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Abstract
We use a database of direct numerical simulations to evaluate parametrizations for energy
dissipation rate in stably stratified flows. We show that shear-based formulations are more
appropriate for stable boundary layers than commonly used buoyancy-based formulations.
As part of the derivations, we explore several length scales of turbulence and investigate their
dependence on local stability.

Keywords Buoyancy length scale · Integral length scale · Outer length scale · Ozmidov
scale · Stable boundary layer

1 Introduction

Energy dissipation rate is a key variable for characterizing turbulence (Vassilicos 2015). It is
a sink term in the prognostic equation of turbulence kinetic energy (TKE; e)

∂e

∂t
+ ADV = BNC + SHR + TRP + PRC − ε, (1)

where, ε is themean energy dissipation rate. The terms ADV , BNC, SH R, T RP, and PRC
refer to advection, buoyancy production (or destruction), shear production, transport, and
pressure correlation terms, respectively. Energy dissipation rate also appears in the celebrated
“−5/3 law” of Kolmogorov (1941) and Obukhov (1941a, b)

E(κ) ≈ ε2/3κ−5/3, (2)
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where, E(κ) and κ denote the energy spectrum and wavenumber, respectively.
In field campaigns or laboratory experiments, direct estimation of ε has always been a

challenging task as it involves measurements of nine components of the strain rate tensor.
Thus, several approximations (e.g., isotropy, Taylor’s hypothesis) have been utilized and a
number of indirectmeasurement techniques (e.g., scintillometers, lidars) have beendeveloped
over the years. In parallel, a significant effort has been made to correlate ε with easily
measurable meteorological variables. For example, several flux-based and gradient-based
similarity hypotheses have been proposed (e.g., Wyngaard and Coté 1971; Wyngaard et al.
1971; Thiermann and Grassl 1992; Hartogensis and de Bruin 2005).

In addition, a handful of papers also attempted to establish relationships between ε and
either the vertical velocity variance (σ 2

w) or TKE (e). One of the first relationships was
proposed by Chen (1974). By utilizing the Kolmogorov–Obukhov spectrum (i.e., Eq. 2) with
certain assumptions, he derived

ε ∝ σ 3
w, (3)

where, the proportionality constant is not dimensionless. Since this derivation is only valid
in the inertial range of turbulence, a band-pass filtering of vertical velocity measurements
was recommended prior to computing σw. A few years later, Weinstock (1981) revisited the
work of Chen (1974) and again made use of Eq. 2, albeit with different assumptions (see
Appendix 2 for details). He arrived at the following equation

ε ≈ σ 2
wN , (4)

where, N is the so-called Brunt–Väisäla frequency. Using observational data from the
stratosphere, Weinstock (1981) demonstrated the superiority of Eq. 4 over Eq. 3. In a
recent empirical study, by analyzing measurements from the CASES-99 (the Cooperative
Atmosphere–Surface Exchange Study–1999) field campaign, Bocquet et al. (2011) proposed
to use ε as a proxy for σ 2

w.
In the present work, we quantify the relationship between ε and e (as well as between

ε and σw) by using turbulence data generated by direct numerical simulation (DNS). To
this end, we first compute several well-known “outer” length scales (e.g., buoyancy length
scale and Ozmidov scale), normalize them appropriately, and explore their dependence on
height-dependent stability.Next,we investigate the inter-relationships of certain (normalized)
outer length scales that portray qualitatively similar stability-dependence. By analytically
expanding these relationships, we arrive at two ε–e and two ε–σw formulations; only the
shear-based formulations portray quasi-universal scaling.

The organization of this paper is as follows. In Sect. 2, we describe our DNS runs and
subsequent data analyses. Simulated results pertaining to various length scales are included
in Sect. 3. The ε–e and ε–σw formulations are derived in Sect. 4.We discuss the surface-layer
characteristics of a specific shear-based length scale in Sect. 5. A few concluding remarks,
including the implications of our results for atmospheric modelling, are made in Sect. 6. In
order to enhance the readability of the paper, either a heuristic or an analytical derivation of
all the length scales is provided in Appendix 1. Given the importance of Eq. 4, its derivation
is also summarized in Appendix 2. In Appendix 3, we elaborate on the normalization of
various variables that are essential for the post-processing of DNS-generated data. Finally,
supplementary results based on our DNS database are included in Appendix 4.
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2 Direct Numerical Simulation

