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Abstract
The lower nocturnal boundary layer is governed by intermittent turbulence which is thought
to be triggered by sporadic activity of so-called sub-mesoscale motions in a complex way.We
analyze intermittent turbulence based on an assumed relation between the vertical gradients
of the sub-mean scales and turbulence kinetic energy. We analyze high-resolution noctur-
nal eddy-correlation data from 30-m tower collected during the Fluxes over Snow Surfaces
II field program. The non-turbulent velocity signal is decomposed using a discrete wavelet
transform into three ranges of scales interpreted as themean, jet and sub-mesoscales. The ver-
tical gradients of the sub-mean scales are estimated using finite differences. The turbulence
kinetic energy ismodelled as a discrete-time autoregressive processwith exogenous variables,
where the latter ones are the vertical gradients of the sub-mean scales. The parameters of
the discrete model evolve in time depending on the locally-dominant turbulence-production
scales. The three regimes with averaged model parameters are estimated using a subspace-
clustering algorithm which illustrates a weak bimodal distribution in the energy phase space
of turbulence and sub-mesoscale motions for the very stable boundary layer. One mode indi-
cates turbulence modulated by sub-mesoscale motions. Furthermore, intermittent turbulence
appears if the sub-mesoscale intensity exceeds 10% of the mean kinetic energy in strong
stratification.

Keywords Clustering analysis · Intermittent turbulence · Nocturnal boundary layer ·
Non-stationary autoregressive models · Sub-mesoscale motions

1 Introduction

The atmospheric boundary layer in conditions of neutral or weak stability is well described
using similarity theory (Grachev et al. 2013), but its modelling becomes arduous in increased
stratification (Fernando andWeil 2010). In the nocturnal or polar boundary layer, for example
in a very stable boundary layer (vSBL), the intermittency of turbulence challenges the existing
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parametrizations used in weather or climate models. An intermittent event of the turbulence
kinetic energy (TKE) is often identified as an infrequent burst with a sharp peak followed
by a rapid decay. A sequence of these bursts during a night can enhance mixing and change
the structure of the boundary layer (Acevedo et al. 2006). Usually, in weak stability, a well-
defined boundary layer exists in which turbulence is continuous and decreases with height
according to Monin–Obukhov similarity theory, therefore, providing a predictable level of
mixing. Excursions from this regime into the vSBLwith less understood turbulence can occur
in a variety of scenarios.

Intermittent turbulence appears to be distinctively pronounced during clear-sky nights,
which favour a strong radiative cooling. Buoyant forces hinder the development of turbu-
lence through the partitioning of turbulent energy between TKE and turbulence potential
energy (Sun et al. 2016). The importance of radiative heat loss is discussed in the so-called
maximum sustainable heat-flux theory (van de Wiel et al. 2012b), according to which con-
tinuous turbulence requires the turbulent heat flux to balance the surface-energy demand
resulting from radiative cooling. Beyond a maximum sustainable heat flux, turbulent swirls
have insufficient energy to act against the buoyancy force and are attenuated (van de Wiel
et al. 2012a). Seemingly, if the turbulence is suppressed due to the temperature gradient,
it becomes sensitive to localized perturbations of the flow on so-called sub-mesoscales and
tends to be intermittent (Vercauteren and Klein 2015). Global intermittency can also occur
in the absence of external forcing (Ansorge and Mellado 2016), and can result from the com-
petition between a strong surface cooling and mechanical generation due to shear (van de
Wiel et al. 2002).

On the one hand, continuous turbulence is established for energy injection at a significantly
large scale, thereby providing the height of the boundary layer as a characteristic length scale.
On the other hand, identification of a boundary-layer height in the vSBL should be considered
with caution (Zilitinkevich and Baklanov 2002) due to weak and unsteady mean wind-speed
profile. For instance, Lan et al. (2018) observes such a behaviour over a flat surface and
describes the boundary layer to be in a decoupled state. Accordingly, the turbulence collapses
close to the surface but is mainly generated away from the ground. Below a certain wind-
speed threshold, the upper region of the boundary layer, as found by Sun et al. (2012), is
indeed prone to top-down events, localized shear events, and non-turbulent oscillations, such
as meandering motions. These oscillations in the horizontal components of the velocity have
been identified using Eulerian autocorrelation functions (Mortarini et al. 2016). In a recent
study, Mortarini et al. (2019) extracted the meandering periods in the vSBL (which occupy
≈ 1/3 of their considered nocturnal dataset), further showing that these motions are usually
found aloft in the boundary layer. Based on these findings, Cava et al. (2019, their Eq. 3)
suggested a unique function for the low wind speeds and the inertial subrange to account
for the distribution of the flow energy between turbulence and sub-mesoscales. Overall, the
turbulence appears to respond intermittently to perturbations above the ground.

Similarly, processes of different scales can be the trigger for external intermittency (Mahrt
2014). Their spatio–temporal scales and origin are not generalized, but a multitude of pro-
cesses are commonly lumped under the denomination of sub-mesoscale motions. Besides
meandering, sub-mesoscalemotions can include internal gravity waves (Zaitseva et al. 2018),
density currents (Sun et al. 2002), drainage flows (Mahrt et al. 2001), or microfronts (Mahrt
2019). While parametrizing these scales is challenging due to partly unknown physics,
exploratory data analysis can help to discover new concepts. For example, Kang et al. (2015)
used a statistical method to identify types of non-turbulent structures in the nocturnal bound-
ary layer with no a priori assumption on their physical origin. Sharp, step-like temperature
structures that correspond to a shallow and deep event in the boundary layer were found to
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be associated with intermittent turbulence. To improve the transport properties in the vSBL,
the discontinuous, inhomogeneous response of the turbulence to perturbations should be
treated in numerical models. As the equilibrium state of the boundary layer weakens with
stability, the perturbations lead to instabilities. Distinguishable characteristics can become
unclear, like the flux–profile relationship, making the classification of the SBL and the use of
classical scaling relationships difficult. Therefore, the stochastic description of intermittent
turbulence offers a promising alternative.

Statistical-clustering techniques have recently been applied to gain understanding of the
vSBL. Indeed, as it is known that the presence of sub-mesoscale motions can trigger non-
stationary turbulence, a causal relationship is to be expected. Characterization of the boundary
layer by accounting for this hypothesized statistical relationship between sub-mesoscale
motions and intermittent turbulence is an ansatz that was suggested in Vercauteren and Klein
(2015). In a related statistical framework, Monahan et al. (2015) applied hidden Markov
models to classify the SBL in two regimes. The multivariate clustering of the bulk wind
shear, mean wind speed, and stratification reveals a consistent regime structure. Vercauteren
and Klein (2015) classified the SBL in terms of statistical causality (Granger 1988) between
the filtered velocity on sub-mesoscales and the standard deviation of the vertical turbulent
fluctuations using a bounded variation, finite-element, vector-autoregressive-factor method
(FEM-BV-VARX). In a follow-up study, Vercauteren et al. (2016) investigated interactions
between scales of motion within the detected regimes, and characterized turbulent momen-
tum fluxes using an extended multiresolution-flux decomposition. Moreover, these regimes
were analyzed in combination with a turbulent-event-detection method (Kang et al. 2014) to
investigate the statistical properties of non-turbulent events across two datasets (Vercauteren
et al. 2019b). Overall, the post-analysis of the FEM-BV-VARX regimes highlights a physi-
cally meaningful classification of the vSBL, but, so far, very little attention has been paid to
the role of gradients in the sub-mesoscale motions (Mahrt 2010). Here, we focus on quan-
tifying the TKE input from a different range of scales, in particular based on their vertical
gradients.

We separate the non-turbulent velocity components in several frequency bands using a
discrete wavelet transform (DWT) and estimate the vertical wind-speed gradients for each
scale. Next, the wind-speed gradients are used tomodel the TKE in the SBL as a discrete-time
autoregressive process.Within the clustering framework, we expect the regime of intermittent
turbulence to be classified as one with the most substantial contribution from the gradients of
the sub-mesoscale velocity, which was shown to correspond to the vSBL in Vercauteren and
Klein (2015). Depending on the performance of the model, for each height, we investigate
if the vertical wind-speed gradients on sub-mesoscales are essential in the vSBL. Addition-
ally, separation of the flux–profile relationship is investigated under the statistical classifier,
thereby suggesting a stochastic extension for the parametrization of turbulence in the vSBL.
As the sub-mesoscale motions are an essential part of the vSBL, the ratio between the turbu-
lence intensity and sub-mesoscale intensity is constructed relative to a mean velocity scale
of the flow.

We are motivated by the following idea. For a sufficiently long observation time, each
point on the earth has an individual activity level of sub-mesoscale motions. These partly
stochastic motions should have a mean energy level and produce a certain level of TKE as
a response. Although it is intermittent, and it is not clear how the energy is transformed, for
the stochastic-model development, it is essential to know what is the amount of the available
energy and what portion of it is converted to turbulence. We hypothesize that each site
has its characteristic footprint in the phase space of turbulence intensity and sub-mesoscale
intensity depending on the stability. We investigate the turbulence–submeso–intensity (TSI)
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diagram by separating it based on the stability and the FEM-BV-VARX classifier. Following
this research hypothesis, the ratio between turbulence intensity and sub-mesoscale intensity
reflects the different types of interactions between scales of motion, and we thus expect to
observe distinct behaviours of this ratio depending on the flow regime and on the boundary-
layer height.

