021).

Of course, one can still derive an empirical relationship between MOR and Nd from the
measured data points using a direct empirical power relationship

m = αNβ
d . (8)

With the HELFOG data, α = 5.089 and β = −0.57 with an r.m.s.e. of about 0.9 km when
the input Nd is in cm−3, andm in km. The consistency between this method and that in Eq. 7
is examined next.

Figure 12 shows the measuredMOR–Nd relationship from both HELFOG (blue dots) and
C-FOG (red dots) and the various parametrizations. The direct fitted line (Eq. 8) is shown
as the thick black line. And the ones derived from the MOR–LWC relationship (Eq. 7 and
the turquoise line in Fig. 11) are shown in turquoise lines: solid line for HELFOG and dash
line for C-FOG using their respectiveMVR. In addition, selected formulations from previous
work such as Meyer et al. (1980) and Gultepe et al. (2006) are shown in Fig. 12 as well.

Figure 12 again shows the larger scatter of data points in the C-FOG data compared to
the HELFOG data. In general, the C-FOG fog layers resulted in less attenuation and hence
higher visibility compared to those in HELFOG measurements, although the differences are
less prominent in foggy conditions. The results from different locations do not collapse into
a similar relationship, suggesting a slim chance of identifying a single formulation of the
MOR–Nd relationship that can fit various datasets. This is an expected outcome that can
be explained by Eq. 7, where the coefficients from the power relations are dependent on the
MVR. Note that the meanMVR is 8.9µm inHELFOG averaged over all identified HELFOG
events. In contrast, the value of Rv from the event C1 and C3 averages to about 5.4 µm.

It is also seen in Fig. 12 that the two approaches expressed in Eqs. 7 and 8 provide similar
results (thick turquoise and black lines) for the HELFOG data. Equation 7 applied to the
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Fig. 12 Measured and modelled
relationship between visibility
and droplet number
concentration. The measurements
are shown in blue (HELFOG)
and red (C-FOG) dots. The thick
black line is the direct power
function fit Eq. 8 using the
HELFOG data. The W21ql_Nd
lines follow Eq. 7 using the MVR
from HELFOG (solid turquoise
line) and C-FOG (dotted
turquoise line). See text for
discussions on the other model
parametrizations

C-FOG data using the averaged MVR qualitatively match the data from C-FOG data well,
but there is too much scatter in the observed data to warrant any further quantitative analyses.

Meyer et al. (1980) analyzed measurements from nine cases of haze and fog over a large
grassy area at Albany, New York. The encountered fog days were mostly radiation fog. In
searching for the MOR–Nd relationship, they found a marked discontinuity occurred in the
1–2 km region and provided the relationships for mist/haze and fog conditions separately.
Their fitted functions are given in Fig. 12. Their relationship for the fog cases (m < 1 km)
qualitatively matches the C-FOG observations well, but the mist/haze region is represented
poorly, again the expected outcome since aerosol and haze are not included in our measure-
ments. The fitted function from the G06 parameterization does not seem to represent the
C-FOG or the HELFOG data. One needs to keep in mind, though, that G06 was based on
data through the low-level-cloud environment. Since Nd alone cannot fully represent the
MOR variation with fog, the G06 formulation may have been derived from a population of
cloud droplets with different droplet size properties.

5 Observed Precipitation Fog

The C-FOGmeasurements uniquely captured several fog events with concurrent measurable
rainfall. During C-FOG, the rain was observed on and off throughout the period and accom-
panied by five of the seven fog events. Persistent rain and dense fog were measured from 28
September through the morning of 30 September (C5 and C6 periods). This period is shown
in Fig. 13 as an example of mixed fog/rain events.

