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Abstract
A new method is introduced to identify coherent structures in the convective boundary layer,
based on optimizing the vertical scalar flux in a two-fluid representation of turbulent motions
as simulated by a large-eddy simulation. The new approach partitions the joint frequency
distribution (JFD) of the vertical velocity and a transported scalar into coherent structures
(fluid 2) and their environment (fluid 1) by maximizing that part of the scalar flux resolved by
the mean properties in fluid 2 and fluid 1. The proposed method does not rely on any a priori
criteria for the partitioning of the flow nor any pre-assumptions about the shape of the JFD.
Different flavours of the optimization approach are examined based on maximizing either
the total (fluid 1 + fluid 2) or the fluid-2 resolved scalar flux, and on whether all possible
partitions or only a subset are considered. These options can result in different derived
area fractions for the coherent structures. The properties of coherent structures diagnosed
by the optimization method are compared to the conditional sampling of a surface-emitted
decaying tracer, in which coherent structures are defined as having tracer perturbation greater
than some height-dependent threshold. Results show that the optimization method is able to
smoothly define coherent thermal structures in both the horizontal and the vertical. Moreover,
optimizing the turbulent transfer by the fluid-2 resolved flux produces very similar coherent
structures to the tracer threshold method, especially in terms of their area fraction and updraft
velocities. Nonetheless, further analysis of the partitioning of the JFD reveals that, even
though the area fraction of coherent structures might be similar, their definition can occupy
different quadrants of the JFD, implying the contribution of different physical mechanisms
to the turbulent transfer in the boundary layer. Finally, the kinematic and thermodynamic
characteristics of the coherent structures are examined based on their definition criteria.
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1 Introduction

In the convective boundary layer (CBL), the predominant source of turbulence is buoyancy
resulting from the transfer of heat from the surface to the adjacent fluid. Buoyant plumes rise
from the surface layer to form large coherent structures (thermals) that are responsible for
transferring heat to the whole depth of the CBL by cooling the surface layer and warming the
mixed layer. Thermals produce strong mixing in the boundary layer resulting in an almost
uniform, well-mixed profile of potential temperature and mixing ratio of advected scalars
such as moisture or trace species. The strongest of the thermals are able to maintain their
ascent in the weakly-statically-stable upper part of the CBL, reaching the inversion and pen-
etrating into the strongly stable layer above the boundary layer. The overshooting (negatively
buoyant) boundary layer thermals and the entrainment of potentially warmer air from the
stable layer contribute to a pronounced heat-flux minimum in the vertical sensible-heat-flux
profile. Through mass conservation, these coherent structures force a broader, compensating
descent in the CBL.

Because of this key role played by coherent structures in the dynamics and transport
within the CBL, there is a need to be able to define them objectively and to identify them in
large-eddy simulations (LES), both to improve our understanding of their behaviour and to
parametrize their effects in numerical weather prediction (NWP) and climate models.

Small-scale turbulent eddies transfer heat gradually through adjacent vertical levels, so
this heat flux can be modelled reasonably well as a diffusive flux down the local potential
temperature gradient. In contrast, the depth scale of coherent structures is greater than the
depth scale over which the mean potential temperature varies; thus the structure of thermals,
and the heat flux carried by them at any height z, depend in a non-local way on conditions
throughout the entire boundary layer. Because of these properties, it is common to decompose
the total vertical turbulent heat flux (w′θ ′) in the CBL as

w′θ ′ = −KH
∂θ

∂z
+ w′θ ′NL

, (1)

where the overbar denotes a horizontal average over the region of interest (e.g. one grid cell
of a climate model), and the primes denote deviations from the mean. In addition, KH is the

thermal turbulent eddy diffusivity coefficient, θ is the potential temperature, and w′θ ′NL
is

the non-local heat flux assumed to be associated with coherent structures. The downgradient
term (first term on the r.h.s) expresses the local heat flux as mentioned above.

Such a partitioning of the heat flux into local and non-local components is widely used
when parametrizing the CBL in NWP and climate models. Troen and Mahrt (1986) used
a countergradient term (γ ) to model the non-local heat flux (Deardorff 1972) in the form

w′θ ′NL = γ KH , an approach that has been used for some time in global and mesocale
modelling (Hong and Pan 1996; Lock et al. 2000; Hong et al. 2006). Chatfield and Brost
(1987) were one of the first to suggest a decomposition of Eq. 1 based on a mass-flux
concept. In addition, Hourdin et al. (2002) proposed a mass-flux representation of boundary-
layer thermals, while Siebesma and Teixeira (2000), Soares et al. (2004), and Siebesma et al.
(2007), introduced the mixed eddy-diffusivity mass-flux (EDMF) approach for modelling
the CBL and shallow cumulus convection. In this approach the non-local heat flux due to the

ascending thermals is represented by amass-flux formulationw′θ ′NL = M(θu−θ)whereM
is the mass flux expressed as M = σ(wu −w)with σ the updraft area fraction,wu the updraft
vertical velocity, and θu the updraft potential temperature (see also Rio and Hourdin 2008;
Pergaud et al. 2009; Angevine et al. 2010; Sušelj et al. 2013). Some versions of the EDMF
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approach explicitly or implicitly specify the vertical profile of σ in the boundary layer. Others
(e.g., Angevine 2005) calculate the profile of σ via a vertical integral of the updraft mass
budget.More recently, EDMF-like schemes have been introduced inwhich updraft properties
including w, θ , and the area fraction are prognostic variables (Tan et al. 2018; Thuburn et al.
2019). For all of these schemes, information on the profile of σ and other updraft properties
from high-resolution reference simulations is essential either as direct input to the scheme
or for calibration and validation.

Although non-local transport and transport by coherent structures are conceptually closely
related, and are often assumed to be identical, an important caveat is that they are not identical
when defined mathematically—see Sect. 2.3. Note, also, that the terms ‘coherent structure’,
‘thermal’, and ‘updraft’ are often used interchangeably, though in what follows we will not
assume that they comprise exclusively ascending fluid.

A further reason for interest in identifying coherent structures in the boundary layer
is that the definition and diagnosis of entrainment into and detrainment out of coherent
structures depends critically on how those coherent structures themselves are defined (e.g.,
Romps 2010; Yeo and Romps 2013; Dawe and Austin 2013). Quantifying entrainment and
detrainment is important both formodelling the boundary layer using EDMF schemes such as
those discussed above, and because entraining parcel models for shallow and deep cumulus
convection are typically initiated in the boundary layer.

It becomes obvious that there is a broad spectrum of motions in the CBL originating
from the surface layer due to strong surface heating. Even though coherent structures and
small-scale processes might appear conceptually straightforward to separate, the continuous
flow of energy from the turbulence production to the dissipation scales exhibits the strong
interconnection between eddies of different size in the CBL. Siebesma et al. (2007) identified
the updraft area as the grid points with vertical velocity larger than the p-percentile of the w

distribution as derived from LES at each height. They used p values of the order of 1−5% to
define updrafts and their properties. This method has the inherent limitation of setting a rather
arbitrary cut-off point in the continuous spectrum of vertical velocities while considering the
updraft fraction to be constant with height. Couvreux et al. (2010) developed a new method
to diagnose the coherent structures based on the release of a “radioactive” passive scalar from
the surface. The definition they usedwas based on the comparison of the turbulent fluctuations
of the scalar mixing ratio with the standard deviation of the scalar mixing ratio similar to
Berg and Stull (2004), providing a more physical representation of coherent updrafts.