The study extends earlier findings through the following aspects:

– The clustering framework models the log transform of the TKE using the gradients of
velocity at three different scales. The log transformation of the time series to be modelled
most closely reflects the assumptions of the clustering framework. This transformation is
especially important in the regime of strong stratification because the probability density
function (p.d.f.) of the TKE is not Gaussian and resembles the shape of a log–normal
distribution.

– A new representation of the interaction between sub-mesoscale motion and turbulence
is presented and analyzed.

– A connection betweenMonin–Obukhov similarity theory and the results of the clustering
are presented.

Below, the Fluxes over Snow Surfaces II (FLOSSII) dataset and the preprocessing steps are
addressed in Sects. 2 and 3 gives a brief introduction to the filtering approaches used to
separate scales and the classification based on the statistical modulation of the TKE by the
different scales. The results are presented in Sect. 4 and consist of visualized scale activity
during three interesting nights, a classifiedTSI diagramby the stability and clusteringmethod,
as well as a classified flux–profile relationship. The results are discussed in Sect. 5 and the
conclusions are given in Sect. 6.

2 Dataset and Preprocessing

The dataset under consideration consists of high-resolution eddy-correlation data collected
during the FLOSSII field program, which took place from 20November 2002 to 4 April 2003
over locally flat grass in the North Park region of Colorado, near Walden (Earth Observing
Laboratory data 1999). Seven sonic anemometers (Campbell CSAT3) collected three velocity
components and the temperature at 1, 2, 5, 10, 15, 20 and 30 m above ground level and
mounted on a rigid truss tower, allowing airflow to pass through. The terrain of the site is
flat with a variable brush height from 0.2m to about 0.5m (Mahrt and Vickers 2005). The
ground was covered by a thin snow layer for approximately 20 days of the field campaign.
The dataset is quality controlled following Vickers and Mahrt (1997).

In the following, we describe the preprocessing steps in the sequence in which they are
performed, while Fig. 1 displays the corresponding flow chart. The raw data comprise 132
days of continuously recorded measurements. Occasionally, the instruments were not work-
ing properly, causing long data gaps (on a scale of several hours). The days with these long
periods and those with unrealistically large velocity changes in time (|Δu/Δt | > 117m s−2)
are removed, resulting in 102 days of data. The remaining shorter data gaps on a scale of
minutes (probably the results of the quality control) are linearly interpolated in time, there-
fore increasing continuity for the clustering (which is described in Sect. 3.3). Furthermore,
we do not remove periods during which the flow is passing through the tower because the
disturbances caused by the tower are of the scale of the truss rods ( ≈ 0.1m), meaning
the fluctuation energy induced by the rods is small compared to the 1-min turbulent scale.
Excluding periods for flow through the tower as in Vercauteren et al. (2019b) results in a
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shorter dataset, consisting of 68 days, and excludes a portion of strongly stable nights. We
chose to instead keep the 102 nights for the analysis. After the interpolation, the velocity is
double-rotated (Lee et al. 2004) into the mean wind direction with a moving window. The
natural mean wind direction is calculated from the 30-m sonic anemometer using a moving
average on a scale of 1 h.

In the next steps, the velocity components are filtered in order to obtain a multiscale
decomposition. First, a running time average is applied to estimate the Reynolds stress and
sensible heat flux. Second, the DWT technique is used to separate the larger scales of the
velocity signal into different ranges of scaleswhich is detailed in Sect. 3.1. The nocturnal time
is then selected based on the average negative heat flux over all nights. The nocturnal time is
selected after the wavelet filtering to mitigate edge effects from the wavelet transform, known
as the cone of influence of a mother wavelet (Torrence and Compo 1998). The gradients of
the filtered velocity components with respect to height are computed using finite differences;
a central difference for the heights 2, 5, 10, 15, 20 m, taking into account the non-equidistant
grid, and one-sided at 1 m and 30 m.

We did not perform any correction of the sensible heat flux due to lack of moisture
measurements. However, this correction only affects the results in the estimation of the flux–
profile relationship, as all other analysis are based solely on velocity measurements.

3 Methodology

3.1 Definition of the Scale Ranges

At high Reynolds number, turbulence in the inertial subrange has universal properties that
express themselves through the well-known energy cascade that follows a power law. Gener-
ally, eddies in the energy-production range are not expected to follow a universal description
(Pope 2001, p. 247). In the following, we divide the turbulent signal into three frequency
bands in order to study the response of the turbulence to different ranges of scales.

In an earlier analysis of the FLOSSII dataset presented in Vercauteren et al. (2019b),
the computed momentum and heat-flux cospectrum in the vSBL displayed a scale overlap
between turbulent and non-turbulent motions, therefore indicating a lack of scale separation.
Nevertheless, the analysis suggests that scales < 1 min correspond mainly to turbulence in
the nocturnal FLOSSII dataset, and we similarly use this threshold to define the turbulent
scales. Originally, the flow was sampled at 60 Hz. The decomposition of scales is performed
in two filtering steps. In the first step, the turbulent fluctuations are separated using a running
time average,

〈 f (t)〉 = 1

2N

∫ t+N

t−N
f (t�)G(t�)dt� , (1)

where 2N = 3600 is the number of samples corresponding to a period of 1 min, thus 〈·〉
denotes time average on a scale of 1 min. The velocity component that is filtered (u, v, w)
is denoted by f (t) and G is the convolution kernel being equal to one (i.e. this corresponds
to block averages as performed in classical Reynolds averaging). The turbulent fluctuations
are then f ′ = f − 〈 f 〉. If the boundary layer is in the weak stability regime with typically
larger turbulent eddies, the 1-min averaging produces an underestimated TKE, because the
filter scale is not adapted to the scale of turbulence. To compute the TKE, a running time
variance is used,
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Fig. 1 A sketch summarizing the analysis steps

〈 f ′ f ′〉 = 〈 f ′(t) f ′(t)〉 = 1

2N

∫ t+N

t−N
f ′(t�) f ′(t�)dt� , (2)

where 2N = 3600 is the number of samples corresponding to a period of 1 min and the mean
is removed according to Eq. 1. Consequently, the TKE is e = 0.5(〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉).

One advantage of the running time statistics over the block averaging is the potentially
higher sampling frequency for subsequent analyses, which influences the performance of the
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Fig. 2 A sketch of the time scales for the FLOSSII dataset. The vertical dashed lines from left to right indicate
the frequencies of 3 h, 1 h, and 1 min. The median (black line) and the 0.05 with 0.95 quantiles (denoted
by the grey area) are computed over 102 nights. The energy spectra is calculated with a continuous wavelet
transform using the Morlet wavelet

model identification. The highest frequency of the velocity 〈u〉 after the averaging is 0.02 Hz,
or in different units 60 cycles per hour (cph) and it is the so-called band limit frequency fc of
the signal. According to Billings (2013, p. 476), Shannon’s theorem states that to recover all
the information in a signal band limited to the frequency fc, the signal should be sampled at
the minimum rate of 2 fc. For parameter estimates, a sampling rate of around 5 fc/2 is often
sufficient. As a consequence, the variables e, 〈u〉, 〈w′θ ′〉 are downsampled (Alkin 2016) from
fs = 60 Hz = 216, 000 cph to fd = 180 cph, thereby resolving 1-min fluctuations with
three points. This sampling rate is important to extract statistical relations between scales of
motion when using the clustering approach (see Sect. 3.3) up to a time scale of 1 min.

In the second step, after the Reynolds averaging (u = 〈u〉 + u′) the velocity 〈u〉 is further
separated into three ranges of scales 〈u〉 = u+ ũ+ û by using the DWT approach (see Sect.
3.2). The sub-mesoscales û = (̂u, v̂, ŵ) occupy the period from 1 min to 1 h, the jet scale
ũ = (̃u, ṽ, w̃) occupies the band from 1 to 3 h, and the mean scale u = (u, v, w) includes
scales of duration ≥ 3 h. These ranges are summarized in Fig. 2.

Three hours for themean velocity scale is chosen because it is sufficiently large to observe a
logarithmicwind-speed profile corresponding to traditional similarity theory. The jet scale has
been introduced because this scale has enough energy to produce ground-sheared turbulence,
but insufficient to contribute to the wind-speed profile up to the height of 30 m. Besides, the
jet scale adds inflection points to the mean wind-speed profile, thereby changing the height at
which a maximum velocity is observed. The goal of our multiscale decomposition is to find
a mean scale for which the highest measurement point (30 m) corresponds to a maximum
wind speed according to the traditional concept of a boundary layer. At this mean scale (3 h
here), we expect traditional similarity scaling to be valid. The scaling velocity u∞(t) in our
subsequent analysis is the velocity at the height of 30 m,

u∞(t) ≡
√
u(z = 30, t)2 + v(z = 30, t)2 , (3)

with a band limit of 3 h (see Fig. 2). By scaling with the wind speed u∞(t), unknown
deviations (the jet, sub-mesoscale and turbulence) may be studied in relation to the known
similarity theory.