Over the past decade, due to the increasing abundance of high-performance computing
resources, several studies probed different types of stratified flows by using DNS (e.g., Flores
and Riley 2011; García-Villalba and del Álamo 2011; Brethouwer et al. 2012; Chung and
Matheou 2012; Ansorge and Mellado 2014; Shah and Bou-Zeid 2014; He and Basu 2015,
2016a). These studies provided valuable insights into the dynamical and statistical properties
of these flows (e.g., intermittency, structure parameters). In the present study, we use a DNS
database, which was previously generated by using a massively parallel DNS code, called
HERCULES (He 2016), for the parametrization of optical turbulence (He and Basu 2016b).
The verification of HERCULES has been presented in the appendix of He (2016). We solved
the normalized Navier–Stokes and temperature equations in an open-channel flow driven by
a streamwise pressure gradient, as shown below (using Einstein’s summation notation for
subscripts i and j)

∂un,i

∂xn,i
= 0, (5)

∂un,i

∂tn
+ ∂un,i un, j

∂xn, j
= − ∂ pn

∂xn,i
+ 1

Reb

∂

∂xn, j

(
∂un,i

∂xn, j

)
+ �Pδi1 + Ribθnδi3, (6)

∂θn

∂tn
+ ∂θnun,i

∂xn,i
= 1

RebPr

∂

∂xn,i

(
∂θn

∂xn,i

)
, (7)

where un and xn are the normalized velocity and coordinate vectors, respectively, with the
subscript i denoting the i th vector component; tn is the normalized time; pn is the normalized
pressure; �P is the streamwise pressure gradient to drive the flow; and θn is the normal-
ized potential temperature. The normalization of DNS variables is shown in Appendix 3.
Throughout the paper, the subscript “n” is used to denote a normalized variable.

The computational domain size for all the DNS runs was Lx × Ly × Lz = 18h×10h×h,
where h is the open-channel depth. The domain was discretized by 2304× 2048× 288 grid
points in streamwise, spanwise, and wall-normal directions, respectively. The bulk Reynolds
number, Reb, for all the simulations was fixed at 20000, defined as

Reb = Ubh/ν, (8)

where, ν and Ub denote kinematic viscosity and the bulk (averaged) velocity in the channel,
respectively. The constant Reb was achieved by dynamically adjusting �P in Eq. 6 during
the simulations. The corresponding friction Reynolds number (Reτ ) ranges from 575 to 902.
The bulk Richardson number was calculated as

Rib =
(
θtop − θbot

)
gh

U 2
b θtop

, (9)

where θtop and θbot represent potential temperature at the top and the bottom of the channel,
respectively. The acceleration due to gravity is denoted by g.

A total of five simulations were performed with gradual increase in the temperature differ-
ence between the top and bottomwalls (effectively by increasing Rib) tomimic the night-time
cooling of the land surface. The normalized cooling rates (CR), ∂Rib/∂Tn , ranged from
1 × 10−3 to 5 × 10−3, where Tn is a non-dimensional time (= tUb/h). All our simulations
started with fully developed neutral conditions: Rib = 0. After Tn = 100, each simulation
evolved to a different Rib value, ranging from 0.1 to 0.5. Since we were considering atmo-
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spheric flows, the Prandtl number, Pr = ν/k was assumed to be equal to 0.7, with k being
the thermal diffusivity.

The simulation results were output every 10 non-dimensional timestep. To avoid spin-up
issues, we only use data of the last five output files (i.e., 60 ≤ Tn ≤ 100). Furthermore, we
only consider data from the region 0.1h ≤ z ≤ 0.5h to discard any blocking effect of the
surface or avoid any laminarization in the upper part of the open channel.

The TKE and its mean dissipation are computed as follows (using Einstein’s summation
notation)

e = 1

2
u′
i u

′
i , (10a)

ε = ν

(
∂u′

i

∂x j

∂u′
i

∂x j

)
. (10b)

In these equations and in the rest of the paper, the “overbar” notation is used to denote
mean quantities. Horizontal (planar) averaging operation is performed for all the cases. The
“prime” symbol is used to represent the fluctuation of a variable with respect to its planar
averaged value.