Several important observations can be made in Fig. 13. First, although two major fog
events were identified during this period, the presence of a small number of water droplets is
often seen in other periods. The extremely light fog period without rain between 1630– 2016
UTC on 28 September (blue downward arrow, not included as a fog event in Table 1) also
resulted in significantly reduced visibility. Second, the measurable fog droplets seem to be
associated with periods of rain, either during or right after the rain event. However, the fog
liquid water and droplet number concentration do not seem to be correlated with the rain rate
shown in Fig. 13a. And third, a substantial reduction in visibility occurred in both fog and
rain events or a mixed rain/fog event. In Fig. 13, the two fog events are highlighted by green
double arrows while the two rain-only events are also highlighted with red double arrows.
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Fig. 13 An example of fog and rain events observed during C-FOG. The double green arrows cover the period
of mixed fog/rain (C5 and C6) and the red double arrows highlight the period with rain only without significant
fog droplets. The blue vertical arrow points to an extremely light fog event resulting in significant visibility
reduction. The blue and red vertical dash lines represent the start and end of the C5 andC6 periods, respectively.
The units are mm h−1, g m−3, cm−3, µm, and km for rain rate (R), LWC (ql ), total number concentration
(Nd ), effective radius (Re), and visibility (m), respectively

The same notations are also shown in Fig. 13e to highlight their impact on visibility. These
events plus the very light fog period make up the periods of all reduced visibility.

The temporal variation of the atmospheric conditions at The Downs site during the periods
C5 and C6 is shown in Fig. 14 to illustrate the evolution of temperature, relative humidity,
wind speed, and wind direction associated with the fog/rain event. During the period C5, the
lowest 2 km of the atmosphere was nearly saturated at all levels. However, the individual
sounding taken around 0230UTCon 28 September 2018 during periodC5 still shows amulti-
layered structure with two saturated layers, one below 500 m, which is the fog layer, another
between 900 and 1220 m (individual sounding not shown). It is not clear if the precipitation
was generated by the fog layer or from the cloud layer above. The CDP-2 measurements
were taken at about 4 m above the surface. Its measured spectra are likely different from
the upper fog layer, particularly in the large-size bins. The atmospheric conditions during
the C6 event are very different. There was a single saturated layer at the surface with depth
varied between 200 and 800 m. The precipitation was hence generated by the fog layer itself,
although the droplet spectra near the surface still show few droplet sizes above the 20 µm
bin. This long-lasting event (31 h in duration) has strong wind shear immediately above the
fog layer top and strong wind extending to above 3 km above the surface at the end of the
event. Figure 14d shows period C6 ended with a drastic change of the wind direction to
northerly wind, reduction of mid-level wind speed (Fig. 14c), and cooling of the low levels
(Fig. 14a), accompanied by much stronger rainfall and a deeper saturated layer above 3 km
level (Fig. 14b). These are all indicative of mesoscale forcing in the evolution of the fog event
involving precipitations.
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Fig. 14 Vertical variability of a potential temperature, b relative humidity, cwind speed, dwind direction from
soundings during the periods C5 and C6. The right axes are for fog droplet properties. All other notations are
the same as in Fig. 8

Fig. 15 Visibility variation with
LWC in a precipitating fog event
(C5). All C-FOG data are shown
in the background as grey dots
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Representing visibility in the rain/fog condition is challenging, as shown in Fig. 15 using a
single rain/fog event (C5) highlighted on the background of all C-FOGdata.Here,we find that
theMie theory and the derivedMOR–LWCparametrization in Eq. 5 represent the upper limits
of visibility at a given LWC. In fog with moderate LWC, the Mie theory still does a decent
job in predictingMOR, suggesting that fog is the dominant factor for reducing visibility even
when it is during the rain period. When fog LWC is low, other factors significantly reduced
visibility from theMie- or Eq. 5-predicted values. The low visibility completely uncorrelated
with LWC, normally at small LWC, shows the impact of rain. These results are some initial
observations from a single case. Unfortunately, insufficient concurrent and collocated rain
microphysics data were collected to allow further investigation. However, comparing the
observed MOR and rain rate in rain only conditions (Fig. 13, red double-arrow periods), the
magnitude of visibility reduction seem to match those from Gultepe and Milbrandt (2010,
Fig. 6) for drizzle conditions where visibility greater than 10 km is expected for the larger
droplets of rain at the same rain rate.