Similar to the definition of the turbulence intensity,

T I = 1

u∞

√
1

3
(〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉) , (4)
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(Pope 2001), we define the sub-mesoscale intensity

SI = 1

u∞

√
1

3
(̂u2 + v̂2 + ŵ2) , (5)

which denotes the energy content of the sub-mesoscales. The relation between these param-
eters is investigated in Sect. 4.3. The jet intensity is not analyzed, because it is expected
to produce turbulence mainly through the shear at the ground, similarly to the mean scale.
The wind speed to be analyzed for the mean, jet and sub-mesoscale bands are defined ,

respectively, as U =
√
u2 + v2, Ũ = √

ũ2 + ṽ2 and Û = √
û2 + v̂2.

When using the DWT approach, it is important to choose an appropriated basis function.
As noted by Kumar and Foufoula-Georgiou (1997), the Haar wavelet provides a good and
simple choice for applications where the process has sharp variations such as within the
inertial subrange. Outside the turbulent cascade, where sub-mesoscale motions are recorded
as smoother signals, a high-order Daubechies wavelet is better. Consequently, as the scale
changes from turbulent to sub-mesoscale, to jet and to the mean scale, the basis of the wavelet
should change from a Haar wavelet to a Daubechies wavelet. As a more straightforward
approach, we use two different filter types instead, and is explained next.

3.2 Wavelet Filtering

The aim is to separatewind-speedprofiles of different scales and to estimate the corresponding
vertical wind-speed gradients for later use in the modelling and clustering. Linear filters that
are constructed in the Fourier domain are not able to filter the velocity 〈u〉 correctly due to
the unsteadiness. Here, we apply the DWT approach as implemented as a filter bank in the
Python software package reported by Lee et al. (2019) to perform this task. A Daubechies
wavelet ψs,c(t) of order 20, which is selected as a mother wavelet and discussed in detail
later, forms an orthonormal basis,

ψs,c(t) = 1√
2s

ψ

(
t − c 2s

2s

)
,

∫
ψs,c(t)ψs′,c′(t)dt = δss′δcc′ , (6)

where δi j is the Kronecker delta A function f (t) can be, s is the dilation, and c the translation
index of the dyadic scale. These functions can be approximated by a linear combination to
arbitrary precision with the appropriate choice of the basis. The coefficients of a wavelet
transform are

Ds,c ≡
∫ ∞

−∞
f (t)ψs,c(t)dt , (7)

where f (t) denotes the analyzed function. The dyadic-scale discretization of awavelet allows
a sparse representation of a signal in one dimension, and provides a time-scale representation
of a process (Kumar and Foufoula-Georgiou 1997),

f (t) =
∞∑

s=−∞

∞∑
c=−∞

Ds,cψs,c(t) . (8)

The reason for using a dyadic filter bank is efficiency. The basic idea is to construct a cascade
of high- and low-pass filters (Mallat 1999, p. 255). After one level of decomposition, the
output consists of approximations (low-frequency band) and detailed (high-frequency band)
coefficients. Then, the approximation coefficients are downsampled by a factor of two, and
the discrete convolutions with low- and high-pass filters are repeated. The filter bank can have
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Table 1 Definition of the
discrete-wavelet-filter-bank
cascade

Level Frequency [cph] Scale label Time scale

0 <60 Turbulence

1 60–45 Sub-mesoscale 1 min

2 45–22.5 Sub-mesoscale

3 22.5–11.2 Sub-mesoscale

4 11.2–5.6 Sub-mesoscale

5 5.6–2.8 Sub-mesoscale

6 2.8–1.4 Sub-mesoscale 1 h

7 1.4–0.7 Jet

8 0.7–0.35 Jet 3 h

9 > 0.35 mean

multiple levels of decomposition, and by the inverse transform of the cascade, the signal is
entirely reconstructed. By setting thewavelet coefficients to zeros at one decomposition level,
the user removes unwanted scales, therefore extracting those that are of interest. Considering
theNyquist sampling theorem and previous filtering steps, the highest frequency in the signals
of the parameters e, 〈u〉, 〈w′θ ′〉 is 90 cph. After the first level of decomposition, the detailed
coefficients contain frequencies in the range 45–90 cph. The full filter-bank cascade consists
of nine levels and is summarized in Table 1.

The choice of a wavelet basis is dependent on the analyzed time series and must represent
most of the energy content of the signal with the least amount of wavelet coefficients (Kumar
and Foufoula-Georgiou 1997). While the Shannon measure of entropy can be used to find
a basis from the considered library of wavelets as demonstrated by Katul and Vidakovic
(1996), another reasoning is applied here. The velocity on the different scales (u, ũ, û) must
be separated in the physical space because we aim to investigate from which velocity scales
the TKE is triggered. To separate scales, a basis with strong localization properties in the
frequency domain is needed. In particular, weak localization properties are characterized by a
smooth frequency response function, which stretches into the neighbouring bands beyond the
predefined cutoff, leading to energy loss across scales. That weakness of the DWT approach
is so-called spectral leakage (Qiu et al. 1995), which, according to the sensitivity study of
Peng et al. (2009), is mitigated by selecting a mother wavelet of a high order, and thereby
achieving a sharper cut-off. Higher-order wavelets require a higher time resolution of the
signal, which is fulfilled by the a sampling frequency of 180 cph used here.

3.3 Non-stationary Clustering Based on a Linear-Autoregressive-Factor Model

The clustering method (Horenko 2010) is used to classify regimes based on discrete-time sta-
tistical linear models for a multivariate variable and has been used, for instance by Franzke
et al. (2015) to study the response of Southern-Hemisphere-circulation trends to multiple
external forcing; they found that anthropogenic CO2 is a more relevant driver than ozone
depletion. Risbey et al. (2015) investigated mid-tropospheric flows and showed that telecon-
nection patterns in the Northern Hemisphere exhibit characteristic switching of metastable
states. O’Kane et al. (2017) investigated the memory and dimensionality in terms of the
clustering method in defining the quasi-stationary states of the troposphere.
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In brief, the clustering method expresses the non-stationary time series as a combination
of K > 1 stationary submodels that alternate in time, with the difference between each of the
models being their parameter values. Each parameter set of the K ’th model is constant for
an a priori unknown period of time, which, along with the corresponding model parameters,
are determined through a machine-learning process. Here, we construct a one-dimensional
autoregressive-factor model with exogenous variables to learn about the non-stationary mod-
ulation of TKE by vertical gradients of the wind speed at different scales.

Thewind-speed gradients on the filtered scales (which are treated as exogenous variables):
FM = ∂U/∂z, F̃M = ∂Ũ/∂z and F̂M = ∂Û/∂z are Granger causal for the TKE (eM ) if
the past history of the gradients FM , F̃M and F̂M helps to predict the value of eM at some
stage in time (Granger 1988). The variables are temporarily marked with the subscript M
to indicate that they are rescaled later in the text, after which “M” is dropped. Concerning
the selected exogenous variables, we have the following expectation of the model. The TKE
in the neutral and the weak stability regime is predicted by the gradient ∂U/∂z according
to similarity theory and, therefore, we expect to find a cluster for which the dynamical
evolution of the TKE is mainly modulated by the gradient ∂U/∂z. In the statistical model to
be introduced next, this translates into having parameter values of ∂U/∂z of larger magnitude
than those of ∂Ũ/∂z and ∂Û/∂z (see Eq. 10). Respectively, for the strongly stable regime we
hypothesize to find that the gradients ∂Ũ/∂z and ∂Û/∂z are more Granger causal for TKE
than for the gradient ∂U/∂z.

Here, we consider rescaling the variables. On the one hand, rescaling is favoured if the
clustering aspect of the methodology is of interest. On the other hand, if the modelling aspect
is of importance, a physically meaningful scaling should be applied. As nondimensionalizing
a system is not always possible in exploratory data analysis as little knowledge on the process
may be available, our focus is clustering, which, therefore, favours a statistical scaling (see
Eq. 9).

Removing traceable nonlinearity from the data also benefits the clustering. Since the
statistical model is linear within each cluster, the algorithm does not need to learn the non-
linearity. Otherwise, the model would need more clusters. According to an earlier similar
study (Vercauteren et al. 2019a), the TKE exhibits a heavy tail distribution in the strongly
stable regime. Consequently, taking the logarithm of the TKE, et ≡ ln(eM ), and making the
distribution more Gaussian effectively reduces the number of clusters needed to describe the
intermittent regime. Otherwise, the clustering was found to separate cases based on the mean
TKE levels, rather than on dynamical interactions with the forcing variables (the latter being
our scientific interest). In the following, the variables are standardized by

Z = ZM − E[ZM ]√
Var[ZM ] , where ZM is ln(eM ) , FM , F̃M , F̂M . (9)

The clustering framework is generalized to multiple dimensions and can be used with all
seven measurement heights of the FLOSSII dataset. Unfortunately, this leads to a high num-
ber of parameters, because cross-correlation terms need to be considered. Therefore, the
one-dimensional model is estimated for each height separately to keep the parameter space
small. The linear time-lagged model structure is used (Note: TKE is now logarithmically
transformed et ≡ ln(eM ))

et =μ(t) +
p∑

n=1

an(t)et−n
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+
q∑

m=0

bn(t)Ft−m +
q∑

m̃=0

b̃m̃(t)F̃t−m̃ +
q∑

m̂=0

b̂m̂(t)F̂t−m̂ + ε(t), (10)

where p and q are memory lags of the statistical process, the subscript t denotes the discrete
timestep, and�(t) = {μ(t),A(t),B(t), ε(t)} the parameter set. The first parameter of the set
�(t) is an offsetμ(t) that later under assumptions becomes a constantmean value of a cluster.
The vector A(t) = [a1(t), . . . , ap(t)] consists of the coefficients of the autoregression and
B(t) = [b1(t), . . . , bq(t), b̃1(t), . . . , b̃q(t), b̂1(t), . . . , b̂q(t)] consists of the coefficients of
the exogenous variables. The last parameter of the set �(t) is the residual error ε(t) between
TKE (et ) and the linear model. The model distance function is defined by the least-squares
residual norm,

g(et ,�(t)) =
∥∥∥∥∥et − μ(t) −

p∑
n=1

an(t)et−n

−
q∑

m=0

bn(t)Ft−m −
q∑

m̃=0

b̃m̃(t)F̃t−m̃ −
q∑

m̂=0

b̂m̂(t)F̂t−m̂

∥∥∥∥∥ . (11)

