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1 Introduction

The following invited summaries give the reader a good overview of each author’s sustained
effort over the past 50 years. The reader should also ponder the fact that the authors above
have published in a range of journals and, with a few exceptions, their contributions referred
to below are specific toBoundary-LayerMeteorology alone.We identified four authors: Peter
Taylor who first published in Boundary-Layer Meteorology in 1970 (total of 55 publications)
and joined the Editorial Board in 1971; Larry Mahrt who first published in the inaugural
issue in 1970 (total of 47 publications); and the pair John Finnigan and Mike Raupach,
who first published in Boundary-Layer Meteorology in 1976 and 1979 respectively with a
combined total of 51 publications, several of which are joint. One other point should give the
young scientist pause for reflection: Larry Mahrt and Peter Taylor in particular, being Board
members for much of the 50 years, have each reviewed some hundreds of articles submitted
to Boundary-Layer Meteorology, an impressive effort in the underpinning of the peer review
process.

A little editing has been done to ensure a level of consistency in content (e.g., PhD details,
early employment, international activities) and we thank Kathryn Gebauer at the University
of Oklahoma for final format editing.

2 Contributions of Peter Taylor, by Joe Fernando (Notre Dame, Indiana)
and JimWilczak (Boulder, Colorado)

Peter Taylor received his PhD in Applied Mathematics in 1967 at the University of Bristol,
UK, and has held a professorial position at York University in Toronto, Canada, for many
years. He published an article in the first journal volume (Taylor 1970), was a member of the
Editorial Board (1971–95, 2010–20), and was a Co-Editor from 1995 to 2010. His significant
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impact on the journal is well evident from the 55 papers he has published in Boundary-Layer
Meteorology so far. He was a pivotal organizer of the much celebrated Askervein experiment
in the 1980s dealing with flow past a single hill (Taylor and Teunissen 1987). Its bench-
mark data continue to provide a wellspring of information for boundary-layer meteorologists
and wind engineers alike, and was an inspiration for later international projects such as
Perdigão (Fernando et al. 2019). Taylor served as Deputy Lead of the Atmospheric Science
Theme Group for NASA’s Scout program, an initiative for smaller, lower-cost, competed
spacecraft. In this role he helped design and evaluate the meteorological instrumentation
package on NASA’s 2008 Phoenix Mars Lander. In addition to his research, Taylor has
been an effective educator and a mentor, and so far has produced a little in excess of 20
PhDs. His former graduate students characterize his mentorship as a thoughtful balance of
independence, guidance, and encouragement combined with a warm character and steadfast
professionalism.

Taylor’s research interests span an impressively wide spectrum of topics:

a. PBLmodelling, includingmodel numerics, turbulence parametrizations, model eval-
uation, and the development of an internal boundary layer due to step-changes in
surface roughness or surface heat flux. His theoretical and numerical modelling work
demonstrate how sudden changes in roughness and heat flux produce a wide variety
of downstream boundary-layer conditions under a range of stability conditions (Taylor
1969, 1970).
b. Ocean-related, primarily model or theoretical investigations of flow over ocean sur-
face waves, but also exploring sediment transport and tidal mixing. In a series of
investigations on turbulent airflow over water waves, Gent and Taylor (1976), Taylor
and Gent (1978), and Li et al. (2000) delineated useful relationships such as the depen-
dence of drag coefficient on the wave slope and normalized friction velocity, as well
as mechanisms of flow separation over wind waves.
c. Model studies of blowing snow—including both dynamical and thermodynamical
processes—its parametrization in models, and its impact on visibility. Using numerical
and theoretical studies, as well as field experiments using leading-edge radar technolo-
gies (Hassan et al. 2017), Taylor made fundamental and practical contributions to the
understanding of the characteristics (e.g., particle size distribution, saltation, blowing
velocities) and prediction of blowing snow and snowmelting (Gordon and Taylor 2009;
Gordon et al. 2009).
d. Air quality, including mesoscale meteorological transport of ozone and sulfur pro-
cessing in clouds. Flagg and Taylor (2011) investigated the characteristics of the urban
boundary layer, including their dependence on urban morphology and canopy param-
eters, and the effects of model grid resolution. Also, his contributions to mesoscale
meteorology include studies on surface fronts (Taylor et al. 1993) and convective
storm initiation at low-level mesoscale boundaries such as lake breezes (Alexander
et al. 2018).
e. Studies on wind energy, including investigations of turbine wake decay and the
potential impact of offshore turbines on the mixed layer in lakes. Taylor made key con-
tributions to the understanding of complex terrain flows subjected to varying stability
conditions. Particularly noteworthy are his investigations into wind-energy characteris-
tics in complex terrain (Taylor and Teunissen 1987). Salmon and Taylor (2014) carried
out in-depth studies on how missing data affect long-term averages, thus helping to
quantify uncertainties in wind-farm energy-production estimates.

