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Abstract
On the Greenland ice sheet, the sensible heat flux is the second largest source of energy
for surface melt. Yet in atmospheric models, the surface turbulent heat fluxes are always
indirectly estimated using a bulk turbulence parametrization, which needs to be constrained
by long-term and continuous observations. Unfortunately, such observations are challenging
to obtain in remote polar environments, especially over ablating ice surfaces. We therefore
test a classical eddy-covariance method, based on propeller anemometers and thermocouple
measurements, to estimate the momentum and sensible heat fluxes on the Greenland ice
sheet. To correct for the high-frequency attenuation, we experimentally derive the sensor
frequency-response characteristics and evaluate the universal turbulence spectra on the ice
sheet. We show that the corrected fluxes are accurate and that the sampling interval can be
reduced to 4 s to increase the system’s autonomy. To illustrate its potential, we apply the
correction to one year of vertical propeller eddy-covariance measurements in the western
ablation area of the ice sheet, and quantify the seasonal variability of the sensible heat flux
and of the aerodynamic roughness length.

Keywords Eddy covariance · Greenland ice sheet · Melt · Roughness · Sensible heat flux

1 Introduction

The total mass balance of the Greenland ice sheet, defined as the integrated surface mass
balance minus the calving of ice at marine-terminating glaciers, is a primary component of
the global sea-level budget. Between 2012 and 2016, the ice sheet lost on average 247Gt yr−1

of mass (≈ 0.7 mm yr−1 sea-level equivalent), which accounts for 37% of all the land-ice
contribution to global sea-level rise (Bamber et al. 2018). This recent strong mass imbalance
of the ice sheet has been linked to a significant increase in surface melt (Van den Broeke et al.
2016), which is either measured in-situ or calculated by closing the surface energy balance,
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M = Rnet − H − LE + G, (1)

where M is the surface melt, Rnet is the net absorbed radiation by the surface, H is the
sensible heat flux, LE is the latent heat flux, and G is the ground heat flux. Here we define
H , LE , andG positive upwards and express them inW m−2. On the ice sheet, a positive Rnet

drives most of the surface melt, while LE and G are an order of magnitude smaller (Kuipers
Munneke et al. 2018b). The sensible heat flux H , however, is an important source of energy
for the melt of seasonal snow in mountain regions (Mott et al. 2011) and in the Arctic tundra
(Pohl et al. 2006), but also for the melt of Arctic sea ice (Tjernström et al. 2015) and at the
surface of Antarctic ice shelves (Kuipers Munneke et al. 2018a).

Despite efforts to measure the various components of the surface energy balance on the
ice sheet (Steffen and Box 2001; Van As et al. 2011; Kuipers Munneke et al. 2018b), direct
measurements of turbulent heat fluxes are still limited. Instead, an indirect bulk method is
typically used to estimate the turbulent surface fluxes from measurements made by single-
level automatic weather stations. This has revealed that the sensible heat flux is also an
important source of energy for surface melt on the ice sheet, both in the western ablation
area (Kuipers Munneke et al. 2018b) and the southern ablation area (Fausto et al. 2016).
However, the modelled sensible heat flux using these methods can be highly uncertain, either
due to underlying assumptions (Radić et al. 2017) or due to physical parameters that are not
well constrained in time and space, such as the aerodynamic roughness length (Smeets and
Van den Broeke 2008).

One way to directly measure the turbulent surface fluxes uses the sonic eddy-covariance
(SEC) method, based on fast measurements of the three-dimensional wind vector and tem-
perature acquired with sonic anemometers. Such instruments are costly, require a continuous
and significant power supply, and do not function under drifting snow conditions or precipi-
tation. This makes them less than practical for long-term experiments in remote polar areas.
Yet several experimental campaigns have successfully measured the turbulent surface fluxes
with sonic anemometers on the ice sheet (Henneken et al. 1994; Forrer and Rotach 1997;
Box and Steffen 2001; Smeets and Van den Broeke 2008; Miller et al. 2017; Madsen et al.
2019). Unfortunately these datasets rarely span more than several weeks, and are not always
representative of areas with the highest surface melt rates.

A more feasible alternative to measuring turbulent fluxes on the ice sheet is the vertical
propeller eddy-covariance (VPEC) method, which relies on propeller anemometers and ther-
mocouples (Blanford and Gay 1992). One then faces two practical obstacles: the icing of the
instruments, and their limited frequency response (Horst 1997). Conveniently, icing is not a
frequently occurring problem in the katabatic wind zone, where the air is usually undersat-
urated (Smeets et al. 2018). This paper aims to provide a solution to the second challenge:
the high-frequency attenuation of the measured fluxes due to the limited frequency response
of the propeller anemometers and thermocouples.

Although the high-frequency attenuation of the measured fluxes has received quite some
attention, the latest developments mainly focus on experimental set-ups that use a slow-
response sensor in combination with a fast sensor to measure fluxes of atmospheric gases,
such as carbon dioxide and water vapour (Ibrom et al. 2007), or methane (Peltola et al. 2013).
We focus on the high-frequency attenuation of momentum and sensible heat fluxes caused
by applying a combination of two slow-response sensors. Our aim is to accurately model this
attenuation, in particular under the stable conditions commonly observed in the atmospheric
boundary layer over the ice sheet.
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Fig. 1 Experimental set-up used during Experiments 1 and 2 (a), and during Experiment 4 (b). The set-up of
Experiment 3 is not shown here but can be found in Lenaerts et al. (2014). The numbers indicate different
instruments: (1) Fine-wire thermocouples (also indicated by arrows), (2) Gill vertical propeller anemometer,
(3) Young horizontal propeller anemometer, (4) CSAT3 sonic anemometer, (5) Intelligent weather station and
logger, (6) CNR4 net radiation sensor, (7) Ablation draw-wire sensor, (8) CR1000 datalogger

The paper is organized as follows: in Sect. 2 we give an overview of the field experiments
and the instruments, in Sect. 3 we give a detailed description of the model that is used
to correct for the high-frequency attenuation of the fluxes. In Sect. 4 we then evaluate the
model and the corrected VPEC fluxes against SEC fluxes, and we quantify the influence of a
reduced sampling rate. Finally, we apply the high-frequency correction to one year of VPEC
measurements made in the western ablation area of the ice sheet in Sect. 5, and quantify the
temporal variability of the fluxes.