Mahrt and Paumier (1984) analyzed joint frequency distributions (JFD) of w and θ from
aircraft measurements to identify the relative contribution of thermals to turbulent transport.
Wyngaard and Moeng (1992) followed a statistical approach to address the closure problem
in a mass-flux parametrization, fitting a Gaussian distribution to the joint probability density
of w and θ . In a similar way, Berg and Stull (2004) examined the JFD of θ and vapour
mixing ratio. Chinita et al. (2018) utilised the JFD method to partition the flow in the θ − w

space by fitting a joint Gaussian to the JFD to represent local mixing while the remaining
part represents coherent updrafts. Even though this approach is physically-based and has
the advantage of not requiring the specification of any sampling criteria, it still requires an
assumption about the functional form of the JFDs.

The motivation for the present study is twofold: first is to introduce a new method for
separating the flow into coherent structures and small-scale turbulence by adapting a two-
fluid representation of the CBL. Optimizing the two-fluid formulation of the vertical scalar
flux leads to the partition of the JFD into coherent motions and local turbulence without the
need to introduce any arbitrary thresholds or other separation criteria. The new approach is
compared with different flavours of the Couvreux et al. (2010) tracer threshold method. The
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122 G. A. Efstathiou et al.

second aim is to provide a better understanding of the physical mechanisms represented by
the partitioning of the turbulent transfer in the CBL into coherent structures and their environ-
ment. Using quadrant analysis of the joint θ andw distribution, the physical processes behind
the assumptions from the different definitions of coherent motions are revealed, showing that,
even though different methods can diagnose similar area fractions, the mechanisms of heat
transfer might be different. Also, the kinematic and thermodynamic properties of coherent
motions from the different approaches are examined based on the release and tracking of
Lagrangian particles in the LES (e.g., Heus et al. 2008) of a quasi-steady CBL.

2 Methodology

2.1 Simulations

The Met Office Large Eddy Model (LEM) version 2.4 is used to simulate a dry CBL driven
by a strong sensible heat flux of 240 W m−2 and small geostrophic wind speed of 1 m
s−1. The set-up follows Sullivan and Patton (2011) with a strong capping inversion above
the boundary layer (z∗ ≈ 1000 m) to avoid any significant CBL development during the
simulation. Horizontal and vertical grid spacings are set to 25 m and 10 m respectively; the
domain size is 4.8 × 4.8 km2 while the model top is placed at 2000 m. Sensitivity tests
doubling the size of the domain in both horizontal directions did not reveal any significant
differences in our analysis (not shown). The convective turnover time for the simulation
(t∗ = z∗/w∗) is ≈ 500 s, where w∗ is the convective velocity scale and z∗ is the CBL
depth. The incompressible, Boussinesq equations were integrated for a time 30t∗ and only
data from after 23t∗ were taken into consideration for the analysis to allow for the spin-up
of turbulence (Efstathiou and Beare 2015). In addition, the vertical profiles presented in the
following sections have been time averaged for 3t∗ (25 − 28t∗).

2.2 Passive Tracer Threshold Method

The tracer thresholdmethodofCouvreux et al. (2010) is implemented todiagnose the coherent
structures in the CBL. A passive tracer is emitted from the surface with a constant surface
flux and evolves according to

Dq

Dt
= − q

τ0
, (2)

where q is the tracer mixing ratio. The tracer undergoes exponential (radioactive) decay on
a constant time scale τ0. An activity operator I2 is introduced; I2 takes the value 1 at those
grid points where the sampling criterion for the definition of a coherent structure is met, and
takes the value zero elsewhere. (For later use, it is convenient to define I1 = 1− I2.) For the
method of Couvreux et al. (2010), fluid is defined to be part of a coherent structure at those
locations where the tracer perturbation exceeds a height-dependent threshold,

I2 =
{
1 if q ′(x, y, z) > mq max[sq(z), smin(z)] & w(x, y, z) > 0

0 otherwise,
(3)

with q ′(x, y, z) = q(x, y, z) − q(z) where the overbar now denotes a horizontal average at
height z, sq(z) is the standard deviation of scalar mixing ratio at height z, and smin(z) is a
minimum threshold of the standard deviation (see Couvreux et al. 2010).
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Couvreux et al. (2010) also examined the sensitivity to the additional w > 0 criterion in
their definition of coherent structures in a shallow cumulus case. Here, we revisit this test
in the dry CBL case in order to identify and construct the thermals as coherent structures.
Strong downdrafts frompenetrating convection and the detraining thermals from theCBL-top
entrainment zone can penetrate far below the CBL top, down to the middle of the boundary
layer (Crum and Stull 1987). Arguably, such eddies could also be considered part of the
coherent structures, but would be excluded by the condition w > 0. Therefore, the criterion
for the definition of coherent structures (I2 = 1) from Eq. 3 is modified to

q ′(x, y, z) > mq max[sq(z), smin(z)]. (4)

The extent to which Eq. 4 captures coherent downdrafts will depend on the overturning time
of coherent structures relative to τ0 and the time scale for lateral mixing. Nonetheless, the
relaxation of the sampling criteria in Eq. 3 can provide insight into the sensitivity of the tracer
threshold method and the turbulent transport mechanisms that it captures.

In order to achieve a clean implementation of the method we choosemq = 1 and τ0 = 15
min as in Couvreux et al. (2010). Setting τ0 = 60 min led to a slight increase of the tracer
mixing ratio at the CBL top; however, it did not significantly affect the area fraction of
coherent structures (not shown).

2.3 Optimization of the Vertical Scalar Transfer

Any given distribution of the activity operator I2(x, y, z) defines a partition of the fluid into
two parts: fluid 2 with I2 = 1, and fluid 1 with I1 = 1 − I2 = 1, corresponding to coherent
structures and their environment, respectively. If c is the potential temperature or the mixing
ratio of any scalar quantity, then we can define

σi = Ii ; σi ci = Ii c; σiwi = Iiw. (5)

Here σ2(z) is the area fraction labelled as coherent structures, c2(z) is the mean value of c
within coherent structures at that height, and w2(z) is the mean value of w within coherent
structures at that height, with analogous definitions for σ1, c1, and w1. The total flux of the
scalar is then given by

wc = σ1 wc1 + σ2 wc2,

= σ1(w1c1 + w′c′1) + σ2(w2c2 + w′c′2), (6)

or

w′c′ = wc − w c = σ1w′c′1 + σ2w′c′2

+σ1(w1 − w)(c1 − c) + σ2(w2 − w)(c2 − c), (7)

where wci denotes averaging over the area fraction occupied by fluid i , and w′c′i denotes
contributions due to departures from the mean over fluid i .

The decomposition of the flow as presented in Eq. 7 is equivalent to the environment−
updraft partitioning of the flow described in Siebesma and Cuijpers (1995) and Siebesma
et al. (2007). Siebesma et al. (2007), as in much of the literature, then assume σ2 � 1 and

hence approximate σ1w′c′1 + σ2w′c′2 by w′c′1, corresponding to the first term on the r.h.s.
of Eq. 1, and neglect the term σ1(w1−w)(c1−c) leaving σ2(w2−w)(c2−c), corresponding
to the second term on the r.h.s. of Eq. 1. Thus there is an approximate mathematical corre-
spondence between the decomposition into coherent structures and environment in Eq. 7 and
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124 G. A. Efstathiou et al.

the decomposition into local and non-local transport in Eq. 1. Note, however, that σ2 may
take values of around 0.2 in the CBL, so the approximations resulting from the assumption
σ2 � 1 may be of marginal validity. Consequently, some more recent EDMF schemes (e.g.,
Sušelj et al. 2019; Tan et al. 2018) relax this assumption.