3 Length Scales

In this section, we discuss various length scales of turbulence. To enhance the readability of
the paper, we do not elaborate on their derivations or physical interpretations here; for such
details, the readers are directed to Appendix 1.

From the DNS-generated data, we first calculate the integral length scale (L) and Kol-
mogorov length scale (η). They are defined as (Tennekes and Lumley 1972; Pope 2000)

L ≡ e3/2

ε
, (11a)

η ≡
(

ν3

ε

)1/4

. (11b)

In Fig. 1, normalized values of L and η are plotted against the gradient Richardson number
(Rig = N 2/S2), where S is the magnitude of wind shear. Parameters N and S are computed
as follows

N =
√

g

�0

∂θ

∂z
, (12a)

S =
√(

∂u

∂z

)2

+
(

∂v

∂z

)2

, (12b)

where �0 is a reference temperature. As mentioned earlier, the overbar denotes horizonal
(planar) averaging operation. In the left panel, we marked four specific points based on the
data from DNS run with imposed cooling rate of 10−3 to better understand the effects of
height and stability on the integral length scale. The points p1 and p2 represent data from
z/h = 0.1 and z/h = 0.5, respectively, at non-dimensional time (Tn) of 60. Similarly, q1 and
q2 are associated with data from z/h = 0.1 and z/h = 0.5, respectively, at non-dimensional
time (Tn) of 100.
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Fig. 1 Integral (left panel) and Kolmogorov (right panel) length scales as functions of gradient Richardson
number. Both the length scales are normalized by the height of the open channel (h). Simulated data from five
different DNS runs are represented by different coloured symbols in these plots. In the legends, CR represents
normalized cooling rates. The points p1 and p2 represent data from z/h = 0.1 and z/h = 0.5, respectively, at
non-dimensional time (Tn ) of 60. Similarly, q1 and q2 are associated with data from z/h = 0.1 and z/h = 0.5,
respectively, at non-dimensional time (Tn ) of 100

Physically, one would expect the integral scale to increase with height as long as the
eddies feel the presence of the surface (near-neutral or weakly stable condition). For very
stable conditions, the eddies no longer feel the presence of the surface. In the atmospheric
boundary layer literature, it is known as the z-less condition (Wyngaard 1973; Grisogono
2010). Under the influence of strong stability, the integral length scales become more or less
independent of the height above the surface.

From Fig. 1, it is clear that the integral length scale increases with height and slowly
decreases with time in all the simulations due to the increasing stability effects. Simulations
with higher cooling rates have smaller integral length scales. Some of these runs (e.g., CR =
5 × 10−3) exhibit z-less behaviour due to strong stability effects.

In contrast, η marginally increases with higher stability due to lower ε. The ratio of L to
η decreases from about 100 to 20 as stability is increased from a weakly stable condition to
a strongly stable condition.

Next, we compute four outer length scales: Ozmidov (LOZ ), Corrsin (LC ), buoyancy
(Lb), and Hunt (LH ). They are defined as (Corrsin 1958; Dougherty 1961; Ozmidov 1965;
Brost and Wyngaard 1978; Hunt et al. 1988, 1989; Sorbjan and Balsley 2008; Wyngaard
2010)

LOZ ≡
(

ε

N 3

)1/2

, (13a)

LC ≡
(

ε

S3

)1/2

, (13b)

Lb ≡ e1/2

N
, (13c)

LH ≡ e1/2

S
. (13d)

Please note that, in the literature, Lb and LH have also been defined as σw/N and σw/S,
respectively. Both LOZ and LC are functions of ε, a microscale variable. In contrast, Lb and
LH only depend on macroscale variables.
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Fig. 2 Ozmidov (top-left panel), Corrsin (top-right panel), buoyancy (bottom-left panel), and Hunt (bottom-
right panel) length scales as functions of gradient Richardson numbers. All the length scales are normalized
by the integral length scale. Simulated data from five different DNS runs are represented by different coloured
symbols in these plots. In the legends, CR represents normalized cooling rates

Both shear and buoyancy deform the larger eddies more compared to the smaller ones
(Itsweire et al. 1993; Smyth and Moum 2000; Chung and Matheou 2012; Mater et al. 2013).
Eddies that are smaller than LC or LH are not affected by shear. Similarly, buoyancy does not
influence the eddies of size less than LOZ or Lb. In other words, the eddies can be assumed
to be isotropic if they are smaller than all these outer length scale.