2 Methods: Description of the Datasets

2.1 Instrumental Set-up

In the following experiments,we test theVPECmethod. For the horizontalwindmeasurement
we use a Young wind vane anemometer (model 05103-L, R.M. Young Company, Traverse
City, Michigan, USA) fitted either with polypropylene or carbon fiber thermoplastic blades.
For the measurement of the vertical wind speed we use a Gill vertical propeller fitted with
expanded polystyrene blades (model 27106, R.M. Young Company, Traverse City,Michigan,
USA). An alternative instrument for the VPECmethod is the K-Gill propeller vane (Ataktürk
and Katsaros 1989), which has a higher sensitivity to wind fluctuations. Unfortunately, this
sensor requires sensitive material for both the propellers, which makes it unsuitable for
long-term studies in polar conditions. Besides, it is more convenient to install a vertical
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Gill propeller next to the Young wind vanes that are already used on many existing weather
stations.

The temperature is measured by a 76.2µm diameter, type E, fine-wire thermocouple
(model FW3, Campbell Scientific, Logan, USA). The propellers are positioned at the same
height above the surface, and the centre of the blades are separated by 0.50 m. The fine-wire
thermocouple referred to hereafter is fitted just below the blades of the vertical propeller.

As a reference, we apply the SEC method with a non-orthogonal sonic anemometer
(CSAT3, Campbell Scientific, Logan, USA) sampling at a rate of 10Hz. The sonic anemome-
ter is positioned at 0.50 m distance from the Young wind vane anemometer and at the same
height as the centre of the propeller blades.

When mentioned, net absorbed radiation by the surface is measured by a net radiometer
(model CNR4,Kipp&Zonen, Delft, theNetherlands) and ice ablation ismeasured by a draw-
wire (model FD115 – 15000, Althen, Leidschendam, theNetherlands). For themeasurements
presented below, the draw-wire sensor is positioned on the samemast as the other instruments,
at a height of 3.08 m (see Fig. 1). A weight is attached to the tip of the draw-wire, which is
drilled 10 m into the ice. The cumulative ablation of the ice surface causes the wire to roll
around a spring-loaded spool, and the wire’s linear extension is then measured every 30 min
with a potentiometer (Hulth 2010).

2.2 Description of the Experiments

We use measurements from four separate field experiments, two of which were performed
on the Greenland ice sheet. The characteristics of each experiment are summarized in Table
1 and are further detailed below.

2.2.1 Experiments 1 and 2: CESAR Site in 2011 and 2019

The full set-up consisting of both of the VPEC and SEC instruments was tested twice at the
Cabauw Experimental Site for Atmospheric Research (CESAR, e.g., Monna and Bosveld
2013), located on a flat grassland in theNetherlands (51.970 ◦ N, 4.927 ◦ W,−0.8m a.s.l). The
first experiment took place during August and September 2011, while the second experiment
took place during February 2019.

In the first experiment, all the time series were sampled at 10Hz. In the second experiment,
however, the sampling rate of the VPEC system was reduced to 2 Hz in order to test a
different sampling of the horizontal wind speed. Differences between the two experiments
also comprise the height and the orientation of the sensors, as well as the material of the
horizontal propeller. All information can be found in Table 1.

2.2.2 Experiment 3: Site S10 in 2012

This experiment took place at site S10 of the K-transect (67.00◦ N, 47.02◦ W, 1850 m a.s.l),
which is a transect of automatic weather stations and mass balance observations located in
the ablation area of the western Greenland ice sheet. It spans from the ice edge up to 1850
m elevation and has been operated by the Institute for Marine and Atmospheric research
Utrecht since 1993. Further details about the K-transect can be found in Smeets et al. (2018)
and Kuipers Munneke et al. (2018b). The measurements for this specific experiment are
documented by Lenaerts et al. (2014) and are used to test the validity of the Kaimal et al.
(1972) turbulence spectra on the ice sheet. We use the raw SEC time series, which were
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Table 1 Instrumental set-up during the four different field experiments, performed at theCabauwExperimental
Site for Atmospheric Research (CESAR) located in the Netherlands (NL), and at two sites on the Greenland
ice sheet (GrIS). zm denotes the measurement height above the local surface, d is the displacement height and
h is the height of the local surface above the surrounding average topography; Lu is the response length of
the horizontal anemometer; Aw is the calibration constant of the vertical anemometer; and τT is the response
time of the fine-wire thermocouple, which were used to correct for high-frequency attenuation and are defined
in the body of the paper. Their measurement uncertainty is given in the brackets. Propeller types used are
identified as follows: PP: polypropylene, CFT: carbon fibre thermoplastic, EPS: expanded polystyrene

Experiment 1 2 3 4
Location CESAR NL CESAR NL S10 GrIS S5 GrIS

zm (m) 4.45 3.9 [4.2;4.9] [3.7;4.0]

d (m) 0 0 0 0.5

h (m) 0 0 0 1.5

Fs,V PEC (Hz) 10 2 1 (not used) 0.25

Fs,SEC (Hz) 10 5 10 none

Unobstructed Wind directions [200;250] [130;220] [70;130] [40;180]

Lu(�Lu) (m) 1.78 (0.2) 3.15 (0.2) not used 3.15 (0.2)

Aw(�Aw) (m) 0.45 (0.1) 0.45 (0.1) not used 0.45 (0.1)

τT (�τT ) (s) 0.13 (0.04) 0.13 (0.04) not used 0.13 (0.04)

Horizontal (Vertical) propeller material CFT (EPS) PP (EPS) not used PP (EPS)

Sonic orientation 209◦ 195◦ 165◦ none

Selected fluxes 577 279 not used 11300

Selected variance spectra 283 137 not used not used

Selected cospectra not used not used 30 not used

Total 30-min data 1967 (41 days) 674 (14 days) 661 (14 days) 16889 (352 days)

recorded four hours per day betweenAugust andOctober 2012.The comparison betweenSEC
and VPEC fluxes cannot be done with this experiment, as there was no Young anemometer
adjacent to the Gill vertical propeller. Furthermore the sensible heat fluxes are small, with an
average of 20 W m−2, and the frequency of both riming and blowing-snow events reduces
the amount of valid data for comparison.

The snow surface at this site is very homogeneous, and slopes downward from east to
west with a slope angle of about 0.4 degrees. This gives rise to a south-easterly katabatic flow
more than 70 percent of the time (Smeets et al. 2018). The height of the SEC instruments
was recorded every 30min by a sonic height ranger, and decreased from 4.9m in August to
4.2m in the end of October due to snowfall.

2.2.3 Experiment 4: Site S5 in 2016–2017

To illustrate the potential of the method, the VPEC instruments without a sonic anemometer
have also been operated on the K-transect for a longer period of time. The measurements
were made at site S5 of the K-transect (67.09◦N , 50.06◦W , 540m a.s.l) between September
2016 and August 2017. All the instruments are connected to a low power logger which
continuously records the time series at an interval of 4 s.