Thuburn et al. (2018) proposed a multi-fluid approach to modelling the atmosphere in
which they derived prognostic equations for the mean quantities in each type of fluid σi , wi ,
ci , etc. They envisaged applications in which these mean quantities would be predicted, and
therefore resolved, by a model dynamical core for i = 1 and i = 2. For such a multi-fluid
scheme the contributions

H = H1 + H2, H1 = σ1(w1 − w)(c1 − c), H2 = σ2(w2 − w)(c2 − c) (8)

would be resolved while the contributions σiw′c′i would be unresolved and therefore would
still need to be parametrized. In this context, it is attractive to consider whether I2 can be
defined in such away as tomaximize the resolved contribution H or H2, and therebyminimise
the contribution that needs to be parametrized.

Coherent structures are identifiable as relatively uniform objects with different thermo-
dynamic and kinematic characteristics compared to the mean state of the atmosphere, as
expressed by Eq. 8. In the mass-flux framework, they are considered responsible for most of
the turbulent transport (see Wang and Stevens 2000). Furthermore, observations show that
coherentmotion, associatedwith strong thermals, is significantlymore efficient in the transfer
of scalars in the CBL compared to the contribution of local mixing (Lenschow and Stephens
1980). Therefore, it would be physically plausible to attempt to derive a coherent-structures
area fraction that would in turn maximize the contribution of the resolved coherent motion
to the total turbulent scalar transport. Additionally, defining I2 so as to maximize H or H2

may be attractive even when H or H2 is to be parametrized, as is the case for mass-flux
convection schemes and EDMF type schemes. The idea of defining coherent structures by
maximizing their contribution to some scalar flux has the inherent advantage that no specifi-
cation of arbitrary thresholds or other sampling criteria, nor any assumptions about the shape
of the JFD, are necessary for the definition. With the multi-fluid approach in mind, in what
follows we refer to H1 and H2 as the ‘resolved’ contributions to the flux in fluid 1 and fluid 2,
respectively, and to σ1w′c′1 and σ2w′c′2 as the ‘unresolved’ contributions.

Two optimization methods for maximizing the resolved flux are introduced and tested
here. In simple terms, both involve gradually incorporatingmore air in the diagnosed coherent
structures, increasing their area fraction, until the resolved scalar flux does not increase any
further and the optimum is found. One method (called OPT2) finds the global optimum, i.e.
the optimum over all possible partitions, of the scalar flux. The result given in the Appendix
shows that to find the global optimum it is sufficient to consider partitions in which I2 is a
function of c and w, i.e. we can work in terms of the JFD in c−w space. The second method
(called OPT1) also considers partitions in which I2 is a function of c andw, but restricts itself
to a limited subset of possible partitions. It has the benefit of simplicity and efficiency, and
can be implemented easily in JFD space or in grid space, while producing results for many
quantities of interest that are close to those from method OPT2, though there are also some
interesting differences in detail. Method OPT1 is described first.

Method OPT1 scans the grid points at each level z and labels them as fluid 2 through the
operator I2 when the following condition is satisfied

I2 =
{
1 if w(x, y, z) > wp(z) & c(x, y, z) > cp(z)

0 otherwise,
(9)
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where p is the percentile of the distributions; note the same p is used for both the c and w

distributions. For any given p, σ2 is given by

σ2 = 1

NnNm

Nn∑
n=1

Nm∑
m=1

I2(n,m) (10)

with Nn and Nm the number of grid points in the x and y direction respectively as expressed
by the n,m indexes at each level. The mean vertical velocity perturbation of fluid 2 is then
given by

σ2(w2 − w) = 1

NnNm

Nn∑
n=1

Nm∑
m=1

I2(n,m) (w(n,m) − w), (11)

(note that w is identically zero for the Boussinesq simulation employed here), and similarly
for the scalar mixing ratio perturbation in fluid 2

σ2(c2 − c) = 1

NnNm

Nn∑
n=1

Nm∑
m=1

I2(n,m) (c(n,m) − c). (12)

The parameter p is gradually increased, incorporating more grid points into fluid 2 and
increasing σ2, until the resolved fluid-2 flux H2 in Eq. 7 given by

H2 = σ2(w2 − w)(c2 − c) (13)

reaches its maximum value. Figure 1a illustrates three possible partitions during the search
process in the OPT1 method.

Equation 13 corresponds to the mass-flux part of the EDMF scheme. As the proposed
methodology is not based on any pre-assumptions about the partitioning of the flow into
coherent structures and their environment, it is not self-evident that in a two-fluid representa-
tion of convection the contribution from the resolved fluid 1 should be by definition negligible
(as usually assumed in the EDMF approach). Therefore, in order to further examine the rel-
ative contribution of the resolved fluxes in the decomposition of the flow and explore the
impact of resolved fluid 1 on the optimization method, the same procedure is applied aiming
to maximize this time the total resolved scalar flux

H = H1 + H2 (14)

instead of H2, with H1 the resolved scalar flux of fluid 1 representing a form of mass-flux by
the compensating environment,

H1 = σ1(w1 − w)(c1 − c). (15)

TheOPT1method is relatively inexpensive since it involves only a one-dimensional search
along the parameter p, but it considers only a subset of all possible partitions. The alternative
OPT2 method optimizes over all possible partitions but is computationally more expensive.
Since the optimum partition is known to be given by a straight line in c − w space (see the
Appendix), it is convenient to work in c−w space and consider only activity operators of the
form I2(c, w). First, at the height z of interest, the JFD f (c, w) is constructed by assigning
each grid point to suitably chosen bins in c − w space. The mean quantities in fluid 2 are
then given by sums over bins in c − w space rather than over grid cells in physical space,

σ2 =
Nc∑
n=1

Nw∑
m=1

I2(n,m) f (n,m), (16)
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(a) (b)

Fig. 1 Schematic description of the two different optimizationmethods, aOPT1, and bOPT2 of thew−c JFD.
wp(κ) and cp(κ) denote the percentiles (fractions) of the w and c distributions respectively at each iteration
(κ) of the procedure (with κm the iteration where the maximum resolved flux has been achieved). σ2 expresses
the fluid-2 area fraction. The straight line in b corresponds to σ2(κm ) (see also the Appendix). The contour
lines represent the JFD of w − c

σ2(w2 − w) =
Nc∑
n=1

Nw∑
m=1

I2(n,m) f (n,m) (w(m) − w), (17)

σ2(c2 − c) =
Nc∑
n=1

Nw∑
m=1

I2(n,m) f (n,m) (c(n) − c), (18)

with Nc and Nw the number of bins in the c and w directions respectively.
A first guess for I2(c, w) is defined, for example as the top right-hand corner of c − w

space (Fig. 1b). Bins along the boundary of fluid 2 in c − w space are then checked and
are added to fluid 2 or removed from fluid 2 if this operation increases the value of H2 or
H (at each iteration the bin that makes the biggest increase is relabelled). When none of
the bins checked gives an increase in H2 or H then the maximum value has been found.
Figure 1b illustrates three possible partitions during the search process in the OPT2 method.
Having found the optimum I2 as a function of c and w, it is then straightforward to label grid
points at that height in grid space by checking their c and w values. Since the OPT2 method
performs a global optimization over all possible partitions, it has no built-in assumptions
about which part of the JFD corresponds to the coherent structures. The OPT1 method builds
in the minimal physical assumption that the coherent structures are dominated by the first
quadrant (see Fig. 1a), rather than one of the other quadrants. As will be shown later, the two
optimization methods result in incorporating different physical mechanisms for the scalar
flux associated with coherent structures.