The variational problem
∑Nt

t=1 g(et ,�(t)) → min
�(t)

(Nt is the length of the time series in

samples) to find the parameters is ill-posed. It is assumed that the function g(et ,�(t)) can
be represented as a linear combination of K > 1 distance functions,

g(et ,�(t)) =
K∑

k=1

γk(t)g(et ,�k) , (12)

where �(t) = [γ1(t), . . . , γK (t)] is a time-dependent model-affiliation vector fulfilling the
convexity condition,

K∑
k=1

γk(t) = 1 , γk(t) ≥ 0 , ∀ t ∈ [0, Nt ] . (13)

Alternatively, the affiliation vector can be interpreted as a probability vector, which indicates
at each timestep a probability to observe a set of model parameters that fits the data in the
best way. The reason to observe a change to another more probable regime is induced by the
gradients of the sub-mean scales as prescribed by the model structure (see Eq. 10). With this
assumption, the average clustering function takes the form,

L[�,�(t)] =
K∑

k=1

Nt∑
t=0

γk(t)g(et ,�k) → min
�,�(t)

, (14)

and is efficiently solved with the subspace-clustering algorithm (Horenko 2010) for finding
the model affiliation function and model parameters.

In summary, we startedwith a problem,where the parameters describing themodulation of
the TKE by the filtered velocity gradients are time-dependent, and relocated the issue of non-
stationary parameter estimation to a model-affiliation function by imposing assumptions on
the parameter space. The assumption that the data have a finite set of persistent states makes
the inverse ill-posed problem solvable. The optimization problem Eq. 14 is solved by a finite-
element approach. Furthermore, the problem is regularized by constraining the persistency
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of the functions γk using the class of functions with bounded variation BV ([0, Nt ]),

|γk |BV =
Nt−1∑
t=0

|γk(t + 1) − γk(t)| ≤ C , (15)

where the persistency parameter C defines the maximum number of transition between the
cluster state k and all others. Here, the functions γk , k = 1, . . . , K are discrete vectors (zero
or one). For more details, we refer to Metzner et al. (2012).

Lastly, the four hyperparameters: the persistency parameter C , number of clusters K ,
number of autoregression lags p and the number of lags for the exogenous variables q can
be determined a posteriori using information criteria as explained by Metzner et al. (2012).
However, we limit our analysis to three clusters that approximate the weak, intermediate, and
strong stability regime of the boundary layer sufficiently well. Another way to measure the
performance of the statistical model is to compare the modelled variance with the variance
in the data using the so-called R2 score,

R2 ≡ 1 − unexplained variance

total variance
= 1 −

∑K
k=1

∑Nk
i=1 ε2k,i∑K

k=1
∑Tk

i=1(ek,i − E[ek,i ])2
, (16)

whereE[·] is the expected value, and Nk the number of samples in the cluster k. Themaximum
number of lags for the autoregressive terms p and forcing variables q (see Eq. 10) affect the
R2 score. We limit the memory depths in the statistical model to p = 3 and q = 10, since
a further increase does not yield a significant increase in the value of R2 (not shown). The
optimal parameter C , is similarly selected based on the value of R2 (see Sect. 4).

3.4 Methods for Boundary-Layer Analysis

The local scaling theory is widely used in single-column models (Rodrigo and Anderson
2013; He et al. 2019) but fails at increased stratification due to the increased scatter. We use
the estimated classifier �(t) (see Eq. 14) to examine only the flux–profile relationship for
momentum in three different clusters. Table 2 shows the relation between the detected clusters
and the stability parameter ζ . To avoid the self-correlation in the flux–profile relationship,
we use

φmφ−1
w = κz

σw

∂U

∂z
(17)

following Grachev et al. (2018), where the friction velocity is replaced by the standard
deviation of the vertical velocity component σw . The quantity φmφ−1

w is expressed as a
function of stability ζ = z/L , where the Obukhov length

L = − u3∗
κ

g
�0

〈w′θ ′〉 (18)

is defined in terms of the local friction velocity u∗ = [〈v′w′〉2 +〈u′w′〉2]1/4, the von Kármán
constant κ = 0.4, the acceleration due to gravity g = 9.81m s−2 and the local kinematic heat
flux 〈w′θ ′〉, with w′ and θ ′ being fluctuations from their respective 1-min-averaged mean.
The reference potential temperature �0 is calculated as an average temperature of all nights
and over all heights.

Furthermore, we wish to analyze the energy distribution between sub-mesoscales and
turbulent scales in the phase space spanned by the parameters T I and SI (see Fig. 11).
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Table 2 Statistics of stability parameter ζ for each identified regime and height. Q1 denotes the 0.25 quantile,
Q2 denotes the median and Q3 denotes the 0.75 quantile

Height (m) Stability regime

Weak Intermediate Strong

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

1 0.01 0.02 0.07 0.02 0.11 0.48 0.02 0.12 0.53

2 0.02 0.04 0.09 0.05 0.16 0.52 0.04 0.20 0.78

5 0.03 0.07 0.17 0.10 0.23 0.58 0.01 0.41 1.42

10 0.05 0.14 0.34 0.18 0.57 1.43 −0.04 0.50 1.83

15 0.08 0.21 0.52 0.13 0.64 1.84 0.00 0.77 2.51

20 0.09 0.25 0.59 0.17 0.70 1.83 0.00 0.83 2.80

30 0.12 0.35 0.86 0.17 0.81 2.02 −0.22 1.05 3.85

To better understand the diagram, it is useful to know if some regions can be associated
with a stability value or the shape of the mean wind-speed profile. These two properties
are inherently linked. For instance, by damping the turbulence, the shape of the mean
wind-speed profile is changes from logarithmic towards linear. The type of the boundary
layer can be quantified by the shape factor H = δ1/δ2, where δ1 [m] is displacement
thickness and δ2 [m] is the momentum thickness (Schlichting and Gersten 2016) defined
as

δ1 =
∫ 30

0

(
1 − U

u∞

)
dz , δ2 =

∫ 30

0

U

u∞

(
1 − U

u∞

)
dz , (19)

respectively, where the theoretical values are H = 2.3 for a laminar profile and H = 1.3–1.4
for a turbulent one. In the atmospheric boundary layer, we are unlikely to observe a laminar
flow. Therefore, we use the shape factor as an approximate indicator to know the type of the
mean wind-speed profile.

3.5 Estimation of the High-Density Regions for a Density Function

Through the TSI diagram, it is demonstrated that the clusteringmethod reveals a stronger link
between the sub-mesoscales motions and turbulence in comparison with the classification
with the stability parameter ζ (see Fig. 12). In Fig. 12, the high-density regions are estimated
according to themethod of Hyndman (1996) who defines the regions as follows. For a density
function f (x) of a randomvariableX, the 100(1−α)%high density region is the subset R( fα)

of the sample space ofX such that R( fα) = {x : f (x) ≥ fα}, where fα is the largest constant
such that P(X ∈ R( fα)) ≥ 1− α. So, fα is the α quantile of f (X). Selecting regions in this
way enables the detection of the bimodality of the distribution even in higher-dimensional
space.

4 Results

The results are organized in the following order. We first apply wavelet filtering and illustrate
the most characteristic nights according to the type and manner in which the mean, jet
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and sub-mesoscales relate to the turbulence intensity and the local stability. The selected
nights support our subsequent statistical analyses with typical case studies of multiple-scale
interactions in nocturnal boundary-layer flows. The three nights are chosen from the whole
dataset and are arranged according to decreasing mean wind speeds. For the rest of the nights
(not shown), there is an irregular mixture of the dynamics present in the nights selected
for presentation here (Figs. 3, 4, 5). Here, the height coordinate is normalized with the
tower height z∗ = z/ztower and the time coordinate with the length of the night (15.38 h)
t∗ = t/tnight.

In the second step, we cover the performance of the classification method that was intro-
duced in Sect. 3.3. Each height is classified individually.We compare the in-sample prediction
of the clustering method with the observed T I values and reveal the statistical link between
the velocity gradient on different scales and the turbulence response in terms of the model
parameters.

To summarize the scale interactions, the TSI diagram is introduced. To develop a better
understanding of this diagram,we consider regionsmarked by values of ζ and the shape factor
H (see definition in Sect. 3.4). The point cloud of the TSI diagram is further investigated by
the statistical-clusteringmethod and by a threshold to the value of ζ . To relate these classifiers,
Table 2 presents the stability of the detected regimes at each height. The intermittent class
is characterized by an intense variability of ζ > 1 (see the interquartile range in Table 2),
although the median stays below one.