The local ice surface is composed of rough hummocks and domes, interlaced bymeltwater
streams. The station is located on the top of an ice dome, and the dome itself is located
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approximately 1.5 m above the average surrounding topography, denoted h. The effective
measurement height is thus,

z = zm + h − d, (2)

where zm is the height of the sensors above the local surface, which was recorded every 30
min by a sonic height ranger and ranges between 3.7 m and 4.0 m during the measurement
period. The displacement height d and the height of the local surface above the average
surrounding topography h are assumed constant and equal to 0.5 m and 1.5 m, respectively,
after Smeets and Van den Broeke (2008).

2.3 Notations

We work with the measured time series of the horizontal wind vector U = (u, v), vertical
wind speed w, and air temperature T , where u and v are the along-wind and cross-wind
components of U, respectively, and w is the wind component normal to the local surface
slope. The 30-min average of x is written as x , while the 30-min covariance between the
fluctuations of x and y iswritten as x ′y′. The temperature flux is thusw′T ′, and the along-wind
momentum flux is u′w′. Hereafter we write the 30-min average of ‖U‖ as U .

2.4 Preliminary Corrections

The raw time series of each experiment are first screened for non-physical values, and the
measured vertical wind speed from the vertical propeller anemometer ismultiplied by a factor
1.25, in order to account for the non-cosine response of propeller anemometers at high angles
of attack (Gill 1975). Then multiple iterations of a median absolute difference threshold filter
(Mauder et al. 2013) are performed to remove individual spikes in the raw time series. The
latter filter proved unnecessary for the propeller and thermocouple measurements, due to the
very small amount of spikes in these time series. The raw time series are block-averaged
in 30-min windows, linearly de-trended, and windows with more than 5% missing data are
flagged. Furthermore, block-averaged time windows with wind directions that are suspected
to contain flow distortion are also flagged.

For both theVPEC and the SEC instruments, a yaw rotation followed by a pitch rotation, or
double rotation (Kaimal and Finnigan 1994), is used to rotate the raw measured wind vector
in the local horizontal reference frame, thereby correcting for the flux biases induced by tilted
sensors. This rotation method was chosen over the planar fit method (Wilczak et al. 2001), as
the tilt angles of the weather station in the ablation area of the ice sheet change over time due
to melt. Besides, only a narrow band of downslope wind directions are available for analysis
in the katabatic zone of the ice sheet. The final step of the preliminary processing involves the
calculation of the raw turbulence (co)spectra, which are smoothed with an averaging window
that exponentially expands with frequency (Kaimal and Finnigan 1994).

During Experiments 1 and 2, the buoyancy flux measured by the sonic anemometer is
corrected for humidity influences according to Schotanus et al. (1983), using the latent heat
fluxmeasured at a nearby location by theRoyalNetherlandsMeteorological Institute (KNMI)
at the CESAR observatory.1 Finally the SEC fluxes are corrected for path averaging after
Moore (1986), using a path length of 0.12m.

The downward shortwave radiative flux measured during Experiment 4 is corrected for
the pitch and roll of the net radiometer. For this we use the tilt angles measured by the

1 Data available at http://www.cesar-database.nl/.
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inclinometer located in the station logger, and the geometrical equations found in, e.g., Wang
et al. (2016). The tilt angle of the weather station varied between 4◦ and 6◦ towards the west
over one year. This tilt orientation means that the correction mostly shifts the phase of the
measured shortwave incoming radiation, which affects the daily averaged radiation by less
than 2 W m−2. The ablation draw wire measurement is not corrected for the movement of
the station, as the horizontal displacement of the station with respect to the borehole was less
than 0.5m after one year. This offset results in an error in yearly ice ablation of less than
0.04m, which is also the difference with the manual ablation measurement at a nearby stake
and ≈ 1 % of the total yearly ablation. The ice ablation is converted to an energy flux using
a latent heat of melting of 334 × 103 J kg−1 and a constant ice density of 916 kg m−3.

2.5 Data Selection Strategy

2.5.1 Fluxes

When analyzing the fluxes measured during all four experiments, we minimize the influence
of flow obstruction and propeller stalling at low wind speeds by applying the following data
selection criteria:

(i) WD ∈ unobstructed wind directions,
(ii) U > 3 m s−1,
(iii) Flag = 0,

where WD is the wind direction of the 30 min-averaged wind vector and ‘Flag’ is the quality
flag of the preliminary flux corrections. The interval of unobstructed wind directions is
determined a priori by the design of the mast and the relative location of each instrument. It
is then adjusted iteratively until an optimal trade-off between VPEC and SEC flux agreement
and data quantity is found. The final chosen intervals for each experiment are given in Table
1. We do not include any filter related to the error in the cross-momentum flux v′w′, as we
assume that the same error is present in both the SEC and the VPEC fluxes.

2.5.2 Variance Spectra

For the analysis of the variance spectra measured at the CESAR site during Experiments 1
and 2, we remove the ill-defined spectra in terms of signal-to-noise ratio, and thus extend the
previous data selection with the following criteria:

(iv) z/LO < 0.2,
(v) w′2 > 0.01 m2 s−2,
(vi) u′2 > 0.01 m2 s−2,
(vii) T ′2 > 0.04 K2 ,

where LO ≈ − u3∗T
κgw′T ′ is the Obukhov length, u∗ =

(
u′w′2 + v′w′2

)1/4
is the friction

velocity, κ = 0.4 is the von Kármán constant, and g = 9.81 m s−2 is the acceleration due to
gravity.
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2.5.3 Covariance Spectra

Finally, when analyzing the turbulence cospectra measured at site S10 on the ice sheet during
Experiment 3, we limit the influence of drifting snow and apply a very strict near-neutral
stability range:

(viii) 0 < z/LO < 0.2,
(ix) 0.1 < u∗ < 0.5 m s−1,
(x) w′T ′ > 0.005 K m s−1.

The resulting selected fluxes and spectra for each experiment are summarized in Table 1.

3 Methods: High-Frequency Attenuation Correction

Whenused tomeasure turbulent fluxes, propeller anemometers have the following limitations:
(1) a limited frequency response, (2) a non-linear directional sensitivity, and (3) a threshold
starting wind speed (Wyngaard 1981). In this section we provide a spectral correction for the
limited frequency response. The data selection criteria are used to mitigate for limitations (2)
and (3).