Since L changes across the simulations, all the outer length scale are normalized by
corresponding L values and plotted as functions of Rig in Fig. 2. The collapse of the data
from different runs, on to seemingly universal curves, is remarkable for all the cases except
for Rig > 0.2. We would like to mention that similar scaling behaviour was not found if
other normalization factors were used. For instance, we have tried the height of the open
channel (h) as a normalization factor. We also tested several definitions of the boundary-
layer height (e.g., the height where variances or fluxes decrease to a small percentage of the
peak magnitude). None of them resulted in any scaling relationship.

Both normalized LOZ and Lb decrease monotonically with Rig; however, the slopes are
quite different. The length scales LC and LH barely exhibit any sensitivity to Rig (except for
Rig > 0.1). Even for weakly stable conditions, these length scales are less than 25 percent
of L.
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Fig. 3 Left panel: variation of the normalized buoyancy length scale against the normalized Ozmidov length
scale. Right panel: variation of the normalized Hunt length scale against the normalized Corrsin length scale.
Simulated data from five different DNS runs are represented by different coloured symbols in these plots. In
the legends, CR represents normalized cooling rates

Based on the expressions of the outer length scale (i.e., Eq. 13a–d) and the definition of
the gradient Richardson number, we can write

LC

LOZ
=

(
N

S

)3/2

= Ri3/4g , (14a)

LH

Lb
=

(
N

S

)
= Ri1/2g . (14b)

Thus, for Rig < 1, one expects LC < LOZ and LH < Lb. Such relationships are fully
supported by Fig. 2. In comparison to the buoyancy effects, the shear effects are felt at
smaller length scales for the entire stability range considered in the present study.

Owing to their similar scaling behaviours, Lb/L against LOZ/L are plotted in Fig. 3 (left
panel). Once again, all the simulated data collapse nicely in a quasi-universal (nonlinear)
curve. Since in a double-logarithmic representation (not shown) this curve is linear, we can
write

Lb

L ≡
(
LOZ

L

)m

, (15)

where,m is an unknown power-law exponent. Via regression analysis, we estimatem = 2/3.
By using Lb ≡ e1/2/N , and the definitions of LOZ and L, we arrive at

e1/2

N
=

(
ε

N 3

)m/2
(
e3/2

ε

)1−m

. (16)

Further simplification leads to: ε = eN ; please note that the exponent m cancels out in the
process. Instead of e1/2, if we utilize σw in the definitions of Lb and L, we get: ε = σ 2

wN .
This equation is identical to Eq. 4, which was derived by Weinstock (1981). His derivation,
based on inertial-range scaling, is summarized in Appendix 2.

In the right panel of Fig. 3, we plot LH/L versus LC/L. Both these normalized length
scales have limited ranges; nonetheless, they are proportional to one another. Like Eq. 15,
we can write in this case

LH

L ≡
(
LC

L

)n

, (17)
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Fig. 4 Variation of normalized energy dissipation rates against normalized eN (top-left panel), normalized eS
(top-right panel), normalized σ 2

wN (bottom-left panel), and normalized σ 2
wS (bottom-right panel). Simulated

data from five different DNS runs are represented by different coloured symbols in these plots. In the legends,
CR represents normalized cooling rates. In the bottom-left panel, the points p1 and p2 represent data from
z/h = 0.1 and z/h = 0.5, respectively at non-dimensional time (Tn ) of 60. Whereas, q1 is associated with
data from z/h = 0.1 at non-dimensional time (Tn ) of 100

where, n estimated via regression analysis is also found to be equal to 2/3. The expansion of
this equation leads to either ε = eS or ε = σ 2

wS, depending on the definition of LH and L.