In order to better understand the optimization procedure, Fig. 2 shows the different com-
ponents of the scalar flux (Eq. 7) as a function of the fluid-2 area fraction σ2 for the OPT1 and
OPT2 optimization methods for a typical horizontal cross-section of the flow in the middle of
the boundary layer. It can be seen that the flux components do not exhibit significant differ-
ences between the optimization methods, especially concerning the position of the maxima.
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(a) (b)

Fig. 2 Normalized, a resolved, and b unresolved scalar flux from the decomposed total scalar flux as shown
in Eq. 7 from fluid i = 1, 2 as a function of fluid 2 area fraction (σ2), at z/z∗ = 0.5. Solid lines represent the
OPT1 method and dashed lines the OPT2 method. Note that for OPT2 the fluxes are not unique functions of
σ2, but they depend on the first guess for I2. Here we combine results for two first guess conditions: (i) only
the top right corner of the JFD is included, so that σ2 increases from approximately zero to its optimum value,
and (ii) the whole JFD except the bottom left corner is included, so that σ2 decreases from approximately one
to its optimum value

Fig. 3 Time- and
horizontally-averaged potential
temperature flux (bold line) and
decaying tracer flux (dashed line),
normalized by their respective
surface fluxes from the LES run

Nonetheless, it becomes obvious from Fig. 2 that H2 and H1 each have a clear maximum,
for H2 at σ2 ≈ 0.2 and H1 at σ2 ≈ 0.5, while their sum (H ) maximizes at σ2 ≈ 0.3.

It should be noted that the proposed method can be applied using either a passive tracer
or the potential temperature as the scalar c. The choices c = q (governed by Eq. 2) and
c = θ give almost identical results for the lower half of the boundary layer. However, when
z/z∗ > 0.5, the choice c = θ fails to capture thermals that have lost their buoyancy as heat
flux turns negative (see also Couvreux et al. 2010) and the maximization of the resolved flux
is achieved at large area fractions σ2, as will be discussed later in Fig. 4. This can be seen
in Fig. 3 where the vertical profile of the horizontally-averaged sensible heat flux and the
“radioactive” tracer flux from the LES run is shown. The heat flux turns negative at about
z/z∗ > 0.8 while the tracer flux retains its positive sign up to the top of the CBL. Note also
that the tracer-flux profile exhibits a slight curvature as the tracer-flux convergence balances
the radioactive sink.
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2.4 Particle Tracking

A particle model was applied in order to obtain some Lagrangian information about the fluid
identified as belonging to coherent structures. High frequency LES output (every 10 s) was
used to derive particle paths from the simulated flow field following Taylor et al. (2014). A
number of particles (36,864) were released from the surface layer at 20t∗ and the analysis of
Lagrangian paths started after the spin-up of the flow, allowing for the particles to become
well mixed. The different methods described above and shown in Table 1 were used to define
coherent structures, and hence to determine whether each particle belongs to a coherent
structure at any given time. For each continuous period during which a particle belongs to a
coherent structure, its maximum vertical velocity and maximum buoyancy over that period
were diagnosed. It should be noted that the Lagrangian approach is not used here to define
coherent motion but to derive these diagnostics that highlight some interesting differences
amongst the methods tested for defining coherent structures.

3 Results

Table 1 summarises the different methods examined for identifying coherent structures.
TRACER and TRACERNW use the radioactive tracer threshold method of Couvreux et al.
(2010), with and without the condition w > 0, as given by Eqs. 3 and 4, respectively. All
of the optimization methods except for OPT2HF use the same radioactive tracer q for the
scalar c, and use either the OPT1 or OPT2 method to maximize either H2 or H , as indicated
by their mnemonics. Finally, OPT2HF uses the OPT2 method to maximize the sensible heat
flux (c = θ ).

3.1 Area Fraction

Figure 4 shows the vertical profile of the coherent-structure area fraction σ2 diagnosed using
all seven methods in Table 1. The default tracer threshold approach (TRACER) returns an
area fraction of about 10 − 20%, very similar to the findings of Couvreux et al. (2010) (and
references therein) from simulating an evolving CBL. Moreover, the derived σ2 in our quasi-
steady state CBL is also similar to the vertical profiles of boundary-layer thermal fraction
from Rio et al. (2010) for the ARM shallow cumuli case. Excluding the w > 0 criterion
(TRACERNW - Eq. 4) results in small differences in σ2 that are more pronounced near the
inversion. This will be analyzed further when examining the vertical and horizontal cross-
sections of the defined thermals.

The area fraction of coherent structures from the optimization of H2, using methods
OPT1H2 and OPT2H2, closely follows the area fraction profile from the tracer threshold
method, although it remains slightly larger for the whole of the CBL compared to the tracer
threshold method. As shown in Fig. 2, methods OPT1H2 and OPT2H2 produce almost iden-
tical area fractions except near the inversion where some marginal differences are present. In
contrast, coherent structures defined by methods OPT1H and OPT2H occupy a significantly
larger area than all other approaches, reaching about 40% near the surface.

Additionally, Fig. 4 shows the vertical distribution of σ2 when optimizing the resolved
heat flux instead of the tracer flux using the OPT2 optimization method approach (OPT2HF).
Results are almost identical tomethodOPT2Hup to z/z∗ ≈ 0.5; however, they start to deviate
significantly further upwards as heat flux tends to zero (Fig. 3), with OPT2HF exhibiting two
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Fig. 4 Time-averaged vertical
profiles of area fraction occupied
by coherent structures (fluid 2),
derived from the different
methodologies shown in Table 1

Table 1 Summary of the different methods used in this study for the partitioning of the flow in coherent
structures (fluid 2) and local small-scale turbulence (fluid 1)

Method Partitioning criteria

TRACER Equation 3

TRACERNW Equation 4

OPT1H2 Optimize over p-percentiles—maximizing H2 (c = q)

OPT2H2 Full optimization—maximizing H2 (c = q)

OPT1H Optimize over p-percentiles—maximizing H (c = q)

OPT2H Full optimization—maximizing H (c = q)

OPT2HF Full optimization—maximizing total resolved heat flux (c = θ )

spikes in σ2 where the total sensible heat flux reaches zero and then just above where it attains
its minimum value (see Fig. 3).

The vertical and horizontal cross-sections of vertical velocity from the LES at 3.2 h after
the start of the simulation are shown in Figs. 5 and 6 respectively, together with the outlines
of thermals as defined by the different methods. In accordance with Fig. 4, the two flavours
of the tracer approach do not exhibit any significant differences up to the middle of the CBL
(compare Fig. 6a, b) and produce different results only in the upper part of the CBL (compare
Fig. 5a, b). The tracer approach without w > 0 (TRACERNW) incorporates some of the
returning flow (w < 0) from ascending thermals and entrainment flux from the inversion
which increases σ2 in the inversion layer (see Figs. 4 and 5b). The vertical (Fig. 5c, e)
and horizontal (Fig. 6c, e) cross-sections from the H2 optimization produce very similar
structures to the tracer thershold method. One notable difference is the merging of low-level
plumes into larger ones that leads to larger area fractions in the optimization approaches (e.g.
x ≈ − 800m near the surface in Fig. 5, see also Fig. 4). Coherent structures defined using
the H optimization (OPT1H and OPT2H) occupy a significantly larger area compared to
the other methods as is especially obvious in the horizontal cross-sections in Fig. 6d, f. One
thing to note is that method OPT2H diagnoses slightly larger thermals than method OPT1H,
mainly on the upper part of CBL (see Fig. 5d, f), which also can be seen in Fig. 4.
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Fig. 5 Vertical cross-section of the w field (colourbar in m s−1) from the LES and the outlines of defined
thermals (black bold line) according to the different methods from a to f (see also Table 1) at t = 3.2 h after
the start of the simulation