123



Contributions of PA Taylor, L Mahrt, JJ Finnigan, MR… 155

f. The meteorology of the Martian atmosphere, based on the analysis of the Phoenix
Mars Lander observations, with topics including the sublimation of ice, dust dis-
tributions, clouds, and dust devils. Based on short-term pressure drops detected by
the Lander, Taylor’s group (Ellehoj et al. 2010) inferred the probable passage of
convective vortices or dust devils on Mars, and investigated how they are related
to the weather at the landing site. Their conclusions were compared with existing
theories, adding value to the observations. His work also includes the development
of instrumentation for planned or future missions to Mars (Gunnlaugsson et al.
2008).

As a final note on his breadth of scientific interests and contributions to the literature, it is
remarkable that one of his highest cited articles falls not within meteorology and geophysics
at all, but in biology (Taylor and Williams 1975).
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3 Contributions of Larry Mahrt, by Bruce Hicks (Norris, Tennessee)

Larry Mahrt obtained his PhD in Meteorology at the University of Wisconsin, USA, in
1972. After completing a postdoctoral fellowship at the National Center for Atmospheric
Research, he became a faculty member in the Atmospheric Sciences Department at Oregon
State University. During 2004 he moved to North-West Research Associates and his research
started along new paths. His research interests were often taken up as the result of extended
visits to institutes in Europe. He published his first Boundary-Layer Meteorology article in
the journal’s first issue (Mahrt and Scherdtfeger 1970). During the early part of his career
his research emphasized numerical modelling, but it shifted to observational work in the
1980s. Since 2000, much of his work has concentrated on the stable boundary layer (SBL)
in terms of turbulence and non-turbulent small-scale motions. In addition to boundary-layer
turbulence, his work has included the transfer of heat and moisture within the soil, sub-
canopy transfer, transpiration, and snow processes. He has participated in a number of field
programs, in a few as principal investigator, including the Hydrologic Atmospheric Pilot
Experiment:Modelisation du Bilan Hydrique (HAPEXMOBILY, France, 1986), Fluxes over
SnowSurfaces (FLOSS,Colorado,USA, 2000–2002), and theShallowColdPoolExperiment
(Colorado, USA, 2012).