To finalize the results, we present the impact of the statistical clustering on the stability
function (see Sect. 4.4).

4.1 Time Evolution ofWind-Speed Profiles for Different Scales

We begin by reviewing the scale activity for a night (see Fig. 3) with a moderate mean wind
speed of E(u∞) = 5.7 m s−1. Within the FLOSSII campaign, nights with u∞ > 6 m s−1

unmistakably show a well developed logarithmic mean wind-speed profile together with a
corresponding profile of the TKE.Moreover, such nights are close to neutral or weakly stable,
with little relevance for our investigation. Similarly, a critical wind speed of 5–7ms−1 above
which turbulence is active in a classical way, such as for clear-sky conditions, was found by
Van de Wiel et al. (2012).

The onset of intermittency begins already in weak stability, where the local stability
starts to demonstrate weak spatio–temporal variations (see Fig. 3e, where t∗ ∈ (0.3, 0.5) and
t∗ ∈ (0.8, 1.0)). Themean velocity profile throughout this night iswell developed and appears
relatively steady (see Fig. 3a). The scale fluctuations of the sub-mesoscale motions (see Fig.
3c) indicate an increase of relative magnitude at t∗ ∈ (0.1, 0.2) and t∗ ∈ (0.7, 0.9). For the
time t∗ ∈ (0.7, 0.9), the fluctuation of sub-mesoscale band corresponds with the alternating
colour bands in the turbulence intensity, while the jet-scale band is less pronounced. In
contrast, in the range t∗ ∈ (0.1, 0.2) the jet scale is decreasing t∗ ∈ (0.1, 0.15) and then
increasing t∗ ∈ (0.15, 0.2). At that time, the magnitude of T I responds to the temporal
evolution of the jet rather than the sub-mesoscale (see Fig. 3d where t∗ ∈ (0.1, 0.2)). The jet
and sub-mesoscale show no change with height either. In conclusion, this night is generally
weakly stratified with insignificant deviations. The inferred scale interactions observed are
more pronounced during the more stably stratified night.

Figure 4 displays a night with an average mean wind speed of E(u∞) = 2.7 m s−1 and
a noticeable deviation in the wind-speed profile (see Fig. 4a), which is non-stationary and
seems to denote a less turbulent one at the beginning t∗ ∈ (0.1, 0.3) and at the end of the
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(b)

(a)

(c)

(d)

(e)

Fig. 3 Scale activity and turbulence response for a night with a lowwind speedE(u∞) = 5.7m s−1, including
a themeanwind-speed profile,b the jet scale, c the sub-mesoscales,d the turbulence intensity, and e the stability
parameter ζ . For the jet and sub-mesoscales, only the streamwise component is displayed to identify times of
deceleration. The cross-stream component behaves similarly but is of a smaller magnitude

night t∗ ∈ (0.8, 1.0) (linear decrease towards ground). Irregularities in the profile are present
in the middle of the night t∗ ∈ (0.4, 0.7).

The complex evolution of the boundary layer can be concluded from the ζ value (see
Fig. 4e), which indicates a shallow boundary-layer height at t∗ ∈ (0.05, 0.1) followed by a
sequence of fully to partially neutral states for the period t∗ ∈ (0.1, 0.3). An irregular spatial
switching from neutral to strongly stable conditions is evident for t∗ ∈ (0.3, 0.5) and is
decoupled from the ground. This dynamics of the stability parameter ζ is then accompanied
by high-frequency noise for the whole range of stability values varying from unstable to
stable (see t∗ ∈ (0.5, 0.9) in Fig. 4e). In the first half of the night t∗ ∈ (0.3, 0.5), stability
ζ responds more on a larger scale, while in the second part of the night, it follows more the
small-scale dynamics. The average relative magnitude (estimated from the figure) of the jet
and sub-mesoscale (see Fig. 4b, c) is approximately 0.5 u∞. In the latter half of the night, the
jet and sub-mesoscales are more noticeable than in the first half because of the lower mean
scale energy. Sharp peaks in the turbulence intensity for t∗ ∈ (0.5, 0.6) and t∗ ∈ (0.7, 0.8)
correspond to increased absolute values of jet and sub-mesoscales together with a relatively
comparable shape of the mean wind-speed profile t∗ ∈ (0.4, 0.8).

The change of the jet and sub-mesoscaleswith respect to height becomesmore apparent for
the night with the lower mean wind speed (compare top in Fig. 4b, c with Fig. 5b, c). At both
scales, the sporadic accelerations occupy significant portions of the boundary layer.Generally,
the T I is intermittent in time and shows signs for pronounced dependence on height (see
Fig. 5d; t∗ ∈ (0.3, 0.4)). As demonstrated next, the mean wind speeds E(u∞) < 2.7 m s−1

should not be considered as the energetically large scale, but rather the jet scale.
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(a)

(b)

(c)

(d)

(e)

Fig. 4 Scale activity and turbulence response for a night with a lowwind speedE(u∞) = 2.7m s−1, including
a themeanwind-speed profile,b the jet scale, c the sub-mesoscales,d the turbulence intensity, and e the stability
parameter ζ . For the jet and sub-mesoscales, only the streamwise component is displayed to identify times of
deceleration. The cross-stream component behaves similarly but is of a smaller magnitude

(a)

(b)

(a)

(c)

(d)

(e)

Fig. 5 Scale activity and turbulence response for a night with a lowwind speedE(u∞) = 1.3m s−1, including
a themeanwind-speed profile,b the jet scale, c the sub-mesoscales,d the turbulence intensity, and e the stability
parameter ζ . For the jet and sub-mesoscales, only the streamwise component is displayed to identify times of
deceleration. The cross-stream component behaves similarly but is of a smaller magnitude
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Table 3 R2 values for each identified regime for each height

Stability regime 1 m 2 m 5 m 10 m 15 m 20 m 30 m

Weak 0.93 0.90 0.90 0.88 0.89 0.85 0.80

Intermediate 0.92 0.93 0.92 0.91 0.88 0.82 0.80

Strong 0.88 0.81 0.81 0.84 0.86 0.88 0.85

Figure 5 displays a night with awind speedE(u∞) = 1.3m s−1. The variability of the sub-
mesoscales is of the order of 1 m s−1. The profile of the mean wind speed is unsteady in time
and vertical direction (see Fig. 5a). The value of T I is more sensitive to the sub-mesoscale
band than to the jet scale as evident by comparing the magnitude of the alternating coloured
bands (see Fig. 5c, d). While it is difficult to infer any structural information from the profiles
due to their chaotic behaviour. Some large values in horizontal velocity components at the
end of the night are notable t∗ = (0.9, 1.0), probably the result of the DWT calculations.

4.2 Performance of the Statistical ClassificationModel

Workingwith the clusteringmethod enables the clustering of the data and provides amodel for
the quantity of interest, in our case, the TKE. It is interesting to knowhow the estimatedmodel
performs in predicting the training dataset. Unfortunately, predicting outside the training
dataset is beyond the scope for this work as described in the discussion section.

The clusteringmethodology requires several parameters which can be determined a poste-
riori. The number of clusters is set to three to resolve weak, intermediate, and strong stability
regimes (see Table 2). Test runs were performed with two and four clusters. Two clusters did
not separate the right branch of the TSI diagram (see Fig. 9), and four clusters resolved the
intermediate regime in two. Also, more clusters added complexity to the data analysis and
did not yield any new information. Therefore, the number of clusters for the FLOSSII dataset
is not statistically optimal.

The relative explained variance is represented with the coefficient of determination R2,
which serves as the performance indicator for the model, and may be plotted against the
persistency threshold to indicate an optimal valueCopt (see Fig. 6) by its maximum. Figure 6a
indicates that themost variance is explained close to the ground. Rescaling the graphs for each
height shows that the optimal value ofC is dependent on height, with the averaged value over
all heights C = 103. The parameter Copt undergoes a spread if the minimization is repeated,
because the global optimum is approached from different, random initial conditions. The
variability in the value of Copt is of order 10 (± 10 regime jumps for 102 nights), and hence
the location of the regime jumps in the affiliation function differ insignificantly between the
different solutions. The balance between the number of minimization trials and the solution
accuracy is found to be acceptable for this dataset.

The R2 score is summarized in Table 3 for each height and regime, with the overall
explained variance by the model ranging from 0.8 to 0.93. The model performs consistently
in the weak and intermediate clusters with respect to the modelled height as evident in the
steady decreasing value of R2 with increasing height (see Table 3). This is because, in the
weak stability regime, the turbulence is well described by the shear generation at the ground.
In contrast, the strongly stable regime shows a lower score and no trend with respect to the
height.

123



60 V. Boyko, N. Vercauteren

(a) (b) (c)

Fig. 6 The coefficient of determination R2 as a function of the regime-persistency threshold C for a each
height, b normalized to emphasize the maximum and c its mean for all seven heights. The peak of a curve
indicates the optimal value of C

(a)

(b)

(c)

Fig. 7 Turbulence intensity for the night presented in Fig. 4 according to a the measurements T Iobs, and b
the model. The solid black lines in (a) and (b) indicate the height of the time series c of that measured and
modelled. The value of T I is linearly interpolated in height

Figure 7 displays the modelled and measured T I for the intermittent night presented in
Fig. 4. The large departure of the model is evident at z∗ = 0.4. The small-scale details at the
top of the boundary layer are captured but do not extend deep enough towards the ground,
mainly because the model does not account for spatial correlation. The time evolution of T I
is plotted for z∗ = 1.9 (see Fig. 7c), illustrating that the model captures the main tendency
but with lower variance.