3.2 Sensible-Heat-Flux Partitioning

Based on the partitioning of the flow into coherent structures (fluid 2) and their environment
(fluid 1) using the different methods, Fig. 7 shows the partitioning of the sensible heat flux
into resolved and unresolved components for both fluids according to Eq. 7 (with c = θ ).
Using the tracer threshold approach, most of the heat transfer is being done by the coherent
structures (Fig. 7d), as captured by the mean, i.e. resolved properties of fluid 2 (see Couvreux
et al. 2010), while the next most important mechanism is the unresolved heat flux in fluid 1
(local mixing). This is similar to the partitioning of the heat flux in the EDMF scheme.
However, the increase in σ2 when applying the optimization technique (Fig. 4) leads to a
reduction in the heat flux due to unresolved motion in fluid 1 (Fig. 7a) and an increase in
the contributions due to resolved motion in fluid 1 (Fig. 7b) and due to unresolved motion
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Fig. 6 Same as Fig. 5 but for the horizontal cross-sections at z/z∗ = 0.5
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Fig. 7 Time- and horizontally-averaged components of the total heat flux (see also Eq. 7) from the LES
according to the different definitions of fluid 2: a subfilter fluid-1 flux, b resolved fluid-1 flux, c subfilter
fluid-2 flux, and d resolved fluid-2 flux. Fluid 2 represents coherent fluxes responsible for the non-local heat
flux. w′θ ′

0 denotes the surface heat flux

in fluid 2 (Fig. 7c). This effect becomes more pronounced when maximizing H (OPT1H
and OPT2H) and the area fraction of coherent structures is substantially larger. Similar to
Figs. 4, 5, and 6, differences between the optimization methods OPT1 and OPT2 are very
small.

In contrast, the non-local transport due to coherent structures (fluid 2) remains almost
unchanged for the bulk of the CBL regardless of the method used for the partitioning of the
flow (Fig. 7d), representing almost 50% of the total heat flux in the lower CBL. The most
apparent difference among themethods is seen in the strong negative heat flux in the inversion
when thew > 0 criterion is excluded, which is partly compensated by some positive heat flux
due to unresolved motions in fluid 1 in the inversion layer (Fig. 7a). The default TRACER
method (the only method to requirew > 0 in fluid 2) has a much smaller negative heat flux at
the inversion (Fig. 7d), and the boundary-layer-top entrainment flux is represented primarily
through the unresolved motions in fluid 2 (Fig. 7c).

3.3 Quadrant Analysis

In order to shed some light on the physical mechanisms that are incorporated in the differ-
ent definitions of coherent motion, the JFD of θ − w at two levels, z/z∗ = 0.5 and 0.9,
is presented in Fig. 8a, b respectively. The four quadrants of the JFD represent different
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Fig. 8 Normalized JFD of w and θ perturbation (coloured contours and colour bar) in a the middle of the
CBL (z/z∗ = 0.5) and b near the inversion (z/z∗ = 0.9). The bold borderlines depict the 0.01 contour of the
ratio between the JFD from the grid points where I2 = 1 to the total JFD as derived from the different fluid-2
definitions (see Table 1)

physical processes responsible for the turbulent heat transfer in the CBL (see Mahrt and
Paumier 1984): The first quadrant (I) includes buoyant updrafts (thermals), (II) includes cold
updrafts related to penetrative convection (updrafts that have lost their buoyancy but still have
enough momentum to keep rising in the CBL), (III) includes cold downdrafts that express
compensating motions in the CBL, and (IV) includes warm downdrafts originating from the
entrainment of potentially warmer air from the inversion layer.

For the methods that optimize the tracer flux, the partitioning of the flow into fluid 1
and fluid 2 is described exactly by a curve in c − w space (Fig. 1). However, in θ − w

space, the borderline between fluid 1 and fluid 2 is no longer perfectly sharp because a given
bin in θ − w space may contain some grid points labelled as fluid 1 and some grid points
labelled as fluid 2 (because they have different values of c). Similarly, for the TRACER and
TRACERNW methods the borderline between fluid 1 and fluid 2 is not perfectly sharp in
θ − w space. Nevertheless, for all the methods, the partitioning may be visualised in θ − w

space as follows. The JFD in θ − w space is computed first using only those grid points
at height z where I2 = 1 and second using all grid points at height z. In the middle of the
boundary layer, the ratio of these two JFDs changes fairly abruptly between 1 and 0, and
the 0.01 contour of the ratio gives a clear indication of the partition. Near the inversion the
ratio changes rather more gradually between 1 and 0, indicating that the partition in θ − w

space becomes rather blurred at these heights. Figure 8 shows this contour for several of the
methods listed in Table 1.

In the middle of the CBL (Fig. 8a), the standard tracer threshold method (TRACER) only
incorporates upwardmotion (w > 0) in the definition of coherent structures, including a large
part of quadrant (I) of buoyant upward motion, and with a minimum buoyancy threshold of
about 0.1 K. If the tracer threshold method is not restricted to upward motion only (TRAC-
ERNW), it incorporates the entrainment fluxes (Figs. 5b, 6b) at almost the same buoyancy
threshold, which results in the increase of σ2 especially near the inversion (see Fig. 4). On the
other hand, optimizing H2 (OPT1H2) leads to a definition of coherent motion that includes
buoyant updrafts (quadrant (I)), similar to the tracer threshold method, together with a small
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part of the cold ‘overshooting’ thermals (quadrant (II)) close to neutral buoyancy. However,
method OPT2H2 shows a different partitioning of the flow with a straight line to define the
relative fractions of fluid 1 and 2. Even though OPT2H2 incorporates the same mechanisms
and occupies a similar area fraction as method OPT1H2 (see Fig. 4), it excludes some low
velocity and less buoyant thermals while including only the strongest of the cold updrafts.
Optimizing the total resolved scalar flux (H ) in method OPT1H increases σ2 including more
cold updrafts in OPT1H while method OPT2H starts to encompass the contribution of the
warmest downdrafts (entrainment fluxes) from a small area of quadrant (IV).

Near the top of the boundary layer (Fig. 8b), the shape of the JFD exhibits a double
‘lobe’ structure with most updrafts concentrated in near-neutral or negative buoyancy, and
most warm perturbations occurring in descending air from the entrainment zone. All of
the methods examined here incorporate most of the warm updrafts (quadrant (I)) and some
cold updrafts, i.e. ‘overshooting’ thermals (quadrant (II)), in their diagnosed coherent struc-
tures. TRACERNW and OPT2H both include contributions from all quadrants, with method
OPT2H incorporating more of the cold compensating downdrafts (see Figs. 4, 5f). Method
OPT2H2 includes the warm updrafts as well as some cold updrafts and some warm down-
drafts, but almost none of the cold compensating subsidence. Although the different methods
produce similar magnitude of negative heat flux (see Fig. 7d) in the entrainment zone (except
for TRACER due to the w > 0 criterion), they include different parts of the JFD.