The measured (co)variance between atmospheric quantities x and y, denoted x ′y′, is a
fraction Axy of the true (co)variance.We calculate the attenuation coefficient Axy afterMoore
(1986),

Axy ≡ x ′y′
m

x ′y′ =

∫ +∞

0
Sxy( f )Txy( f ) d f

∫ +∞

0
Sxy( f ) d f

, x, y ∈ {u, w, T }, (3)

where x ′y′
m is the measured (attenuated) (co)variance between atmospheric variables x and

y, and f is the frequency (Hz). With this definition, the attenuation of the flux is equal to
1− Axy . This method thus requires an expression for the reference turbulence (co)spectrum
Sxy and the total transfer function of the system Txy .

3.1 Sensor Transfer Function

3.1.1 Model

The sensor transfer functions Txy are the product of both the low-pass and the high-pass
filters,

Txx ( f ) = TDTp(px )G
2
x ( f ), (4a)

Txy( f ) = TD
√
Tp(px )Tp(py)Ts( f , sxy)Gxy( f ), (4b)

where TD denotes the high-pass filter caused by the block-averaging procedure, Tp is the
low-pass filter associated to the averaging of the x measurement along a path length px . The
latter filter is not used for the VPEC system. In the above, Gx is the frequency response
function of the x sensor, Ts denotes the low-pass filter caused by the spatial separation of the
x and y sensors by a distance sxy , and Gxy is the frequency response of the covariance x ′y′.
For Ts and Tp we use the exponential expressions from Moore (1986). For TD we use the
analytical expression from Moncrieff et al. (2005).
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The frequency response of a propeller anemometer or a thermocouple is approximated as
a first-order gain function, with a response time of τx (Wyngaard 1981),

Gx ( f ) =
√

1

1 + (2π f τx )2
. (5)

With this definition of τx , the cut-off frequency is fc = 1/(2πτx ), such that G2
x ( fc) = 1/2.

The a priori response time of a sensor is not known, but we will assume that the response
time of a horizontal propeller anemometer is inversely proportional to the horizontal wind
speed (MacCready and Jex 1964),

τu = Lu

U
, (6)

where we define Lu as a response length (or distance constant), which only depends on the
physical sensor characteristics.

We assume that the response time of the vertical propeller also depends on the angle
of attack, which is defined as the angle of the instantaneous wind vector with the plane of
rotation of the propeller (Fichtl and Kumar 1974),

τw = Aw

U

(σw

U

)−2/3
, (7)

where Aw is an empirical calibration constant depending on the propeller type, and σw is the
standard deviation of the vertical wind speed. Assuming that the phase difference between x
and y is small and independent of frequency, the transfer function of the covariance is then
written as (Horst 1997),

Gxy( f ) =
(
1 + (2π f )2τxτy

)
(
1 + (2π f )2τ 2x

)(
1 + (2π f )2τ 2y

) . (8)

3.1.2 Experimental Derivation of Sensor Response Times

We derive the response times of the propeller anemometers and the thermocouples using
the measurements acquired at the CESAR site during Experiments 1 and 2. This is done by
fitting the square of a first-order gain function, G2

x ( f ), to the experimental transfer func-
tions using the non-linear least-squares Levenberg–Marquardt algorithm. The experimental
transfer functions are defined as,

T exp
xx ( f ) = N

SV PEC
xx ( f )

SSECxx ( f )
, (9a)

with

N =

∫ f ′

0
SSECxx ( f ) d f

∫ f ′

0
SV PEC
xx ( f ) d f

, (9b)

where SV PEC
xx is the variance spectrum measured by the slower instruments and SSECxx is

the simultaneous spectrum measured by the sonic anemometer. We include a normalization
coefficient N to force the lower-frequency part of the transfer function to be equal to one. The
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Fig. 2 Top panels: experimental transfer functions measured during Experiment 1 (grey dots) and Experiment
2 (black dots) of the vertical propeller anemometer (a), of the horizontal propeller anemometer (b) and the fine-
wire thermocouple (c). The horizontal linesmark the cut-off frequency, where T exp

xx (1/(2πτx )) = 0.5. The red
andblue lines denote thewhole range of fittedfirst-order functions. The ‘- 4’ (‘+ 4’ ) dashed lines denote the 6 dB
per octave decrease (increase) with increasing frequency related to first-order roll-off and instrumental noise,
respectively. Bottom panels: corresponding estimated response times of the vertical propeller anemometer
(d), the horizontal propeller anemometer, (e) and the fine-wire thermocouple (f). The linear regression of the
response time characteristics is denoted by the solid line, and the chosen uncertainty interval by the dashed
lines

limit frequency f ′ is chosen such that the normalization coefficient is not affected by high-
frequency attenuation (Aubinet et al. 1999). To reduce the influence of noise and aliasing, we
only fit T exp

xx ( f ) to G2
x ( f ) in the [0.01; 0.5] (Hz) frequency range. Finally, we reject half the

estimated response times that yield the poorest fit residuals, with the aim of rejecting spectra
with poor signal-to-noise ratios that result in non-physical response times. The resulting
estimated response times are shown in Fig. 2. The associated error bar is taken differently for
each instrument. For the vertical propeller the error bar is taken as the interval containing 80%
of the estimated response times, while for the horizontal propeller it is taken as the interval
containing 80% of the estimated values for wind speeds below 5 m s−1. The thermocouple
response time is assumed constant and taken as the average estimated response time after
three weeks of operation in the field.

The heavier material of the propeller blades increases the response length of the horizontal
anemometer from Lu = 1.78±0.2m for carbon fibre thermoplastic to Lu = 3.15±0.2m for
polypropylene. These values differ significantly from the values reported by themanufacturer
(2.2m and 2.7m, respectively). During Experiment 1, the horizontal wind speedwas sampled
at 10 Hz by counting the amount of revolutions of the horizontal propeller every 100 ms.
This sampling method results in violet noise in the Suu spectrum, or noise increasing as f 2,
which is visible in Fig. 2b at frequencies above 1 Hz. During Experiment 2, the horizontal
wind speed was sampled differently from Experiment 1 by averaging the time between all the
propeller revolutions every 200 ms. This removes the noise and results in more well-defined
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first-order spectra. However, with the latter method, wind speeds less than one propeller
revolution within a 200-ms interval cannot be measured. For the type of propellers used in
this study this corresponds to wind speeds of less than 2 m s−1.