Figure 8 illustrates the statistical link between the TKE and the vertical velocity gradients
of the jet and sub-mesoscales in terms of regression coefficients. The absolute values of the
parameters cannot be compared across the regimes, because the averaged value of T I is
different in them. However, a comparison between the coefficients of the forcing variables
is justified within one cluster at one height. In the Fig. 8, the right column of panels shows
the strongly stable regime (intermittent). At the 1-m height (see Fig. 8i), the memory effect
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 8 Stack plots of the parameter values for the forcing terms only,where |Bk | is the sorted absolute parameter
vector of the forcing variables, where k = 3; B1 = sort(|b1|, . . . , |b11|) and holds parameters for the lagged
∂U/∂z. B2 = sort(|̃b1|, . . . , |̃b11|) and holds parameters for the lagged ∂Ũ/∂z. B3 = sort(|̂b1|, . . . , |̂b11|)
and holds parameters for the lagged ∂Û/∂z. From left to right, the columns are the: weak (a, d, g), intermediate
(b, e, h), and strong (c, f, i) stability regimes. Each row is representing the heights: 30 m (a, b, c), 15 m (d, e,
f) and 1 m (g, h, i). Each panel shows 11 parameter values for each forcing variable, with the absolute values
of the parameters sorted in decreasing order. The occupied volume represents the explanatory power of each
forcing variable relative to the other variables within each panel

(more time lags are important) is more significant than at 15 m (see Fig. 8f) and 30 m (see
Fig. 8c). By comparing the colour-coded areas, one can see that the contribution of each scale
to the TKE is approximately equal at the ground (see Fig. 8i). With increasing altitude, the
impact of the gradients of the jet and sub-mesoscales on the TKE is reduced (see Fig. 8f, c).
The expected behaviour can be seen in the detected weak stability regime (see Fig. 8a, d, g).
Close to the ground (see Fig. 8g), the dominant factor is the gradient of the mean velocity
scale with the smallest relevant lag time. Further away from the ground (see Fig. 8a), the jet
scale and the mean is dominant but with a longer memory effect. The detected intermediate
regime (see Fig. 8b, e, h) indicates a contribution from the jet scale at all three heights.

4.3 Turbulence–Submeso–Intensity Diagram

The TSI diagram illustrates the ratio between the energy of the sub-mesoscales and that of
the turbulent scales, and is expressed relative to the mean flow, therefore sharing a common
denominator (u∞). By observing only the scatter plot, we may conclude that, at some point,
the value of T I is correlated with SI (see Fig. 9a, where SI > 10−1). This dependency is
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especially suspicious as the slope is almost one. On the one hand, we cannot trust the simple
scatter plot due to possible self-correlation (Kim 1999) for SI > 10−1. On the other hand,
there is a visible change at SI ≈ 10−1 from no correlation to almost 1 : 1. To investigate the
relationship between the values of T I and SI , we rely on the stability ζ threshold, clustering
method and the shape factor H of the boundary layer, which groups the scatter plot in different
ways based on stability, on Granger causality between TKE and the gradients of the filtered
wind speed, and the type of the boundary-layer profile.With these indicators, the TSI diagram
is more reliable.

Before analyzing the results of the classification, we investigate the indexing of the TSI
diagram by the stability and the shape factor H . Figure 9 displays the TSI diagram for three
heights: 1, 15, and 30 m (column-wise from left to right), with each point colour-coded with
stability (see Fig. 9a, b, c) and the shape factor (see Fig. 9d, e, f). First, observe that the data
points are changing the outer shape, thereby indicating a height dependence. Second, the
average turbulence level (T I = 0.11; see Fig. 9a, the left corner of the point cloud) within the
weak stability condition (ζ < 0.5) is evident for the height of 1 m. The shape factor (see Fig.
9d) in that region has low values and is an additional confirmation that the boundary-layer
profile is turbulent.

Periods of strong stability (ζ > 1) are observed more frequently (darker region) above
ground level (see Fig. 9c) than at the surface (see Fig. 9a). With increasing height, the left
corner of the point cloud (indicator for average T I ) decreases its value and blends with the
centre. Detection of the average T I becomes difficult due to increased scatter at the left edge
of the point cloud (see Fig. 9c). The shape factor indicates that the left corner of the cloud is
mostly in a state of developed turbulence (see Fig. 9f).

The left corner of the TSI diagram is where the mean wind speed and TKE are high.
According to the value of ζ , it is a region of neutral conditions (see Fig. 9a, b, c). We know
that the upper right corner of the TSI diagram is a region with a low value of the mean
wind speed and a low level of turbulence, but this is not obvious from the diagram because
it displays the dimensionless TKE. The dimensional TKE (not scaled with the mean wind
speed) is low in the upper right corner and high at the left corner of the TSI diagram. The
lack of turbulence reduces the transport of momentum and therefore changes the shape of the
mean wind-speed profile. Consequently, we expect to find a change in the shape factor, and
this is indeed the case (see Fig. 9d, e, f), indicating a less turbulent profile at higher values
of SI .

Figure 10 displays the classification of the TSI diagram by constraining the value of ζ .
The subcritical cluster range 0 < ζ < 1 is presented in the upper row and the supercritical
cluster 1 < ζ < 10 in the bottom row for three heights of interest. Furthermore, the panels
display the estimated p.d.f. for the constrained sets of points.

For the subcritical stability, the densest region shows a reduction of T I with height, as
expected (see Fig. 10a, b, c). A barely noticeable decrease of the sub-mesoscale energy across
the boundary-layer height is present (observe the shift of the densest region to the left). For
the supercritical stability, the elliptical shape of the densest area changes in location and
orientation in the TSI diagram (see Fig. 10d, e, f). The sub-mesoscale intensity decreases
across the height in the supercritical regime more than in the subcritical. At the ground, the
high-density regions for subcritical (see Fig. 10a) and supercritical (see Fig. 10d) regimes
are separated, but away from the ground, they overlap (see Fig. 10c, f).

Figure 11 displays the classification of the TSI diagram by the clustering method in weak,
intermediate, and strong stability regimes for three heights: 1, 15 and 30 m. Both classifiers
show almost an identical p.d.f. in the TSI diagram for the weak stability regime (compare
Fig. 10a, b, c with Fig. 11g, d, a), which supported by the evaluated ζ value within the
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Fig. 9 Turbulence–Submeso-Intensity diagram for three heights: 1 m, 15 m, 30 m. In (a, b, c) the points are
coded with value of ζ and in (d, e, f) with the shape factor H . The scatter plots contain a reduced set of points
in the ranges 0 < ζ < 10 and 1.3 < H < 2.3. The points with higher values of ζ and H are plotted on top of
the points with a lower value (they are sorted); H = 2.3 is for a laminar profile and H = 1.3–1.4 for turbulent

clustering method regimes (see Table 2). The strong stability regime in Fig. 11i, f, c shows
more elongated density functions. Across the height, the shape is changed from an angled
feather-like structure to an elliptical one. We suspect that, close to the ground, the sub-
mesoscale motions produce the turbulence in two different ways, with the first through the
ground shear (note that the minimum TKE is not changed across regimes; see Fig. 11i) and
the second one by a different mechanism, such as wave breaking or wind turning (see Fig 11i
at SI = 1; T I = 0.5). Above the ground, the impact of stability is greater due to the smaller
vertical gradient of the mean wind speed and T I takes significantly lower values (see Fig.
11c at SI = 0.05; T I = 0.05). At the height of 30 m, there is a high likelihood of observing
a variability of T I values (see Fig. 11c), but which is lower in the weak stability regime (see
Fig. 11a, d, g).

One way to relate a p.d.f in the TSI diagram classified with different methodologies is to
investigate the high-density region, by comparing the strong stability regime detected with
the clustering method to the regime selected with 1 < ζ < 10 for α = 0.85 (see Fig. 12).
This thresholding value α means that each p.d.f. has a volume of 15% and is confined from
below with a plane, below which every value is removed. The statistical-clustering method
identifies a larger region in the TSI diagram than the ζ -classifier (compare Fig. 12a, b, c with
Fig. 12d, e, f). The intermediate cluster (see Fig. 11h, e, b) is also a part of the 1 < ζ < 10
set. Nevertheless, the clustering based on the relationship between turbulence and velocity
gradients depicts a more intense relationship between turbulence and sub-mesoscale motion
in the TSI diagram. It is interesting to note that at high stability local ζ value can indicate
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(a) (b) (c)

(f)(e)(d)

Fig. 10 Classified TSI diagram with thresholding the stability value ζ for three heights: 1 m, 15 m, 30 m.
Subcritical stability 0 < ζ < 1 (a, b, c) and supercritical stability 1 < ζ < 10 (d, e, f). A p.d.f. is estimated
and plotted for each set of points. Each column of panels represents a height

a range of T I (see Fig. 9c), but on average it is highlighting only a reduced low value
(see Fig. 12c). Surprisingly, the clustering method finds an additional state of turbulence
intensity (compare Fig. 12f with Fig. 12c). At each height, the statistical classifier finds a
more elongated relationship, where the ζ classifier showsmore concentrated spots and cannot
detect the increased T I values at higher stabilities, suggesting that the temporal dependence
of the sub-mesoscale motions plays an essential role in the description of the intermittent
turbulence.