4 Parametrizing the Energy Dissipation Rate

Earlier in Fig. 3, we plotted normalized outer length scales against one another. It is plausible
that the apparent data collapse is simply due to self-correlation as the same variables (i.e., L,
N , and S) appear in both abscissa and ordinate. To further probe into this problematic issue,
we produce Fig. 4. Here, we basically plot normalized ε as functions of normalized eN , eS,
σ 2

wN , and σ 2
wS, respectively. These plots have completely independent abscissa and ordinate

terms and do not suffer from self-correlation. Please note that the appearance of Reb and Rib
in these figures is due to the normalization of variables in DNS. The definitions of all the
normalized variables (e.g., εn) are provided in Appendix 3.

It is clear that the plots in the left panel of Fig. 4, which involve N , do not show any
universal scaling. For low CR values, normalized ε values do not go to zero; this behaviour
is physically realistic. One cannot expect ε to go to zero for neutral condition (i.e., N → 0).
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With increasing cooling rates, the curves seem to converge to an asymptotic curve that passes
through the origin. As e or σw continually reduces with increasing stability, one does expect
ε to approach zero.

In a seminal paper, Deardorff (1980) proposed a parametrization for ε, which for strongly
stratified conditions approaches 0.25eN . In Fig. 4 (top-left panel), we overlaid ε = 0.25eN
on the DNS-generated data. Clearly, it only overlaps with the simulated data in the strongly
stratified region. If ε = 0.25eN is used in the definition of LOZ , after simplification, one
gets LOZ = Lb/2. The line Lb = 2LOZ is drawn in Fig. 3. As would be anticipated, it only
overlaps with the simulated data when the outer length scales are the smallest (signifying
strongly stable condition).

Compared to the left panels, the right panels of Fig. 4 portray very different scaling
characteristics. All the data collapse on quasi-universal curves remarkably, especially, for
the ε ≈ eS case. The slopes of the regression lines, estimated via conventional least-squares
approach and bootstrapping (Efron 1982; Mooney et al. 1993), are shown on these plots.
Essentially, we have found

ε = 0.23eS, (18a)

ε = 0.63σ 2
wS. (18b)

Wenote that our estimated coefficient 0.63 iswithin the range of values reported bySchumann
andGerz (1995) from laboratory experiments and large-eddy simulations (please refer to their
Fig. 1).

In summary, neither ε = eN nor ε = σ 2
wN are appropriate parametrizations for weakly

or moderately stratified conditions; they may provide reasonable predictions for very stable
conditions. In contrast, the shear-based parametrizations should be applicable from a wide
range of stability conditions, from near-neutral to at least Rig ≈ 0.2. Since within the
continuously turbulent stable boundary layer (SBL), Rig rarely exceeds 0.2 (seeGarratt 1982;
Nieuwstadt 1984), we believe Eq. 18a or Eq. 18b will suffice for most practical boundary-
layer applications.However, for intermittently turbulent SBLs and the free atmosphere,where
Rig can exceed O(1), Deardorff’s parametrization (i.e., ε = 0.25eN ) might be a more viable
option. Unfortunately, we cannot verify this speculation using our existing DNS dataset.

5 Discussions

Hunt et al. (1988, 1989) stated that LH may not be a representative length scale near the
surface due to the blocking effect. From our perspective, LH does possess the correct surface-
layer characteristics, as elaborated below.

Following Nieuwstadt’s local scaling (Nieuwstadt 1984) and Monin–Obukhov similarity
theory, we can rewrite LH as follows for the surface layer:

LH ≡ e1/2

S
≈ cu∗

S
= cκz

φm
, (19)

where, u∗ and φm denote surface friction velocity and non-dimensional velocity gradient,
respectively, κ is the von Kármán constant. Based on data from the Cabauw tower in the
Netherlands, Nieuwstadt (1984) reported the proportionality constant c to be approximately
equal to 2.1. A similar value was also reported by Basu and Porté-Agel (2006).
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Since LH is proportional to κz in the surface layer, it can be directly compared with the
so-called master length scale (LM ) of Mellor and Yamada (1982). They proposed

ε = q3

B1LM
, (20)

where, q equals (2e)1/2 and B1 is a constant. Various forms of LM exist in the literature;
however, all of them reduce to κz in the surface layer.