4 Kinematic and Thermodynamic Characteristics of Diagnosed
Coherent Structures

4.1 Vertical Velocity Profiles

Figure 9 shows the vertical profile ofw1 andw2 according to the different definitions of fluid
2. The tracer threshold (TRACER and TRACERNW) and optimization of H2 (OPT1H2 and
OPT2H2) methods produce similar vertical velocities, with the maximum w2 comparable to
the convective velocity scale (w∗) in the middle of the CBL. The TRACER method exhibits
slightly stronger w2 compared to the optimization methods, as well as smaller area fraction
σ2 (Fig. 4), implying that it captures less of the more weakly ascending fluid (see also Fig. 8).
The TRACERNW method shows a reduced w2 in the upper half of the CBL, along with a
larger σ2 compared with TRACER, because it captures descending as well as ascending fluid
(again see Fig. 8).

At the same time, OPT1H2 and OPT2H2 methods have a more pronounced w1 than the
tracer threshold method, which results in the increase of the resolved fluid 1 contribution to
the sensible heat fluxes shown in Fig. 7b. Optimizing H (OPT1H) leads to a further reduction
of w2 (w2 ≈ 0.8w∗), which in turn increases the magnitude of w1 (see also Fig. 4). As a
result the ‘environment’ mass-flux contribution (resolved fluid 1) reaches its maximum at
the expense of the unresolved fluid 1 heat flux (see Fig. 7a, b).

The choice of the optimization method (OPT1 or OPT2) does not seem to have significant
impact on the vertical velocity profiles compared to the effect of maximizing H2 versus
H . One notable difference between the OPT1 and OPT2 methods is the slight increase of
w2 at z/z∗ ≈ 1.1 in OPT2, associated with some strong overshooting thermals (w >> 0)
that occupy small area fractions (see Figs. 4, 8b). In any case, the differences due to the
optimization method between OPT1H2 and OPT2H2 are similar to those between methods
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Fig. 9 Profile of the time-averaged vertical velocity (wi ) in fluid 1 (i = 1) and fluid 2 (i = 2) normalized by
the convective velocity scale (w∗), as derived from the different definitions of fluid 2. The grey dashed line
depicts the zero w line

OPT1H and OPT2H (not shown). For the rest of the analysis, only differences between the
OPT1H2 and OPT2H2 methods will be shown.

4.2 Distributions of Maximum Buoyancy andVertical Velocity

The term ‘coherent structure’ implies that fluid parcels move coherently over some distance
and some period of time. However, the definitions of coherent structure discussed here and
listed in Table 1 do not directly use any Lagrangian information about the fluid parcel’s
history (though some such information is contained implicitly in the distribution of potential
temperature and other scalars). It is useful, therefore, to examine some of the Lagrangian
properties of the fluid identified as belonging to coherent structures. Some small but interest-
ing differences are found between the different methods of diagnosing coherent structures.

Using high-frequency output from the LES, a large number of particle paths were com-
puted, as described in Sect. 2.4. For each particle and for each time t , the w, θ , and q were
interpolated to the particle position, so that any of the methods listed in Table 1 could be
used to determine whether the particle was within a coherent structure. For each continuous
time period that a particle belonged to a coherent structure, its maximum vertical veloc-
ity and maximum buoyancy over that time period were diagnosed. These diagnostics were
accumulated over all such time periods for all particles during roughly the last hour of the
LES to compile the results presented below. For comparison, the same diagnostics were also
computed based on continuous time periods for which a particle had w > 0, and based on
time periods for which a particle had w > wpw with pw = 5%.

The bold black lines in Fig. 10 present the frequency distribution of maximum attained
vertical velocity (Fig. 10a) and maximum buoyancy (Fig. 10b) using the w > 0 criterion,
i.e. over periods of continuous particle ascent. The maximum w distribution exhibits an
almost bimodal behaviour comprising a narrow peak, where most of the particles are found
around a lowmaximummajor mode ofw values, and a second broader distribution including
the strongest maximum attained w. Selecting coherent structures defined according to the
TRACER method produces a distribution of maximum w that includes all of the strongest
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Fig. 10 Frequency distribution of a maximum w and b maximum buoyancy (θ − θ) attained from fluid-2
labeled particles. The bold black line represents the distribution of all upward moving particles. Different
colour lines represent the distributions from the different definitions of coherent motion (see legend). The
grey bold line depicts the distribution of coherent motion as the 5% precentile of w. The black dotted line
corresponds to the value of w∗

maximum vertical velocities. The mode of the distribution is comparable to w∗, while the
frequency of lower maximum w is significantly reduced. Similar behaviour is exhibited by
using the OPT1H2 and OPT2H2 methods, with the OPT2H2 distribution being very similar
to TRACER. One thing to note is that there is a minimum value of maximum w greater than
zero in both OPT1H2 and OPT2H2 as also shown in Fig. 8. The OPT1H method has similar
behaviour, however it includes more events of lower maximum w, moving the mode of the
distribution to lower values (see also Fig. 9).

Figure 10a also shows the distribution of maximum attained vertical velocity for those
particles with w in the top pw = 5% of w values at the same height (grey bold line). In
contrast to the physical behaviour of the previous methods, the distribution for pw = 5%
is missing a large part of the strong updrafts close to w∗ even though it incorporates the
strongest of the maximum updrafts. Additionally, as shown in Fig. 10b, choosing the top 5%
of the w distribution omits many of the most buoyant particles from the diagnosed coherent
structures. On the contrary, TRACER incorporatesmost of the buoyant particles similar to the
optimization approaches. However OPT1H2 and especially OPT1H label more non-buoyant
particles as fluid 2, moving the mode of their distribution closer to zero. The OPT2H2 method
exhibits a similar distribution to TRACER as also seen in Fig. 10a.

For each time period that a particle spends in a coherent structure, the in-thermal ascent
h is calculated as

h = zend − zstart, (19)

where zstart is the height at which a particle enters fluid 2 and zend is the height at which it
leaves fluid 2 (relabelled as fluid 1). Figure 11 shows the relative frequency distribution of
maximum w for four different definitions of coherent structure when attention is restricted
to certain ranges of h. When all values of h are included (Fig. 11a) the distributions from the
different definitions are similar to each other as also shown in (Fig. 10a), with the OPT1H
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Fig. 11 Relative frequency distribution of maximum attained w from fluid-2 particles defined in coherent
structures using different methods (see legend) according to their in-thermal ascent (h): a all thermals b
thermals deeper than 0.5z∗, and c thermals equal or deeper than z∗
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Fig. 12 Relative frequency distribution of maximum attained buoyancy (θ − θ) from fluid-2 particles defined
in coherent structures using different methods (see legend) with starting points (zstart) in a the surface layer
(0.1z∗) b in the lower half of the CBL (0.5z∗), and c in the upper half of the CBL (z∗)

method including in fluid 2 more particles that have low maximum w. When attention is
restricted to h > 0.5z∗ (Fig. 11b) the mode of all distributions increases, and even though
the differences among the methods are not substantial, the OPT1H mode is again slightly
shifted to lower maximum w values. As expected, the deepest in-thermal ascents (h ≥ z∗)
attain higher vertical velocities (Fig. 11c) while any differences among the methods used for
the definition of coherent structures are not significant in this case.