For the vertical anemometer, only expanded polystyrene blades were tested, and the aver-
age response constant is equal to Aw = 0.45 ± 0.1 m. In the surface layer, σw/U typically
ranges between 0.02 and 0.2, depending on stability and surface roughness. This means that
the effective response distance of the vertical anemometer Lw ≡ τwU can range from 1.3 m
to 6.1 m (see Eq. 7), depending on the average angle of attack. This is a known result (Fichtl
and Kumar 1974; Garratt 1975), and partly explains why different wind-tunnel (McBean
1972; Hicks 1972; Gill 1975) and field experiments (Horst 1973) find a different value for
Lw. The drawback of applying Eq. 7 to estimate the τw in time is that it requires a priori
knowledge of σw, which is underestimated by a propeller anemometer. As such, we simply
assume that σw = 2σw,V PEC in Eq. 7, where σw,V PEC is the uncorrected standard deviation
of the vertical wind speed, measured by the vertical propeller anemometer. Conveniently,
the spectra of the vertical anemometer do not contain high-frequency noise, as the vertical
wind speed is sampled by measuring a voltage that is directly proportional to the propeller
revolution speed.

The fine-wire thermocouple response could only be estimated during the first experiment
because of the higher sampling rate. The response time does not show any significant variation
with wind speed. It does however show an increase in time, from 0.08s to 0.14 s after 6 weeks
of operation in the field, which we attribute to accretion of material on the fine wires due to
air pollution and rain. In the remainder of the paper we will assume τT to be constant and
equal to 0.13 ± 0.04 s.

3.2 Reference Turbulence Cospectra

3.2.1 Model

Weassume that the normalized turbulence spectra follow the functions experimentally derived
byKaimal et al. (1972). Under stable stratification, i.e., z/LO > 0, these functions arewritten
as,

f Swx ( f )

w′x ′ = n

Awx + Bwxn2.1
, (10a)

Auw = 0.124

(
1 + 7.9

z

LO

)0.75

AwT = 0.284

(
1 + 6.4

z

LO

)0.75

Bwx = 2.34 A−1.1
wx ,

(10b)

where n = f z/U is the normalized frequency. A more general relation is given by Horst
et al. (2004) and by Massman and Clement (2005),

f Sxy( f ) = A0
f / fm

(
1 + m ( f / fm)2μ

) 1

2μ

(
m + 1

m

) , (11)

123



452 M. van Tiggelen et al.

Fig. 3 Observed normalized turbulence (co)spectra during Experiment 3 (grey dots) at site S10 on the Green-
land ice sheet. (a) Vertical wind speed variance spectra, (b) sensible heat flux cospectra, (c) momentum flux
cospectra, and (d) estimated normalized spectral peak frequency as function of stability. The dashed lines in
(a)-(b)-(c) are the turbulence spectra from Kaimal et al. (1972) and the solid lines are the optimal fit of Eq. 11
on the average spectra. The solid (resp. dashed) lines in (d) denote the linear regression of the measured (resp.
Kaimal) spectra. The red dashed line is the simplified function given by Horst (1997)

where A0 is a normalization coefficient, μ a broadness parameter and m = 3/4 for the
cospectra. The spectral peak frequency fm is then parametrized as an increasing function of
the atmospheric stability z/L0. Equation 11 is used to experimentally estimate an expression
for f Sxy( f ), which we then compare to the Kaimal et al. (1972) spectra (Eq. 10).

3.2.2 Experimental Verification of Turbulence Cospectra Models

Virtually all high-frequency attenuation corrections are based onMoore (1986), Horst (1997),
or Massman (2000), which assume that the Kaimal et al. (1972) spectra are valid (Eq. 10).
This assumption does not have a notable effect on the high-frequency correction, as long as
the response time of the sensors falls within the well-defined inertial subrange. For a VPEC
system, the response time is of the order of ≈ 1 s. This means that the system also misses
a small fraction of the flux in the lower frequency part of the turbulence spectrum, which is
not necessarily well defined, as demonstrated by Smeets et al. (1998) for katabatic flow due
to the influence of large-scale flow. As such, we test the validity of the Kaimal et al. (1972)
spectra in a katabatic flow regime with measurements from Experiment 3.

We first estimate a fixed shape parameter μ by fitting the average turbulence (co)spectra
to Eq. 11. We then estimate the spectral peak frequency fm by fitting each individual
(co)spectrum. The results are plotted as function of atmospheric stability in Fig. 3. The
observed peak frequency shows significant scatter, but its increase with stability is well
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visible and roughly follows the relation derived by Kaimal et al. (1972). Furthermore, the
observed averaged spectra appear wider than the Kaimal et al. (1972) spectra. Finally, our
data suggest that the vertical wind speed spectra are slightly shifted to lower frequencies,
although the limited sampling rate makes it difficult to fit these spectra due to aliasing. It
must also be noted that the relation by Horst (1997) is a reasonable approximation for the
momentum cospectra under near-neutral circumstances, i.e., z/L0 < 0.1 (see Fig. 3).

3.3 Analytical Model

Several analytical models of Eq. 3 have been derived (Horst 1997; Massman 2000). These
present an analytical function for both the normalized turbulence cospectra Sxy and the
sensor transfer functions Txy such that the attenuation coefficient in Eq. 3 can be integrated
analytically. In the general case of two slow-response sensors, and assuming that the phase
difference between x and y is small and independent of frequency, Horst (1997) writes the
attenuation coefficient of the covariance x ′y′ as,

Axy = 2π fmτx + 2π fmτy + 2(2π fm)2τxτy

(1 + 2π fmτx )(1 + 2π fmτy)(2π fmτx + 2π fmτy)
, (12)

where the following model for the cospectral peak frequency is used,

fm = U

z

⎛
⎜⎝2.0 − 1.915

1 + 0.5
z

L0

⎞
⎟⎠ . (13)

However, both our measured cospectra during Experiment 3 and the peak frequency of the
spectra derived by Kaimal et al. (1972) suggest that the following models are more accurate
in the z/L0 ∈ [0; 0.2] range,
momentum flux f Suw:

fm = U

z

(
0.08 + 0.41

z

L0

)
, (14a)

sensible heat flux f SwT :

fm = U

z

(
0.19 + 0.8

z

L0

)
. (14b)

The modelled attenuation coefficient based on Eq. 12 and Eq. 3 using the experimentally
derived expressions for τx , τy and fm agree within 1%. This difference is mostly due to the
high-pass filter TD that is not taken into account in Eq. 12. Hereafter we will numerically
calculate the integral in Eq. 3 to estimate the attenuation factor.