If we replace LM with LH in Eq. 20, then by utilizing Eq. 18a, we arrive at

B1 = q3

0.23e3/2
= 12.3. (21)

Based on various observational data, Mellor and Yamada (1982) recommended B1 to be
equal to 16.6. By using data from large-eddy simulations, Nakanishi (2001) recommended
B1 = 24.0. Interestingly, Janjić (2002) heuristically derived B1 = 11.877992 (see also
Foreman and Emeis 2012). This value of B1 is currently used in the popular MYJ planetary
boundary-layer scheme of the Weather Research and Forecasting (WRF) model. It is quite a
coincidence that our DNS-based result turn out to be very close to an earlier proposition by
Janjić.

6 Concluding Remarks

The boundary-layer community almost always utilizes buoyancy-based energy dissipation
rate parametrizations for numerical modelling studies. Our DNS-based results suggest that
shear-based parametrizations are more appropriate for regions of the stable boundary layer
where Rig does not exceed 0.2. This finding is in complete agreement with the theoretical
work (supported by numerical results) of Hunt et al. (1988). They concluded:

...when the Richardson number is less than half, it is the mean shear ... (rather than the
buoyancy forces) which is the dominant factor that determines the spatial velocity cor-
relation functions and hence the length scales which determine the energy dissipation
or rate of energy transfer from large to small scales.

Hunt’s hypothesis was recently supported by Mater and Venayagamoorthy (2014). Through
rigorous analyses of DNS and laboratory data, they found that the length scale of the
overturningmotions in the shear-dominated regime scale with LH , whereas, in the buoyancy-
dominated region, they scale with Lb. In addition, by utilizing observations from two
well-known boundary layer field campaigns (CASES-99 and Surface Heat Budget of the
Arctic Ocean—SHEBA), Wilson and Venayagamoorthy (2015) also found that LH is
more correlated with the classical mixing length in comparison with the buoyancy length
scale. They proposed shear-based eddy-viscosity and eddy-diffusivity parameterizations and
showed promising results in an idealized simulation.

In our future modelling studies (including large-eddy simulations), we intend to com-
bine both the shear-based and buoyancy-based length scale parameterizations in a physically
meaningful way. Simple interpolation approaches already exist in the literature (e.g., Griso-
gono and Belušić 2008; Rodier et al. 2017). An alternative approach would be to utilize a
length scale proposed by Cheng and Canuto (1994) as it seems to capture the traits of both the
shear-based and buoyancy-based length scales. We are currently exploring these possibilities
and others.
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Appendix 1: Derivation of Length Scales

Integral Length Scale: Based on the original ideas of Taylor (1935), both Tennekes and
Lumley (1972) and Pope (2000) provided a heuristic derivation of the integral length scale.
Given TKE (e) and mean energy dissipation rate (ε), an associated integral time scale can
be approximated as e/ε. One can further assume

√
e to be the corresponding velocity scale.

Thus, an integral length scale (L) can be approximated as e3/2/ε.
In the literature, the autocorrelation function of the longitudinal velocity series is com-

monly used to derive an estimate of the integral length scale (L11). The relationship between
L and L11 is discussed by Pope (2000).

Kolmogorov Length Scale: Pope (2000) paraphrased the first similarity hypothesis of Kol-
mogorov (1941) as (the mathematical notations were changed by us for consistency):

“In every turbulent flow at sufficiently high Reynolds number, the statistics of the
small-scale motions (l 
 L) have a universal form that is uniquely determined by ν

and ε.”

Based on ν and ε, the following length scale can be formulated using dimensional analysis:

η ≡
(

ν3

ε

)1/4
. At this scale, TKE is converted into heat by the action of molecular viscosity.

Ozmidov Length Scale: Dougherty (1961) and Ozmidov (1965) independently proposed
this length scale. Here, we briefly summarize the derivation of Ozmidov (1965). Based on
Kolmogorov (1941), the first-order moment of the velocity increment (�u) in the vertical
direction (z) can be written as

u (z + �z) − u(z) = �u = �u ≈ ε1/3�z1/3, (22)

where the overlines denote ensemble averaging. Using this equation, the vertical gradient of
longitudinal velocity component can be approximated as

∂u

∂z
≈ �u

�z
≈ ε1/3�z−2/3. (23)

Similar equation can be written for the vertical gradient of the lateral velocity component
( ∂v
∂z ). Thus, the magnitude of wind shear (S) can be written as

S ≈ ε1/3�z−2/3. (24)
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By definition, Rig = N 2/S2. Thus,

Rig ≈ N 2

ε2/3�z−4/3
. (25)

Ozmidov (1965) assumed that for a certain critical Rig (which is assumed to be an unknown
constant), �z becomes the representative outer length scale (LOZ ). Thus, Eq. 25 can be
rewritten as

LOZ ≡
(

ε

N 3

)1/2

. (26)

The unknown proportionality constant is a function of the critical Rig and is assumed to be
on the order of one.