4.4 Classification of the Flux–Profile Relationship and Analysis of the
Self-Correlation

Figure 13 displays the flux–profile relationship φmφ−1
w as in Grachev et al. (2018) for each

cluster as this form of stability function is not affected by self-correlation. We recall that
the cluster stabilities have different origins than in Monin–Obukhov similarity theory and
are grouped based on the model affiliation function �(t) that is determined by solving the
minimization problem Eq. 14. Equation 10 prescribes the rule that is used to identify a
cluster. For each regime, a p.d.f. is estimated, and the high-density region is constrained with
α = 0.32. The three flux–profile relations show substantial overlap with increasing scatter.
The strong stability regime (see Fig. 13c) reveals an outbreak towards the horizontal axis,
whichmeans more sustained turbulence. Themaximum error (the distance between the black
curve and the edge of the colour coded p.d.f.) relative to Monin–Obukhov similarity theory
can be found in the intermittent cluster approximately at ζ ≈ 2. The error decreases for
higher ζ . This observation is not sensitive to the value of the p.d.f. threshold α.
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(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

Fig. 11 Classified TSI diagram with the clustering method. Weak stability (a, d, g), intermediate (b, e, h)
and strong stability (c, f, i) whose corresponding stability values are summarized in Table 2. There are three
heights: 30 m (a, b, c), 15 m (d, e, f), and 1 m (g, h, i). A p.d.f. is estimated and plotted for each set of points

Besides calculating the flux–profile relation with the gradient of the mean scale, we exam-
ined the flux–profile relation constructed with the gradients of the jet and sub-mesoscale,
which reveal substantial scatter regardless of the classified regimes and, therefore, are omit-
ted.

5 Discussion

Parametrization of SBL dynamics has recently received significant attention (Li et al. 2016;
Baas et al. 2018), with the aim of an adequate representation of strong stability with char-
acteristically intermittent turbulence encouraging the exploration of the physics governing
the vSBL. Besides the dependence on the topography (Serafin et al. 2018), turbulence mod-
elling in the SBL is complicated by the fact that strong stratification reduces the turbulence
scale, thereby giving room for other processes to act. These processes produce additional
turbulence compared with mean-shear driven turbulence. As a consequence, in the vSBL,
turbulence is triggered at multiple scales and can be localized in space and time. The unsteady
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(a)

(d) (e) (f)

(b) (c)

Fig. 12 Comparison of the ζ classifier (a, b, c) with the clustering method (d, e, f) for the strong stability
regime only. Column-wise, the heights are 1, 15, and 30 m. A p.d.f. is estimated in each panels, and each p.d.f.
is limited to display the regions of the maximum density. The threshold value is set such that the projected
region of the maximum density is equal to 15% of the total p.d.f. volume (see definition in Sect. 4)

Fig. 13 Classified flux–profile relationship φmφ−1
w with the clustering method. a Weak, b intermediate, and

c strong stability regimes. A p.d.f is estimated and constrained to 68% of the total volume, and colour-coded
according to the colour bar, with grey points corresponding to the remaining 32% volume of the p.d.f. The
stability function is fitted based on the points within the constrained p.d.f. Note, ideally one would need a
correction for the heat flux due to humidity
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state cannot be represented by models based on the assumption of turbulence in equilibrium.
Nevertheless, missing TKE terms may be incorporated through additional forcing terms in
the TKE equation, as suggested by He et al. (2019, see their Eq. A1.1). The nature of the
turbulence created through multiscale perturbations is widely ranging, making it challenging
to systematize the effect in a universal and deterministic way. Our intention is to understand
how the statistical properties of turbulence correlate with those of the sub-mean scales to be
able to develop unsteady models. Our study contributes to this goal by isolating and visual-
izing the sub-mean scales. Using a statistical clustering tool, we investigate the traditional
relation between gradients and turbulence at multiple scales.

In Sect. 4.1, we applied nonlinear filtering to separate themean scale instead of fitting a log
profile (Nieuwstadt 1984). We used wavelets for scale separation, because they are flexible
in their application and widely studied. Particularly interesting alternatives are the recursive
filters used by Zurbenko and Smith (2017) or Falocchi et al. (2018, 2019). We find that, for
the FLOSSII database, filtering the velocity on a scale of 1 h is not long enough to obtain a
logarithmic profile for a height of 30 m, and a 3-h-averaging scale is required. In addition, we
showed the activity of the sub-mean scales and spatio-temporal interaction with the TKE and
stability. For a given observational height of 30 m, there should exist a temporal averaging
scale that is long enough to obtain the log profile for the mean wind speed. The fluctuation
of the mean wind profile that does not follow a logarithmic shape should be considered as a
deviation from the similarity theory. The choice of sub-mean scales is subjective and serves
here to unfold the scales acting on turbulence in stable conditions. We investigated the scale-
dependent profiles for 102 nights and observed that the intermittent turbulence is associated
with decoupled boundary layers (Lan et al. 2018). Furthermore, top-down intermittency (Sun
et al. 2012) is related at the sub-mesoscale.

The statistical model can reproduce the value of T I (see Fig. 7) within the dataset. While
accounting for spatial correlation in the model would improve it further, using this model to
forecast TKE in stable conditions is complicated for several reasons. The model needs the
gradients of the sub-mean scales and the affiliation function, but these quantities are not given
in a forecast by traditional models, and it is not clear how to parametrize the regime-affiliation
function obtained here through the clustering procedure. For example, regime-switchingmay
be modelled by a Markov chain, but we did not observe enough statistical regularity to
derive such a parametrization. Further studies, which take the Markov chain approach into
account, will need to be undertaken. Furthermore, the number of parameters has to be reduced
(in this study we have 42 parameters). Moreover, the trained model is not transferable to
another dataset for several reasons. The affiliation function, which tells us what set of model
parameters is active at the current time, is inferred from the data. To make a prediction,
as discussed above, one needs to model it. If one considers modelling the regime jumps
stochastically without any dependence on external parameters, then it is expected that the
averaged performance over the whole dataset may be acceptable. However, locally on the
time scale of several hours, the model may predict a strong stability regime in the presence of
a high geostrophic wind speeds, therefore making the prediction worse. Advance modelling
of the �(t) function (the regime affiliation) is needed to get any reasonable results. One can,
for example, consider the regime jumps to be conditional on the geostrophic wind speed or
stratification. Besides these difficulties, we used a rescaling of the TKE with the standard
deviation to enhance regime separation. During the prediction, even within the same dataset,
this scaling factor is not known.

In Sect. 4.3, we introduced the TSI diagram and showed how the sub-mesoscales commute
with the turbulence intensity T I using the ζ classifier and the statistical clustering. Major
differences between these classifiers are found in the very stable regime (ζ > 1). The clus-
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tering methodology isolates states in the TSI diagram with the interscale relation because the
clustering is based on Granger causality between the vertical gradients and TKE. We have
analyzed the probability density in the TSI diagram of the strong stability regime for seven
available heights (not shown). The gradient-based classification finds a bimodal distribution
(see Fig. 12 d, e, f), but the bimodality is weak, and to separate the modes, one needs to select
the high-density region that contains 1% of the total p.d.f. volume. The results demonstrate
how the two modes change their location with respect to height. We find a mode correspond-
ing to high T I and SI values, associated with a state transition to a higher TKE level due to
sub-mesoscale motions. The TSI diagram shows the relative importance of sub-mesoscale
motions in the production of turbulence concerning stability and height (see Fig. 11). Indeed,
it is not known if the footprint of the energy distribution between the sub-mesoscale motions
and the TKE would be different at another site. The footprint also cannot be investigated
with the stability parameter ζ to a full extent, because it does not account for the temporal
dependence between sub-mesoscale motions and the TKE as demonstrated in Fig. 12.

The scatter in the flux–profile relationship is reduced by removing the intermittent cluster.
Mahrt (2007) came to a similar conclusion when the nonstationarity was isolated based on
the logarithm of the gradient Richardson number. The scatter in the intermittent regime is
significant and covers a wide range of function values. This isolated regime can be mod-
elled stochastically by dividing the flux–profile relationship into two states with different
parametrizations of the stability function. Luhar et al. (2009) investigated the performance
of a modified stability function, and implemented a discontinuous transition from the weak
to the strong stability regimes. As a result, the turbulence model was able to predict the
frequency of the low wind speed correctly.

For stochastic turbulence modelling, one could think of a two-state stability function, and
an implementation based on the stochastically-perturbed parameter schemes (Hacker et al.
2011)whichmimic the spread in the flux–profile relation. The regime at strong stabilitywould
be described by providing a distribution. For example, an asymmetric Gaussian distribution
can be fitted to the flux–profile relationship in the intermittent regime (see Fig. 13c). Then,
during a simulation of the strong stability regime, the value of φm(ζ ) would be conditionally
sampled based on the stability parameter ζ , where the regime of weak stability follows a
deterministic description (see Fig. 13a).

Here, we presented an application of a methodology with which the classification and
modelling are done simultaneously. Improving the model structure compared with the earlier
approach of Vercauteren and Klein (2015) improves both aspects: clustering and prediction,
thereby resulting in a better understanding of the vSBL. The approach can be extended
to enable the testing of different model structures. Finding a simpler functional form for
parametrizing the intermittent regime and embedding it into the clustering framework is the
subject of future work.