3.4 Summary: Model Parameters

The model described in the previous section used to estimate the attenuation of the
(co)variance x ′y′ is thus entirely described by the following parameters:

– Lu : response length (or distance constant) of the horizontal propeller anemometer (m)
– Aw : calibration constant of the vertical propeller anemometer (m)
– τT : response time of the thermocouple (s)
– px : path averaging length of the x sensor, set to zero for a VPEC system (m)
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– sxy : spatial separation between the two sensors (m)
– U : average horizontal wind speed (m s−1)

– σw: standard deviation of the vertical wind speed (m s−1)

– z: measurement height (m)
– LO : Obukhov length (m)

4 Results: Evaluation of the Correction for the High-Frequency
Attenuation (Experiments 1 and 2)

We apply the correction for the high-frequency attenuation to the measured VPEC fluxes.
We then compare these corrected fluxes to the simultaneously measured SEC fluxes during
Experiments 1 and 2. The sensible heat flux is converted to an energy flux according to
H = ρaCpw′T ′, where the air density ρa and air heat capacity Cp are calculated using the
2-m air temperature, the 2-m air specific humidity and the surface pressure measured by the
KNMI at the CESAR tower.

4.1 Accuracy of the High-Frequency Correction

The comparison of VPEC and SECfluxes is shown in Fig. 4, wherewe have used the response
times derived in Sect. 3 and written in Table 1. Both the corrected VPEC momentum and
sensible heat fluxes show a small bias and root-mean-square error (RMSE) when compared
to the SEC fluxes. The bias, which we define as the average of the difference between the two
time series, is for the friction velocity equal or smaller than 0.01 m s−1 for both experiments.
The RMSE value is 0.03 m s−1 and 0.05 m s−1 for Experiments 1 and 2, respectively. The
sensible heat flux is slightly overestimated by the VPEC system compared to the SEC system:
6.3 W m−2 during Experiment 1 and 4.4 W m−2 during Experiment 2. This small bias is
also present when comparing the sensible heat fluxes obtained with the sonic temperature
and with the thermocouple attached to the SEC system. Hence the bias is not related to the
vertical propeller but to the sensitivity of the thermocouples.

The RMSE value of the sensible heat flux is 12.4 W m−2 and 11.9 W m−2 during the two
experiments. The difference between theVPECfluxes and SECfluxes is of similarmagnitude
as the difference obtained when measuring fluxes with two adjacent sonic anemometers
(Mauder and Zeeman 2018).

The only adjustable parameters in the correction for the high-frequency attenuation are
the response times of the instruments. In order to quantify the sensitivity of the correction
to these input parameters, the same comparison as presented above is done using perturbed
response times. The optimal response parameters of the vertical anemometer, horizontal
anemometer, and thermocouple are perturbed by ±�Aw , ± �Lu and ± �τT respectively.
These error bars are derived from the calibration procedure (see Fig. 2 and Table 2), and
result in three combinations of sensor response times that we denote τ−

x , τ re fx , and τ+
x . The

bias and RMSE value of the corrected fluxes for each parameter set are presented in Table
2. The comparison with the SEC fluxes shows that changing the input parameters within the
defined range does not affect the RMSE value of the fluxes, neither does it significantly affect
the bias of the correct friction velocity. It does, however, slightly (< 1 W m−2) affect the
bias of the corrected sensible heat flux.
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Fig. 4 Comparison of the friction velocity (a), (b) and sensible heat flux (c), (d)measured by sonic anemometer
eddy-covariance (SEC) and by vertical propeller eddy-covariance (VPEC) methods at the CESAR site. The
left panels (a) and (c) are during Experiment 1, while the right panels (b) and (d) are during Experiment 2

4.2 Influence of the Sampling Rate

The power supply and memory usage are the most important limiting factors when consid-
ering the sampling rate of an automatic weather station, denoted Fs , deployed in remote
polar areas. As such we test whether the sampling rate can be decreased without significantly
increasing the bias and RMSE value of the measured fluxes, as presented by Bosveld and
Beljaars (2001). For this purpose, the measured VPEC time series from Experiments 1 and
2 are artificially downsampled from the initial sampling interval to sampling intervals of 1
s and 4 s. This is done by taking the first sample in each sampling interval. We then apply
the processing steps and high-frequency correction from Sect. 3 to the downsampled time
series, and compare the corrected and VPEC fluxes to the SEC fluxes. The resulting bias and
RMSE value of the fluxes calculated with the downsampled time series are shown in Table
2.

Increasing the sampling interval from 0.1 s to 4 s increases the RMSE value of the sensible
heat flux and the friction velocity by≈ 1W m−2 and≈ 0.01m s−1, respectively. This is of the
same order of magnitude as the uncertainty related to the response time of the sensors shown
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Table 2 Bias and root-mean-square error (RMSE) of corrected VPEC fluxes compared to SEC fluxes during
Experiments 1 and 2. The experiments are described in detail in Sect. 2 and in Table 1. The bias is written in
bold and the RMSE value is given in the brackets. Three different sampling rates Fs of the VPEC system are
compared. For each experiment, three different parameter sets used to model the instrument response times
τx have been applied, based on the uncertainty when deriving these parameters experimentally. The values for

the optimal set τ re fx and the two perturbed sets τ−
x and τ+

x are given in Table 1

Bias (RMSE) Fs 10 Hz 1 Hz 0.25 Hz

τ−
x τ

re f
x τ+

x τ−
x τ

re f
x τ+

x τ−
x τ

re f
x τ+

x

H (W m−2) Exp.1 5.9 6.3 6.6 6.1 6.4 6.8 5.9 6.3 6.6

(12.6) (12.4) (12.4) (13.3) (13.1) (13.1) (13.5) (13.4) (13.6)

Exp.2 - - - 5.7 4.4 3.1 5.5 4.1 2.7

(12.3) (11.9) (11.8) (12.7) (12.4) (12.4)

u∗ (m s−1) Exp.1 −0.01 0.00 0.00 −0.01 0.00 0.00 0.00 0.00 0.01

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03)

Exp.2 - - - −0.01 0.00 0.01 0.00 0.00 0.01

(0.04) (0.04) (0.04) (0.05) (0.05) (0.05)

in the previous paragraph. Furthermore, the downsampling does not significantly affect the
bias, as expected from Bosveld and Beljaars (2001).

We conclude from these comparisons that the overall precision and accuracy of the cor-
rected VPEC fluxes are neither dominated by the high-frequency correction, nor by the
sampling rate. After correcting for their limited dynamical response, VPEC instruments
sampling at an interval of 4 s are able to measure the sensible heat flux during the first two
experiments with a typical bias of 6.3 W m−2 and a RMSE value of 13.4 W m−2 (Table 2).
For the friction velocity the bias is less than 0.01 m s−1, and the RMSE value of the order of
0.05m s−1. Overall, this means that a corrected VPEC systemmeasures the turbulent surface
fluxes with an accuracy similar to the deviation between two adjacent sonic anemometers
(Frank et al. 2015; Mauder and Zeeman 2018). Yet the main advantage of the VPEC system
is its simplicity, which allows for longer periods of unattended operation in remote polar
areas.