His work on the stable boundary layer deserves special mention, particularly regarding
turbulence intermittency. There is a long history on nocturnal turbulence intermittency in
SBL flow over land. Munn (1966) demonstrated that such sporadic bursts of turbulence were
common, but it was Mahrt et al. (1979) who injected some consideration of the applicability
or otherwise of Monin–Obukhov similarity theory (MOST). A subsequent series of articles
served to return the intermittency issue to a central position in today’s science. The new inter-
est arose, in part, when data from the Microfronts project (Howell and Sun 1999) were used
by Mahrt et al. (1998) to draw attention to the role of nocturnal turbulence intermittency in
the very stable boundary layer. Subsequently, Mahrt (1999) reviewed current understanding,
concluding that conventional flux–gradient approaches are confined to unstable and weakly
stable stratification, whereas for the very stable case all bets are off. A series of articles
followed (e.g., Mahrt et al. 1998, 2013; Mahrt and Vickers 2006) clarifying that, whereas
the criteria distinguishing different nocturnal intermittency regimes were originally based on
the stability parameter ζ (in line with MOST), later studies departed from MOST. It was the
CASES-99 study (Poulos et al. 2002) that bridged the gap between the SBL and the general
boundary-layer aspects of the observed phenomenon. The subsequent series of CASES-99
articles (starting with Sun et al. 2002) dominated much of the literature discussion of the
following decade, although well supported by data from other locations (e.g., Ohya et al.
2008; Ansorge and Mellado 2014; Cava et al. 2019). In his pursuit of the understanding of
the SBL and its turbulence characteristics, Larry has combined the CASES experience with
extensive studies of drainage flows (Mahrt et al. 2001; Soler et al. 2002) and locally influenced
wind-field variations (Mahrt 2008; 2009). Implications regarding heat exchange, dispersion,
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and mixing in general (Mahrt and Vickers 2006; Mahrt 2017a, b) have also been explored.
In a recent presentation, Mahrt et al. (2020) concentrate on three experiments designed to
elucidate specific aspects of the mechanisms of the intermittency. Two studies were of flow
within clearly defined valleys. The third was a subset of CASES-99, focused on observations
made very close to the surface. It goes without saying that the intermittency phenomenon
leads to obvious problems for flux–gradient formulations (Mahrt 2007; 2010; 2011).

Major discussions of the relevant science have been provided within the pages of Bound-
ary-LayerMeteorology, and LarryMahrt has been amajor participant (e.g.,Mahrt et al. 1979;
Mahrt 1999). Elsewhere, he has provided an extensive review of the current understanding
of the nocturnal terrestrial atmosphere (Mahrt 2014). It must be hoped that the science will
continue to be explored, and that the consequences of atmospheric fluctuations lying out-
side the universe of spectral uniformity will prove to be describable in a manner permitting
adjustment to numerical models of the planetary boundary layer.
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4 Contributions of John Finnigan andMike Raupach, by John Garratt
(Melbourne, Australia)

John Finnigan received his Ph.D. in 1978 at the Australian National University, Canberra,
and Mike Raupach in 1976 at Flinders University, Adelaide, joining the CSIRO environ-
mental mechanics group in Canberra in 1972 and 1978, respectively, when John Philip was
Chief. Each brought his impressive mathematical and analytical skills, together with physical
insights, to a range of boundary-layer problems, focusing initially on turbulent airflow above
and within aerodynamically rough surfaces, both in the wind tunnel and in the natural world
but later extending to larger scales. All in all, they contributed to 45 publications in Bound-
ary-Layer Meteorology – Raupach authored 25 articles, Finnigan 26, most as single authors,
and several together. Their earliest articles in Boundary-Layer Meteorology are dated 1976
for Finnigan and 1979 for Raupach. Sadly, Raupach died in 2015, whilst Finnigan continues
to work and publish to this day.

John Finnigan’s main contributions relate to: (i) the description of the mean and turbu-
lent properties of airflow above and within natural plant canopies (a series of seven papers
between 1978 and 2000, somewith co-authors YBrunet, PJMulhearn, andRHShaw); (ii) the
development of the theory of flow over low hills covered with tall canopies (with SE Belcher
and IH Harman); (iii) a unified theory for flow in the canopy layer and in the roughness sub-
layer (RSL, several papers between 2007 and 2016, with I Harman as senior author); (iv) the
clarification of the relationship between the parameters governing the ‘big-leaf’ description
of vegetation-atmosphere exchange, based on the Penman–Monteith or Combination equa-
tion, and the physiological parameters that can be measured at leaf level; (v) a two-paper
analysis of long-term flux measurement techniques (Finnigan et al. 2003; Finnigan 2004).
At larger scales, Finnigan developed theory and observational techniques describing wave–
turbulence interaction in the boundary layer (with F Einaudi) and collaborated with Raupach
on the development of thermodynamically-based averaging principles for surfaces covered
with heterogeneous vegetation or topography.