6 Summary and Conclusions

In this work, we analyzedmeasurements from two field campaigns, HELFOG and C-FOG, to
investigate the characteristics of fog microphysics, thermodynamics, and the impact of fog
and rain on optical propagation through the lower atmosphere. In both field campaigns,
fog microphysics were measured by a CDP-2 droplet spectrometer modified to include
forced aspiration and flow-speed measurements near the sampling volume. The modifica-
tion was intended to improve the accuracy of droplet spectra measurements by capturing the
instantaneous flow rate through the sampling volume. Concurrent measurements of optical
attenuations were also made by visibility meters (PWD10 and PWD22) as well as a path-
integrated transmissometer (WATT). Our main findings can be summarized as the following:

(1) The fog events in HELFOG, mostly advected marine fog, are characterized by low
number concentration and relatively large droplet diameter compared to those in C-
FOG. Bimodal distributions of the size spectra were frequently observed in HELFOG.
Many of the C-FOG fog events were accompanied by precipitation at the surface and
are characterized by small droplets and comparatively high number concentration.

(2) The low-level atmosphere in the C-FOG region shows a multi-layered vertical structure
in wind, temperature, and humidity, a direct result of the advection of air from different
origins at different altitudes. Mesoscale disturbances may have played an important
role in the fog development in this coastal region, particularly associated with low-level
convective events leading to enhanced low-level water vapour and precipitation.

(3) In HELFOG, the attenuation measurements from PWD10 based on droplet forward
scattering are consistent with the total transmittance measurements from WATT, sug-
gesting the dominant role of scattering in fog attenuation. The results also confirmed
that fog scattering is insensitive to wavelength within the visible to near-infrared range.
Since the propagation path was relatively short (600m), the difference between the point
measurements of PWD10 and the path-integrated measurements of the WATT is small.
This may not be true in the case of strong heterogeneity within the fog.

(4) MOR based on Mie scattering calculation using the measured droplet spectra compares
well in general with the optically measured MOR. However, there may be an underes-
timate of MOR through the fog. On the other hand, Mie theory overestimates MOR in
light fog/mist because the aerosol effects are neglected.
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(5) While the MOR–LWC parametrizations in the literature derived from measurements on
the east coast of the U.S. fit the C-FOG data better, they all slightly underestimate the
measured MOR from HELFOG. Meanwhile, the large scattering of datapoints in C-
FOG points to impacts from other variables in addition to LWC. For improved accuracy
of such representation, more data from different regions are needed to further evaluate
the differences seen in this study.

(6) The MOR–Nd parametrization cannot realistically represent MOR without the droplet
size information. This is confirmed using measured fog properties in different locations.
However, the MOR–Nd relationship is well-defined for a given population of fog with
known mean droplet size.

(7) Precipitation in the fog was frequently observed on the Newfoundland coast and affects
optical propagation differently from fog droplets as also indicated by Gultepe and Mil-
brandt (2010). Future research on the topic of optical attenuation in fog should include
a full characterization of precipitation microphysics.

It is noted that the dataset based on which the visibility parametrization was derived shows
a very large scatter. This is an indication that factors other than LWC or Nd are affecting
optical propagation and the inference of visibility from LWC or Nd are at best be crude
estimates. Nevertheless, the merit of such parametrization is the general trend in the results.
The presence of a general relationship between the two variables (MOR–LWC or MOR–Nd )
is indicative of the dominant effects of LWC or Nd on visibility. Our results suggest that the
two types of relationship are not independent because LWC and Nd are proportional with a
factor proportional to MVR cubed. If the MOR–LWC relationship holds for all fog cases, the
MOR–Nd relationship is still dependent on the droplet size. Hence, a universal MOR–Nd

relationship does not exist. In fact, in the original paper by Koschmieder (1924), the impact
of mean droplet size, represented by the root-mean-square diameter squared, on the visual
range was also discussed. Meyer et al. (1980) also examined the MOR-root-mean-square
diameter relationship and identified a clear relationship betweenMOR and the droplet size in
cases of fog. As a result, both number concentration and droplet size should affect visibility,
which points to LWC as a combination of both variables. The next logical question would
be: is LWC the most appropriate combination of droplet number and size to represent optical
attenuation? Gultepe et al. (2021) and several previous papers suggested the fog factor that
brings less scatter to the data points than LWC or Nd . This is likely a solution, although other
likely alternatives based on physical arguments should also be explored. Above all, more
observations in a broad range of fog events should be most beneficial.
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