5 Results: One Year of Turbulent Fluxes in theWestern Ablation Area of
the Greenland Ice Sheet (Experiment 4)

To demonstrate its potential, we apply the correction for the high-frequency attenuation of the
fluxes to one year of VPEC measurements at site S5 on the Greenland ice sheet (Experiment
4). The values for Aw, Lu , and τT are found in Table 1 and are based on the calibration of
identical sensors during the first two experiments.

5.1 Corrected Turbulent Fluxes

The time series of both the corrected turbulent fluxes and of the modelled attenuation coeffi-
cients are presented in Fig. 5. Over the course of one year, the attenuation factor Axy of both
fluxes remains in the [0.6 − 0.8] range, which is the same interval of modelled corrections
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during the first two experiments. At this location, katabatic flows continuously generate tur-
bulent mixing despite the stable stratification. This means that near-neutral conditions are
nearly always observed close to the surface (i.e., z/L0 < 0.2), thereby keeping the spectral
peak to lower frequencies (Fig. 3). On the other hand, the high wind speeds shift the spectral
peak to higher frequencies, but this effect is compensated by the simultaneous decrease in the
response time of the propeller anemometers (see Eqs. 6 and 7 and Fig. 2). The highest flux
attenuation factor of 0.5 is modelled in winter, during short periods with lowwind speeds and
increasing stability (Fig. 5). During such periods, the propeller anemometers become slower
while the most energetic turbulent fluctuations become smaller, which results in high flux
attenuation. Only one period with probable propeller freezing was identified in January (Fig.
5c1), which results in a gap of several days in the measurements. The smallest attenuation
factor of 0.8 is modelled in summer, during periods with high wind speed and near-neutral
stability. These are also the periods when the highest fluxes aremeasured: sensible heat fluxes
up to −300 W m−2 and friction velocities up to 1 m s−1.

5.2 Error Caused by the Uncertainty in Response Times

For the first two experiments, the uncertainty in the response times propagates in an uncer-
tainty of ± 0.4 W m−2 in the corrected VPEC sensible heat flux and less than 0.01 m s−1

for the corrected friction velocity (Table 2). However the measured fluxes during the first
two experiments were smaller, so these error intervals are not representative of the fluxes
measured during Experiment 4. As such, the same response time perturbation exercise as in
Sect. 4 is performed for Experiment 4.

The different corrected fluxes showamaximal deviation of± 10% for the sensible heat flux
and ± 1.5% for the friction velocity (not shown in Fig. 5). The uncertainty of the corrected
flux depends on the flux, and reaches up to 30 W m−2 for measured sensible heat fluxes
of −300 W m−2. These intervals must be interpreted as the widest interval of all possible
corrected fluxes, using the response times derived in Fig. 2. It is often smaller, for instance
for higher wind speeds and more neutral conditions. This maximum difference interval can
only be reduced further if the response times are known with greater accuracy.

5.3 Contribution of the Sensible Heat Flux to Surface Ablation

In Fig. 5 we compare the measured sensible heat flux with the other measured components of
the surface energy balance. During winter, the surface cools due to net emission of longwave
radiation, which is on average compensated by the downwards sensible heat flux. The net
imbalance between the twofluxes then contributes to eitherwarming or cooling of the surface,
which rarely exceeds the melting point during winter. During summer, both the net absorbed
radiation by the surface and a downward sensible heat flux warm the surface. The excess
energy supplied when the surface is already at the melting point results in enhanced melt.

During the first half of the melting season (May–June), the measured ice ablation closely
follows Rnet . Then, after several consecutive warm events in July, the daily ice ablation is on
average 100 W m−2 larger than Rnet (Fig. 5d1). This additional energy flux can for the most
part be explained by the measured sensible heat flux (Fig. 5a1, d1). It must be noted that we
did not measure the latent heat flux and the ground heat flux, which are also an important
part of the surface energy balance. In fact during winter, important temperature gradients in
the ice will compensate for the difference between the emitted radiation and the sensible heat
flux. During summer, the ice is mostly at the constant melting temperature, which makes
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Fig. 5 Time series of selected measurements from the VPEC system during Experiment 4 at site S5, located
in the western ablation area of the Greenland ice sheet. From top to bottom: (a1) friction velocity (u∗) and
sensible heat flux (H ), (b1) modelled attenuation coefficients Axy , (c1) standard deviation of the vertical wind
speed σw divided by the horizontal wind speed (U ), (d1) daily averaged ice ablation, net absorbed radiation
by the surface (Rnet ) and sensible heat flux (H ). The panels on the right are the probability histograms for
each variable calculated for the whole measurement period. Three notable periods are shaded as follows: (I)
a period with a rimed or stalling vertical propeller, (II) a period in the middle of the melting season without
observed ablation, and (III) an extreme warm summer event when the strongest ablation is observed. A daily
average of 100 W m−2 in panel (d1) corresponds to a cumulative daily ice ablation of 2.82 cm, assuming a
latent heat of melting of 334 × 103 J kg−1 and a constant ice density of 916 kg m−3

the ground heat flux negligible, but will enhance latent heat fluxes due to important vertical
gradients in specific humidity. Furthermore, small snowfall events during summer (as is
the case during event (II) in Fig. 5) will also absorb a large part of the total melt energy
during the consecutive days. Finally, the footprint of the sensible heat flux is not necessarily
representative of the area in direct vicinity of the weather station. Especially after several
warm events, the melt water will accumulate in the surrounding narrow channels and melt
ponds, which remain invisible to the ablation and radiation sensors as they are located on top
of an ice hummock.
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Fig. 6 Averaged aerodynamic roughness length z0m (triangles, upper panels) and sensible heat flux H (squares,
bottom panels) as a function of month and wind direction. The measurements are from corrected vertical
propeller eddy-covariance (VPEC) observations made during Experiment 4 at site S5 (see Sect. 2). The data
have been subjected to the z/LO < 0.2 filter and to the additional selection procedures described in Sect. 3.
The black lines in the upper panel are the moving average roughness during winter (snow and exposed ice),
October and May (transition) and summer (bare ice)

5.4 Variability of the Aerodynamic Roughness Length

When the sensible heat flux and the friction velocity are calculated using a bulk turbu-
lence model, the aerodynamic roughness length z0m is often unknown and becomes an
adjustable parameter. Assuming Monin–Obukhov similarity, the aerodynamic roughness
length is defined as the height at which the logarithmic wind profile extrapolates to zero.
Here we evaluate z0m by extrapolating the measured wind speed to the surface using the
measured momentum flux at the same height, according to

κU

u∗
= ln

(
z

z0m

)
− Ψm

(
z

LO

)
+ Ψm

(
z0m
LO

)
, (15)

where we use the expression of Holtslag and De Bruin (1988) for the integrated stability
functions for momentum Ψm . We only select the measurements when z/LO < 0.2, and we
assume that the last term on the right-hand side of Eq. 15 is negligible and thus set it to zero.
The estimated aerodynamic roughness length is then shown as function of both time of year
and wind direction in Fig. 6.