Mike Raupach’s main contributions relate to: (i) scalar dispersion within plant canopies
(several papers in the 1980s, with BJ Legg); (ii) turbulent properties of airflow within and
above plant canopies; (iii) the RSL (several during the period 1979 to 1992) and drag char-
acteristics of rough surfaces, especially as they affect wind erosion (several between 1992
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and 2006). He also steadily moved his attention from the details of turbulent exchange near
the surface to larger scales, first answering open questions on the nature of whole-of-PBL
feedbacks on surface evaporation by the rigorous application of thermodynamic principles.
With these principles firmly established, he became a pioneer in quantifying the global car-
bon and energy cycles at continental to global scales, eventually leading the Global Carbon
Project as its inaugural co-chair.

Two major contributions concerned (i) airflow within and above natural plant canopies,
and (ii) the elucidation of the properties of the RSL, leading to analytical expressions for
key aerodynamic properties of rough surfaces, such as the roughness length and zero-plane
displacement, as functions of surface geometry and of atmospheric stability.

The breakdown of the neutral logarithmicwind law, and in flux–profile relations generally,
above tall crops and forests became apparent from 1975 onwards (e.g., Thom et al. 1975;
Garratt 1978; Raupach 1979). The term “roughness sublayer” was almost certainly first used
by Raupach et al. (1980) as part of a major wind-tunnel study on the breakdown of the
log law close to a rough surface. These authors and Raupach (1992) made the first serious
attempts at determining analytical expressions for the depth of the RSL and for the profile
influence function that described the deviation of the actual RSL profile from the log profile.
Some years later this early work was expanded to a unified theory of flow in the canopy
layer and in the RSL above, both for wind speed and scalar concentration (Harman and
Finnigan 2007, 2008). The key step involved a coupling between the canopy and surface-
layer flows using a mixing-layer analogy for the flow at the interface, viz., the canopy top.
The approach envisaged the RSL as characterized by coherent eddies, with extra mixing
generated by the inviscid instability mechanism acting at the canopy top (Raupach et al.
1996). It follows that the additional relevant length scale that describes the profile influence
function is U/(dU/dz) at the inflection point (canopy top). The resulting profile forms, for
chosen canopy variables and stability, were compared favourably with observed wind-speed,
temperature and humidity profiles within and above several forest canopies, and the resulting
theory has now been successfully incorporated in several widely used boundary-layer and
climate models.

Finnigan’s Ph.D. work in 1979 applied then novel conditional sampling techniques to a
canopy of natural wheat and a wind-tunnel model, both of which exhibited the phenomenon
of honami or coherent waving. This work, which was soon supported by other researcher-
s—notably RH Shaw—showed that momentum and scalar transport to and from canopies
was dominated by eddies of whole canopy scale, which manifest themselves as intermittent
‘sweeps’ and ‘ejections’. This was in contrast to the earlier view that canopy turbulence was
dominated by leaf wakes. After Raupach joined the CSIRO group in 1978, the history of
the next few years could be summarized as the search for the origin of these large coherent
eddies. Thiswas a fruitful period, demonstrating that large eddies can induce counter-gradient
diffusion in canopies, an observation that was elegantly explained by Raupach’s localized
near-field theory and eventually led to a complete description of the nature of canopy eddies
when the flow is shear dominated (Finnigan et al. 2009). This understanding in turn indicated
the use of the shear instability parameter U/ (dU/dz) as the extra length scale in a unified
model of canopy and RSL flow noted above.

Finnigan and Raupach played major roles in the overall research activity of the CSIRO
group, and each had a major involvement in the atmospheric sciences at the international
level.
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