Corrsin Length Scale: The derivation of Corrsin (1958) leverages on a characteristic spectral
time scale, Ts(κ), where κ is the wavenumber, which is representative of the inertial range.
Based on dimensional argument, Onsager (1949) proposed

Ts(κ) ≡ 1√
κ2E(κ)

. (27)

In order to guarantee local isotropy in the inertial range, Corrsin (1958) hypothesized that
Ts(κ) must be much smaller than the time scale associated with mean shear (S). In other
words,

1√
κ2E(κ)


 1

S
. (28)

Using the −5/3 law of Kolmogorov (1941) and Obukhov (1941a, b), this equation can be
rewritten as

1√
κ4/3ε2/3


 1

S
. (29)

If we assume that for a specific wavenumber κ = 1/LC , the equality holds in Eq. 29, then
we obtain

L2/3
C = ε1/3

S
. (30)

From this equation, we can estimate LC as defined earlier in Eq. 13b.

Buoyancy Length Scale: The following heuristic derivation is based on Brost and Wyngaard
(1978) and Wyngaard (2010). In an order-of-magnitude analysis, the inertia term of the
Navier–Stokes equations, can be written as

∂ui
∂t

∼ Us

Ts
∼ Us

Ls/Us
∼ U 2

s

Ls
, (31)

where Ls , Ts , and Us represent certain length, time, and velocity scales, respectively. In a
similar manner, the buoyancy term can be approximated as

(
g

�0

) (
θ ′) ∼

(
g

�0

) (
∂θ

∂z

)
(Ls) ∼ N 2Ls, (32)
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where �0 and θ ′ denote a reference temperature and temperature fluctuations, respectively.
Equating the inertia and the buoyancy terms, we obtain

L2
s = U 2

s

N 2 . (33)

For stably stratified flows, either e1/2 or σw can be used as an appropriate velocity scale.

Accordingly, the length scale (Ls) can be approximated as e1/2

N or σw

N . In the literature, this
length scale is commonly known as the buoyancy length scale (Lb).

Hunt Length ScaleHunt et al. (1988) hypothesized that in stratified shear flows, ε is controlled
by mean shear (S) and σw. From dimensional analysis, it follows that

ε ≡ σ 2
wS. (34)

The associated length scale, LH , is assumed to be on the order of σw/S.

Appendix 2: Energy Dissipation Rate Formulation
byWeinstock (1981)

The starting point of Weinstock’s derivation was the −5/3 law of Kolmogorov (1941)
and Obukhov (1941a, b). He integrated this equation in the wavenumber space and set the
upper integration limit to infinity. The lower integration limit was fixed at the buoyancy
wavenumber (κb). Furthermore, he assumed that the eddies are isotropic for wavenumbers
larger than κb (i.e., in the inertial and viscous ranges). His derivation can be summarized
as

3

2
σ 2

w =
∫ κ2

κb

αε2/3κ−5/3dκ

= αε2/3
∫ κ2

κb

κ−5/3dκ

= 3α

2
ε2/3

(
κ

−2/3
b − κ

−2/3
2

)

≈ 3α

2
ε2/3κ

−2/3
b .

(35)

Weinstock (1981) assumed that κb can be parametrized by N
σw

(basically, the inverse of the
buoyancy length scale Lb). By plugging this parametrization into Eq. 35 and simplifying,
we obtain

ε ≈ σ 3
wκb

≈ σ 2
wN .