Figure 12 shows the relative frequency distributions of maximum buoyancy for particles
identified as belonging to coherent structures according to four of the criteria examined,
for three different ranges of starting height zstart . It can be seen that there are only minor
differences among the four criteria. Particles starting their ascent from the surface layer
(zstart ≤ 0.1z∗) are positively buoyant and include the most buoyant particles due to the
strong surface heating in the superadiabatic layer. Only the OPT1H method incorporates
some slightly negatively buoyant particles as it significantly increases the area fraction of
coherent structures in the surface layer compared to the other methods (see also Fig. 4).
Similarly, particles starting above the surface layer and up to the middle of the boundary
layer (0.5z∗ > zstart > 0.1z∗) are still buoyant even though their distribution is narrower and
their mode is closer to neutrally buoyant values. Particles in coherent structures starting their
ascent from the upper, slightly stable part of the CBL (zstart ≥ 0.5z∗) are distributed almost
uniformly around the neutral buoyancy values and are probably being entrained into thermals

123



138 G. A. Efstathiou et al.

(a) (b)

Fig. 13 Frequency distribution of, a maximum w, and b maximum buoyancy (θ − θ) attained by the upward
moving particles. The bold black line represents the distribution of all upward moving particles. Different
colour lines represent the distributions from upward moving particles with different in-thermal ascent. For
comparison, the grey bold line depicts the distribution of coherent motion as defined by the TRACER method

ascending from lower in the boundary layer. The distribution based on the TRACER method
peaks at slightly higher buoyancy values compared to the other methods, exhibiting a longer
tail towards negative buoyancy particles.

Finally, Fig. 13a depicts the distribution of maximum w for different h when a coherent
structure is defined solely by w > 0. As shown in Fig. 11, the deepest thermals attain the
highest maximum vertical velocities. However, continuously ascending particles with h ≥ z∗
account for only a small fraction of strong upward motion as is evident in Fig. 13a. The same
is true for the most buoyant particles (Fig. 13b). In fact, we must include all particles with
h ≥ 0.1z∗ in order to capture the total of the maximum vertical velocities (see Fig. 13a) and
most of the buoyant particles. The distributions for h ≥ 0.1z∗ seem to be very similar to
those for TRACER, which are also presented in Fig. 13. That said, most particles ascend only
about 0.1z∗ – 0.2z∗ during a continuous period within a coherent structure defined using the
TRACER approach (not shown).

5 Discussion and Concluding Remarks

Anewmethod for identifying coherent structures in theCBLhas been presented. It is based on
labelling thefluid in each grid box as either fluid 2 (coherent structure) or fluid 1 (environment)
in such a way as to maximize the contribution to some scalar flux that is resolved by the mean
properties of the two types of fluid. Even though the optimization method makes no explicit
use of the concept of a coherent structure, it is found that fluid 2 picks out the thermals with
length scales comparable to the boundary-layer depth (see Fig. 5) that are responsible for the
non-local vertical transport in the CBL. The new approach does not depend on any arbitrary
parameters or assumptions about the distribution of the scalar flux; it merely scans the JFD
of c − w until the maximum resolved flux is achieved. Four variants of the optimization
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method have been explored, with two methods for scanning the JFD (OPT1 and OPT2) and
two choices for maximizing either the total resolved flux H or the fluid-2 resolved flux H2.

The OPT2 method searches for the global maximum of the scalar flux by considering
arbitrary partitions of the c − w JFD, adding (or removing) bins until the maximum is
achieved. The resulting partition is a straight line in c− w space, as shown in the Appendix.
The method OPT1 considers only a subset of the possible partitions of the c − w JFD, as
described in Sect. 2.3. Although it does not achieve the global maximum flux, the results for
many diagnostics, including fluid 2 area fraction, heat flux, and vertical velocities, are very
similar to those from method OPT2. However, OPT1 and OPT2 methods can incorporate
different physical heat transfer mechanisms as represented by different quadrants of the θ −w

JFD. At the same time OPT1 is computationally faster than OPT2, and is also more similar
to currently used methods for identifying thermals or updrafts.

The main difference amongst the optimization approaches comes from the choice of
maximizing either H or H2. Using H results in larger area fractions σ2 and weaker w2

resulting in broader thermals as the method might incorporate more low velocity and less
buoyant updrafts and/or some returning flow from the entrainment zone. In contrast, H2

produces the strongest resolved upward velocity w2, with maximum close to w∗, while the
derived optimum σ2 agrees better with previous studies, compared to maximizing H . This
difference is also obvious in the heat-flux decomposition where OPT1H andOPT2Hmethods
exhibit the most pronounced contribution of resolved heat flux from fluid 1 (the mass-flux
contribution from the environment) in the total heat flux.

Results from the optimization method for the definition of coherent structures are com-
pared to those from the tracer threshold method (TRACER) proposed by Couvreux et al.
(2010). Maximizing H2 produces similar profiles of σ2 and almost identicalw2 to TRACER,
diagnosing coherent structureswith very similar horizontal andvertical structures. The impact
of the w > 0 criterion in the tracer threshold method was also tested and differences were
only found in the upper part of the boundary layer, where removing the w > 0 constraint
led to the inclusion of entrainment fluxes and returning flow in the definition of coherent
structures. This is in agreement with the findings of Couvreux et al. (2010) in the sub-cloud
layer, although differences in the cloud layermight bemore pronounced.Moreover, the tracer
threshold method here returns a coherent structure area fraction very similar to the cloud-free
case of Couvreux et al. (2010) (and to that found in references from measurement-focused
studies therein) using the natural choice mq = 1 (Eq. 3). Nevertheless, as shown in Chinita
et al. (2018) the tracer threshold method exhibits some increased sensitivity to the mq and
τ0 parameters in the cloud-free CBL.

Optimization of the total sensible heat flux (OPT2HF) gives almost identical results to
OPT2H in the lower half of the boundary layer. However, near the inversion, where the
total sensible heat flux changes sign, OPT2HF produces unsatisfactory results that do not
correspond to our intuitive ideas of coherent structures. The spikes in the diagnosed fluid 2
area fraction near the inversion (Fig. 4) are one symptom of this. It is instructive to consider
why optimizing the sensible heat flux is unsatisfactory in these circumstances. Intuitively,
maximizing the sensible heat flux seems inappropriatewhen the coherent structures of interest
are known to carry a negative heat flux. This idea is backed up by examination of Eq. 30
with c = θ , which shows that, provided both w̃2 and θ̃2 are positive, the optimal partition
is described by a straight line of negative slope, which assigns predominantly quadrant (I)
of the θ − w JFD to fluid 2. However, near the inversion a large proportion of the thermals
become negatively buoyant and move to quadrant (II) (Fig. 8b). Then the optimal partition
of the θ − w JFD is of the wrong form to capture these. Equation 30 also shows that when
the total resolved heat flux H is zero the optimal partition line must pass through the origin;
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this suggests an area fraction σ2 close to 0.5 (depending on the exact shape of the JFD), and
partly explains the spikes seen in Fig. 4.

Using quadrant analysis reveals that for all of the methods the coherent structures are
dominated by quadrant (I): the buoyant updrafts. However, there are some differences in the
detail. In the middle of the boundary layer the TRACER method picks out fluid with w > 0
and buoyancy greater than a threshold of about 0.1K, whereas the OPT1H2 method picks out
positively buoyant fluid with vertical velocity greater than a threshold of about 0.5m s−1 (see
Fig. 8a). Further up, near the inversion, both methods include cold updrafts (quadrant (II))
that have enough momentum to overcome the stable stratification. However, the OPT2H2

method produces a different partitioning of the flow. Even though it produces the same σ2 as
the OPT1H2 method and also includes quadrants (I) and (II), it excludes some low vertical
velocity low buoyancy fluid from fluid 2, and includes more large vertical velocity negatively
buoyant fluid.