The findings on the interaction between turbulence and sub-mesoscale motions are sum-
marized in a concluding sketch of the TSI diagram (see Fig. 14). The shear at the ground is
not the only source of turbulence as other scales induce additional turbulence on top of the
mean level (see Fig. 14a), but the situation changes with increasing height. The bulk mean
wind speed is small; consequently, the gradient of the mean wind speed above ground level is
close to zero, resulting in no mechanical production of turbulence. Besides, the stratification
is damping the turbulence. Hence, we find a less obvious overlap of the intermittent (red)
region with the non-intermittent one (see Fig. 14b). As a result, the turbulence is driven more
by the sub-mesoscale than by the gradient of the mean wind speed. The value of SI exceeds
the critical value of one more often than the value of T I exceeds its critical value of one.
Accordingly, to induce intermittency, the ratio between the mean wind speed and the sub-
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(b)(a)

Fig. 14 A sketch of a TSI diagram illustrating the intermittent turbulence states in the FLOSS2 dataset. The
weak and strong stability regimes are marked with blue and red, respectively, T Iave is the averaged value of
T I ; T Icri t = 1 if the energy of the mean wind speed is equivalent to the TKE and SIcri t = 1 if the energy
of the mean wind speed is equal the energy of the sub-mesoscale motions

mesoscale energy should be almost one at the height of 1 m, before reducing further away
from the ground.

6 Conclusion

Intermittent turbulence in the SBL is a common component that is not well represented in
models. The unresolved flow structures contribute to the infrequent triggering of turbulence,
causing intermittent bursts of different spatio-temporal scales in the vSBL.

As illustrated by the wavelet filtering, the time variability of the turbulence field develops
with decreasing wind speed and becomes closely associated with the sub-mean scale dynam-
ics. The patchiness of the turbulence is pronounced at low wind speeds. For sub-critical
stability, the turbulence shows a weak dependence on the sub-mesoscale flow, but for super-
critical stability, the sub-mesoscale intensity becomes an essential source of turbulence. The
introduced jet scale is found to show patterns of generation and reduction of the turbulence
due to the induced shear close to the ground.

For the strong stability regime, the vertical gradients from the sub-mean scales contribute to
the TKE in the same amount as the mean scale, whereby above ground level, the contribution
from vertical gradients is less. Furthermore, closer to the ground, memory effects are more
relevant than away from it. A higher lag time in the discrete model is proportional to a
higher-order derivative in the time and indirectly indicates a need for higher-order turbulence
closure. However, in the FLOSSII dataset for strong stability, the memory of the vertical
gradient is essential at the height of 1 m, but starts to be less important above 15 m.

TheTSI diagram classified by the turbulence-scale gradient relation provides evidence that
in strong stratification, with sub-mesoscale energy > 10% of the total mean kinetic energy,
an intermittent regime appears. The performance of the statistical model demonstrates that it
is possible to reproduce the observed value of T I using the vertical gradients of the sub-mean
velocity scales within a dataset. Future work will develop a stochastic approach to model the
unsteady energy injections based on the data analyses.
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Kang Y, Belušić D, Smith-Miles K (2015) Classes of structures in the stable atmospheric boundary layer. Q J

R Meteorol Soc 141(691):2057–2069

123

http://creativecommons.org/licenses/by/4.0/


Multiscale Shear Forcing of Turbulence in the Nocturnal Boundary... 71

Katul G, Vidakovic B (1996) The partitioning of attached and detached eddymotion in the atmospheric surface
layer using Lorentz wavelet filtering. Boundary-Layer Meteorol 77(2):153–172

Kim JH (1999) Spurious correlation between ratios with a common divisor. Stat Prob Lett 44(4):383–386
Kumar P, Foufoula-Georgiou E (1997)Wavelet analysis for geophysical applications. RevGeophys 35(4):385–

412
Lan C, Liu H, Li D, Katul GG, Finn D (2018) Distinct turbulence structures in stably stratified boundary layers

with weak and strong surface shear. J Geophys Res Atmos 123(15):7839–7854
Lee GR, Gommers R, Wasilewski F, Wohlfahrt K, O’Leary A (2019) Pywavelets/pywt: Pywavelets v1.0.3.

https://doi.org/10.5281/zenodo.2634243
Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurement

and analysis, vol 29. Springer, Berlin
Li D, Katul GG, Zilitinkevich SS (2016) Closure schemes for stably stratified atmospheric flows without

turbulence cutoff. J Atmos Sci 73(12):4817–4832
Luhar AK, Hurley PJ, Rayner KN (2009) Modelling near-surface low winds over land under stable condi-

tions: sensitivity tests, flux-gradient relationships, and stability parameters. Boundary-Layer Meteorol
130(2):249–274

Mahrt L (2007) The influence of nonstationarity on the turbulent flux-gradient relationship for stable stratifi-
cation. Boundary-Layer Meteorol 125(2):245–264

Mahrt L (2010) Variability and maintenance of turbulence in the very stable boundary layer. Boundary-Layer
Meteorol 135(1):1–18

Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45
Mahrt L (2019) Microfronts in the nocturnal boundary layer. Q J R Meteorol Soc 145(719):546–562
Mahrt L,VickersD (2005)Boundary-layer adjustment over small-scale changes of surface heat flux.Boundary-

Layer Meteorol 116(2):313–330
Mahrt L, Vickers D, Nakamura R, Soler M, Sun J, Burns S, Lenschow D (2001) Shallow drainage flows.

Boundary-Layer Meteorol 101(2):243–260
Mallat S (1999) A wavelet tour of signal processing. Elsevier, Amsterdam
Metzner P, Putzig L, Horenko I (2012) Analysis of persistent nonstationary time series and applications.

Commun Appl Math Comput Sci 7(2):175–229
Monahan AH, Rees T, He Y, McFarlane N (2015) Multiple regimes of wind, stratification, and turbulence in

the stable boundary layer. J Atmos Sci 72(8):3178–3198
Mortarini L, Stefanello M, Degrazia G, Roberti D, Castelli ST, Anfossi D (2016) Characterization of wind

meandering in low-wind-speed conditions. Boundary-Layer Meteorol 161(1):165–182
Mortarini L, Cava D, Giostra U, Costa FD, Degrazia G, Anfossi D, Acevedo O (2019) Horizontal meandering

as a distinctive feature of the stable boundary layer. J Atmos Sci (2019)
Nieuwstadt FT (1984)The turbulent structure of the stable, nocturnal boundary layer. JAtmosSci 41(14):2202–

2216
O’KaneTJ,MonselesanDP,Risbey JS,Horenko I, FranzkeCL (2017)Onmemory, dimension, and atmospheric

teleconnections. Math Clim Weather Forecast 3(1):1–27
PengZ, JacksonMR,Rongong J,ChuF, ParkinRM(2009)On the energy leakage of discretewavelet transform.

Mech Syst Signal Process 23(2):330–343
Pope SB (2001) Turbulent flows. Cambridge University Press, Cambridge, p 749
Qiu J, Paw UKT, Shaw RH (1995) The leakage problem of orthonormal wavelet transforms when applied to

atmospheric turbulence. J Geophys Res Atmos 100(D12):25,769–25,779
Risbey JS, O’Kane TJ, Monselesan DP, Franzke C, Horenko I (2015) Metastability of northern hemisphere

teleconnection modes. J Atmos Sci 72(1):35–54
Rodrigo JS, Anderson PS (2013) Investigation of the stable atmospheric boundary layer at Halley Antarctica.

Boundary-Layer Meteorol 148(3):517–539
Schlichting H, Gersten K (2016) Boundary-layer theory. Springer, Berlin, p 805
Serafin S, Adler B, Cuxart J, De Wekker S, Gohm A, Grisogono B, Kalthoff N, Kirshbaum D, Rotach M,

Schmidli J et al (2018) Exchange processes in the atmospheric boundary layer over mountainous terrain.
Atmosphere 9(3):102

Sun J, Burns SP, Lenschow DH, Banta R, Newsom R, Coulter R, Frasier S, Ince T, Nappo C, Cuxart J et al
(2002) Intermittent turbulence associated with a density current passage in the stable boundary layer.
Boundary-Layer Meteorol 105(2):199–219

Sun J, Mahrt L, Banta RM, Pichugina YL (2012) Turbulence regimes and turbulence intermittency in the
stable boundary layer during CASES-99. J Atmos Sci 69(1):338–351

Sun J, Lenschow DH, LeMone MA, Mahrt L (2016) The role of large-coherent-eddy transport in the atmo-
spheric surface layer based on CASES-99 observations. Boundary-Layer Meteorol 160(1):83–111

Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

123

https://doi.org/10.5281/zenodo.2634243


72 V. Boyko, N. Vercauteren

Vercauteren N, Klein R (2015) A clustering method to characterize intermittent bursts of turbulence and
interaction with submesomotions in the stable boundary layer. J Atmos Sci 72(4):1504–1517

Vercauteren N, Mahrt L, Klein R (2016) Investigation of interactions between scales of motion in the stable
boundary layer. Q J R Meteorol Soc 142(699):2424–2433

Vercauteren N, Boyko V, Faranda D, Stiperski I (2019a) Scale interactions and anisotropy in stable boundary
layers. Q J R Meteorol Soc
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