(36)
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Appendix 3: Normalization of Variables in Direct Numerical Simulations

In DNS, the relevant variables are normalized as follows

zn = z

h
, (37a)

un = u

Ub
, (37b)

vn = v

Ub
, (37c)

wn = w

Ub
, (37d)

θn = θ − �top

�top − �bot
. (37e)

After differentiation, we obtain

∂u

∂z
= ∂u

∂zn

∂zn
∂z

= ∂u

∂un

∂un
∂zn

∂zn
∂z

= Ub

h

∂un
∂zn

, (38a)

∂v

∂z
= ∂v

∂zn

∂zn
∂z

= ∂v

∂vn

∂vn

∂zn

∂zn
∂z

= Ub

h

∂vn

∂zn
, (38b)

S =
√(

∂u

∂z

)2

+
(

∂v

∂z

)2

= Ub

h
Sn, (38c)

∂θ

∂z
= ∂θ

∂zn

∂zn
∂z

= ∂θ

∂θn

∂θn

∂zn

∂zn
∂z

=
(

�top − �bot

h

)
∂θn

∂zn
. (38d)

The gradient Richardson number can be expanded as

Rig = N 2

S2
=

(
g

�0

) (
∂θ
∂z

)
S2

=
(

g

�top

) (
�top − �bot

h

) (
h

Ub

)2
(

∂θn
∂zn

)
S2n

. (39)

Using the definition of Rib (see Sect. 2), we rewrite Rig as follows

Rig = Rib

(
∂θn
∂zn

)
S2n

. (40)

Similarly, N 2 can be written as

N 2 = Rib

(
U 2
b

h2

) (
∂θn

∂zn

)
. (41)
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The velocity variances and TKE can be normalized as

σ 2
un = σ 2

u

U 2
b

, (42a)

σ 2
vn

= σ 2
v

U 2
b

, (42b)

σ 2
wn

= σ 2
w

U 2
b

, (42c)

en = e

U 2
b

. (42d)

Following the above normalization approach, we can also derive the following relationship
for the energy dissipation rate

ε = ν

(
Ub

h

)2

εn . (43)

In order to expand ε = eN , we use Eqs. 41, 42d, and 43 as follows

ν

(
Ub

h

)2

εn = U 2
b en Ri

1/2
b

(
Ub

h

) (
∂θn

∂zn

)1/2

. (44)

This equation can be simplified to

εn = RebRi
1/2
b en

(
∂θn

∂zn

)1/2

. (45)

In a similar manner, ε = eS can be re-written as

εn = Reben Sn . (46)

Appendix 4: Supplementary Analyses of Simulated Data

In Fig. 5, vertical profiles of several key variables are plotted. All the profiles correspond
to Tn = 100. Clearly, the variances and fluxes decrease with increasing cooling rate. It is
also evident that stability monotonically increases with height. As a result, turbulence in the
upper part of the domain becomes quasi-laminar (especially for the runs with higher cooling
rates). For this reason, we did not consider data from z/h > 0.5 region for the computations
of various length scales.

For continuously turbulent SBLs, it has been frequently observed that Rig stays below
0.2 within the SBL (e.g., Garratt 1982; Nieuwstadt 1984; Basu and Porté-Agel 2006). Above
the SBL, in the free atmosphere, Rig becomes much larger. Similar behaviour is noticeable
in Fig. 5 (top-right panel).

The vertical profiles of dissipation rates are shown in the bottom-right panel of Fig. 5. As
expected, the dissipation rates decrease with increasing height. For z/h < 0.1, due to the
viscous effects, the values of the dissipation rates are very high. Thus, for analyses of the
length scales, we disregarded data from this region.
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Fig. 5 Vertical profiles of normalized longitudinal velocity (top-left panel), potential temperature (top-center
panel), gradient Richardson number (top-right panel), longitudinal velocity variance (middle-left panel), verti-
cal velocity variance (middle-center panel), potential temperature variance (middle-right panel), u-component
of momentum flux (bottom-left panel), sensible heat flux (bottom-center panel), and energy dissipation rate
(bottom-right panel). Simulated data from five different DNS runs are represented by different coloured sym-
bols in these plots. In the legends, CR represents normalized cooling rates. All the profiles correspond to
Tn = 100

Appendix 5: Data and Code Availability

The DNS code (HERCULES) is available from: https://github.com/friedenhe/HERCULES.
All the analysis codes and processed data are publicly available at http://doi.org/10.5281/
zenodo.3923649. Given the sheer size of the raw DNS dataset, it is not uploaded onto any
repository; however, it is available upon request from the authors.
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