Decomposing the heat flux according to the different definitions of coherent structure
results in four contributing components to the total heat flux, following Eq. 7 and similar to
Siebesma and Cuijpers (1995). Regardless of the method used, the resolved fluid 2 explains
most of the total heat flux. This can be attributed to the dominant contribution of quadrant
(I) in the definition of fluid 2 for all methods. Using TRACER or TRACERNW leads to a
further significant heat flux contribution from the unresolved perturbations in fluid 1, which
represents small scale processes in the environment. This is in accordance with the simpli-
fications of the updraft-environment decomposition in the EDMF scheme (Siebesma and
Cuijpers 1995; Siebesma et al. 2007), which only takes into account the unresolved fluid-1
contribution (local fluxes in the environment) and the resolved fluid-2 contribution (non-
local fluxes from coherent structures). In contrast, the increased area fraction in OPT1H2 and
OPT2H2 results in a greater resolved fluid-1 contribution and a reduced unresolved fluid-1
contribution to the vertical turbulent heat transport (see Fig. 2). The resolved fluid-1 contribu-
tion becomes much more pronounced, together with the unresolved fluid-2 fluxes, in OPT1H
and OPT2H, as mentioned above. The contribution of the resolved environment was also
identified in Chinita et al. (2018) when applying their JFD approach in a shallow cumulus
cloud layer. It seems that each method for the partitioning of the flow into coherent structures
and environment, or local and non-local components, could be a better a fit to a particular
parametrization scheme making the objective partitioning of the flow extremely difficult as
also discussed in Chinita et al. (2018).

The distribution of maximum w attained by upward moving particles is almost bimodal.
All of the methods investigated for defining coherent structures are consistent with the inter-
pretation of the minor mode as representing coherent structures and the major mode as
representing their environment. Overall, the differences amongst the distributions from the
different definitions of coherent structure are not very pronounced. However, one noticeable
difference is the inclusion of more low maximum velocity particles when maximizing H ,
which leads to a shift of the fluid-2 distribution closer to the major mode, with a peak further
from w∗. Moreover, particle analysis has shown that continuous ascent over a large vertical
extent cannot be the sole criterion for the identification of coherent structures as there exist
strongly buoyant particles that ascend over a relatively small vertical extent. This behaviour
is probably related to the entrainment-detrainment processes and the continuous exchange
of particles between fluid 2 and fluid 1. Furthermore, Lagrangian particle tracking is known
to produce excessive switching of particle labels between the coherent structures and their
environment (see Yeo and Romps 2013; Thuburn et al. 2019).

The main advantage of the optimization approach is its ability to define vertically and
horizontally coherent structures (as shown in Figs. 5 and 6), with smooth area fractions
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(Fig. 4) and heat fluxes (Fig. 7) without the need to specify a priori any sampling criteria or
assumptions about the functional form of the JFD. Interestingly, no direct information about
the length scales of the structures to be included in fluid 2, or about the Lagrangian history
of the parcels in fluid 2, is included in the optimization methods, since such information is
not present in the JFD. Nevertheless, the method picks out structures with horizontal and
vertical scales comparable to the CBL depth and which remain coherent as they ascend over
comparable scales.

One possible drawback of the optimization method can be considered the increased com-
putational cost especially when applying the OPT2 approach. The tracer threshold method
on the other hand, employs a rather physical and easy to calculate sampling criterion for the
identification of coherent motion. However, the use of a tuneable parameter (mq ), induces
some extra sensitivity to the tracer threshold method (see Couvreux et al. 2010; Chinita et al.
2018) which might be application-dependent. All in all, the two approaches produce sim-
ilar results (setting mq = 1 for the tracer threshold method) with comparable fluid-2 area
fractions, distributions of maximum vertical velocities and decomposition of the sensible
heat.

The proposed methodology for the identification of coherent structures can in principle be
usedwith any scalar. However, as discussed above, tests using potential temperature produced
some noisy spikes in σ2 near the inversion where the heat flux changes sign. Therefore, in
this study as a starting point, we have used the same decaying scalar as in the tracer threshold
method to also facilitate a better comparison between the two methods. Moreover, we are
currently exploring how the optimization method can be generalized to three-fluid flow
(updrafts, downdrafts and environment) to account for cases where downdrafts significantly
affect the thermodynamic structure of the atmosphere. Work is underway for the extension
of the optimization method to cloudy boundary layers and deep convective clouds.
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Appendix 1

Define the vertical velocity and scalar mixing ratio perturbations as,

c̃ = c − c; c̃i = ci − c; (20a)

w̃ = w − w; w̃i = wi − w. (20b)

The resolved contribution to the scalar flux Eq. 7 is given by

H = σ1w̃1c̃1 + σ2w̃2c̃2, (21)

where σ1 = 1 − σ2. It is a straightforward exercise in variational calculus to show that the
partition of the fluid that gives the maximum of H at any height z is described by a straight
line in c − w space.
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First note that

σi = 1

A

∫
Ii d A, σi c̃i = 1

A

∫
c̃ Ii d A, σi w̃i = 1

A

∫
w̃ Ii d A, (22)

where I1 = 1 − I2 and A is the domain area. Therefore it is convenient to write

σ1σ2H = σ2(σ1w̃1)(σ1c̃1) + σ1(σ2w̃2)(σ2c̃2). (23)

Using the fact that σ1c̃1 = −σ2c̃2, σ1w̃1 = −σ2w̃2, and σ1 + σ2 = 1, this simplifies to

σ1σ2H = (σ2w̃2)(σ2c̃2). (24)

Now consider the changes (indicated by δ) that result from a change δI2 to I2,

σ1σ2δH + σ2Hδσ1 + σ1Hδσ2 = (σ2w̃2)δ(σ2c̃2) + (σ2c̃2)δ(σ2w̃2), (25)

where

δσ2 = 1

A

∫
δI2 d A = −δσ1, (26)

δ(σ2c̃2) = 1

A

∫
c̃ δI2 d A, (27)

δ(σ2w̃2) = 1

A

∫
w̃ δI2 d A, (28)

so that

σ1σ2δH = 1

A

∫
{σ2H − σ1H + (σ2w̃2 )̃c + (σ2c̃2)w̃} δI2 d A. (29)

In order for H to be a maximum, δH must equal zero for arbitrary changes δI2. This will
be satisfied only if the expression in curly braces in Eq. 29 vanishes at the locations where
I2 may change, i.e., along the boundary between fluid 2 and fluid 1. Thus, that boundary is
given by

(σ2 − σ1)H + (σ2w̃2 )̃c + (σ2c̃2)w̃ = 0. (30)

This result is useful in several ways. First, it shows that the optimal boundary between
fluid 2 and fluid 1 is a straight line in c−w space. Thus, the search for the optimum partition
may be carried out in terms of the JFD in c − w space rather than in physical x − y space.
Second, it may be used to accelerate the practical computation of the optimum partition. For
example, using the OPT2 search method described in Sect. 2.3, a first approximation to the
optimum partition may be found quickly, starting from an arbitrary I2(c, w), using rather
coarse data bins in c − w space; that first approximation may then be used to calculate the
coefficients in Eq. 30, which may then be used to provide a good first guess for a rerun of
the search using much finer bins. Third, this result also provides some understanding of why
the optimization method is less useful when applied to the sensible heat flux, whose vertical
profile changes sign, as discussed in Sect. 3.1 and Sect. 5.

A slight modification of the above derivation shows that the partition that maximizes H2

is described by
− σ2H2 + (σ2w̃2)̃c + (σ2c̃2)w̃ = 0. (31)

The derivation may be adapted straightforwardly to show that the partition that maximizes
an arbitrary linear combination of the resolved scalar flux, scalar variance, and w variance
(either the total or the contribution only from fluid 2) is also described by a straight line in
c − w space.
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