The aerodynamic roughness length z0m shows a very significant variability over the course
of one year, and ranges between 10−4 m in winter to nearly 10−1 m in summer, which is
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consistent with the two-level wind profile and sonic anemometer measurements by Smeets
and Van den Broeke (2008) at the same location. The reduction of z0m from September to
February (Fig. 6a) is mainly attributed to the accumulation of snow that gradually reduces
the size of the ice hummocks. Furthermore, winter time sublimation smoothens the top of the
hummocks, which explains that the smallest values of z0m are observed in March and April.
From May onwards, the melting of the snow increases the amplitude of the ice hummocks.
The resulting rapid increase of z0m from March to August (Fig 6b) is further enhanced by
the differential melting of the ice hummocks.

The roughness length z0m shows a remarkable dependency on the wind direction as well,
with minimal values found in summer at 95◦ and in winter at 115◦. The maximum values
of z0m are found for the most southerly wind directions, independently of the season. We
attribute this strong directional dependency to changes in the effective obstacle area, which is
most likely a direct consequence of the complex geometry and spacing of the ice hummocks
(Miles et al. 2017; Fitzpatrick et al. 2019). A detailed topographical survey is required to
property quantify this effect at this location.

Remarkably, the southerly wind directions are also the directions when the warmer and
more turbulent air masses generate the highest sensible heat fluxes (Fig. 6). The southerly
wind directions are most likely caused by the interaction between katabatic winds and barrier
winds (Van den Broeke and Gallée 1996), although this interaction remains to be investigated
in more detail.

The results from this experiment confirm even more that using a constant value for z0m
over snow and ice surfaces is not recommended, as shown by similar experiments at other
locations (e.g.,Miles et al. 2017; Vignon et al. 2017; Fitzpatrick et al. 2019). This is especially
the case at this location on the western ablation area of the Greenland ice sheet, where a shift
in wind direction is often associated with fast changes in air mass properties. This raises the
question of the parametrization of turbulent heat fluxes in climate models, and of the possible
feedback between surface roughness and surface ablation through turbulent heat exchange.

6 Conclusions

Motivated by the important contribution of turbulent heat fluxes to surface ablation on the
Greenland ice sheet, we tested a vertical propeller eddy-covariance (VPEC) system, which
is capable of continuously measuring the surface turbulent fluxes for longer periods without
regular maintenance. By comparing the VPEC system to a sonic eddy-covariance (SEC)
system, we found that the frequency responses of propeller anemometers and thermocouples
may accurately be approximated as first-order functions, with typical response times of less
than 1s. We have shown that the resulting flux attenuation can be accurately modelled, as
long as the normalized turbulence cospectra are known. Furthermore, the sampling interval
can be reduced to 4 s to increase the system’s autonomy even further in terms of power supply
and data storage.

We presented one year ofmeasuredVPEC turbulent sensible heat andmomentumfluxes at
site S5 of theK-transect, located in thewestern ablation area of the ice sheet. Near themargins
of the ice sheet, persistent density-driven katabatic flows are the main source for near-surface
turbulence. Such a forcing results in quasi-continuous stable, but near-neutral, conditions.
These are very favourable conditions for a VPEC system and maintain the attenuation factor
of the fluxes above 0.6 (e.g., the attenuation below 40%).
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This long-term and continuous dataset of turbulent fluxes is invaluable for the evaluation
of atmospheric numerical models, but also for the fundamental understanding of processes
and drivers of surface ablation. At this location, downward sensible heat fluxes as large as
300 W m−2 have been measured, both during winter and during summer. Such values are
similar or even more important than the surface net absorbed radiation, which makes them
an essential component of the surface energy balance. Furthermore, we have shown that the
aerodynamic roughness length is very variable in time and space, and that the highest value
of nearly 10−1 m is estimated when the sensible heat fluxes are also at their maximum.

Acknowledgements The authors thank the two anonymous reviewers for their constructive comments. The
authors also wish to thank all the staff and institutes that help with maintaining the instruments in the field.
In particular Marcel Portanger and Giorgio Cover are thanked for the help with the design and the mainte-
nance of the weather stations. This work is funded by the Utrecht University and by the Netherlands Polar
Program (NPP), of the Netherlands Organisation of Scientific Research, section Earth and Life Sciences
(NWO/ALWOP.431).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ataktürk SS, Katsaros KB (1989) The K-Gill: a twin propeller-vane anemometer for measurements of atmo-
spheric turbulence. J Atmos Ocean Technol 6:509–515

Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski A, Martin P, Berbiger P, Bernhofer
C, Clement R, Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W,
Valentini R, Vesala T (1999) Estimates of the annual net carbon and water exchange: the EUROFLUX
methodology. Adv Ecol Res 30:113–175. https://doi.org/10.1016/S0065-2504(08)60018-5

Bamber JL, Westaway RM, Marzeion B, Wouters B (2018) The land ice contribution to sea level during the
satellite era. Environ Res Lett. https://doi.org/10.1088/1748-9326/aac2f0

Blanford JH, Gay LW (1992) Tests of a robust eddy correlation system for sensible heat flux. Theor Appl
Climatol 46:53–60. https://doi.org/10.1007/BF00866448

Bosveld F, Beljaars A (2001) The impact of sampling rate on eddy-covariance flux estimates. Agric For
Meteorol 109:39–45. https://doi.org/10.1016/S0168-1923(01)00257-X

Box JE, SteffenK (2001) Sublimation on theGreenland ice sheet from automatedweather station observations.
J Geophys Res Atmos 106(D24):33,965–33,981. https://doi.org/10.1029/2001JD900219

Fausto RS, van As D, Box JE, Colgan W, Langen PL (2016) Quantifying the surface energy fluxes in south
Greenland during the 2012 high melt episodes using in-situ observations. Front Earth Sci. https://doi.
org/10.3389/feart.2016.00082

Fichtl GH, Kumar P (1974) The response of a propeller anemometer to turbulent flow with the mean wind
vector perpendicular to the axis of rotation. Boundary-Layer Meteorol 6:363–379. https://doi.org/10.
1007/BF02137673
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