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Abstract
The prevalent multifractal characteristics of turbulent velocity fluctuations in the atmosphere
are important for estimating various wind effects in wind engineering. Here, the multifractal
characteristics of turbulent velocity fluctuations, including the small-scale multiscaling, the
long-tail distributions and the intermittency, are thoroughly investigated by using a high-
frequency dataset of three-dimensional velocities (100Hz) collected at three levels during
one month. To reduce uncertainties in the estimate of multiscaling exponents, a new method,
the sequential extended self-similarity, is proposed. Based on this method, we obtain the
multiscaling exponents of qth-order moments of velocity increments as a function of q , that
is the so-called multifractal spectrum. The multifractal random walk (MRW) model is then
shown to describe the various multifractal spectra of turbulent velocity fluctuations. With
the help of this model, we find a connection between the small-scale multiscaling and the
long-tail distributions, which is generally observed in our dataset, again validating the MRW
model. A non-linear multifractal spectrum is commonly considered to be related to the inter-
mittency of turbulent velocity fluctuations at small scales and its curvature is usually used as a
quantification of intermittency intensity. However, we suggest that models capturing the non-
linear multifractal spectrum may fail to represent the long-tail distribution, which is a more
direct quantification of intermittency. Finally, qualitative variations of validated indicators
with specific boundary-layer parameters are investigated. Results show that the intermittency
of turbulent velocity fluctuations is more relevant to the friction velocity, compared with the
average wind speed, the average temperature, and the surface-layer stability.
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1 Introduction

The small-scale multiscaling phenomenon has been found to be prevalent in the time series of
turbulent velocity fluctuations in the atmosphere (Schmitt et al. 1994; Cho et al. 2001; Vindel
and Yagüe 2011; Liu and Hu 2013; Xu and Hu 2015). Recently, studies have shown that
small-scale multiscaling is important for estimating wind loads (Peinke et al. 2004; Fitton
et al. 2014) and wind power (Milan et al. 2013; Calif and Schmitt 2014), and it is becoming
a new feature in the statistical simulation of atmospheric turbulence (Nawroth and Peinke
2006; Guo et al. 2011; Calif and Schmitt 2012; Baile and Muzy 2016).

The turbulent velocity fluctuations u(t) have small-scale multiscaling properties if the
qth-order moment of velocity increments,

〈|u(t + τ) − u(t)|q 〉 ∼ τ ζq , (1)

when the time scale τ is small enough and ζq is a non-linear function of q . The symbol 〈·〉
stands for mathematical expectation. If ζq is linear, u(t) becomes single-scaling. Multiscal-
ing is a hallmark of multifractal, which refers to a class of geometrical objects displaying
intermittency in time or space (Feder 1988; Mandelbrot et al. 1997).

In most statistical theories of turbulence, the small-scale multiscaling and intermittency
are commonly attributed to the spatio–temporal intermittency of energy dissipation in the
inertial range far from the energy-containing range (Frisch 1995). A multiscaling relation of
velocity increments with a space lag of l,

〈|u(x + l) − u(l)|q 〉 ∼ lq/3 〈εl〉q/3 ∼ lq/3+θq , (2)

has been found to be true in laboratory turbulence (Meneveau and Sreenivasan 1991). It can
be easily seen from this relation that if the energy dissipation rate ε is not intermittent, its
value averaged over a ball of size l, denoted by 〈εl〉, will not be related to l. Then θq , which
is a function of q , is zero and Eq. 2 is just the single-scaling result of the K41 model without
intermittency (Kolmogorov 1941). According to Taylor’s hypothesis, mean velocity can be
used to translate turbulence measurements at a fixed spatial location over a time period to
their corresponding measurements in space (Stull 1988). Thus, the above discussions about
spatial multiscaling would also be true for the temporal multiscaling. Intermittency means
that larger values occur more frequently than those predicted by the Gaussian distribution.
Thus, many phenomenological models such as the log-normal model (Kolmogorov 1962),
the log–gamma model (Saito 1992), the log–α–stable model (Schmitt et al. 1992), and the
log–Poissonmodel (She and Lévêque 1994) assume different long-tail distributions of energy
dissipation to produce the non-linear multiscaling.

The variation of ζq with q is generally considered to be universal for turbulence in the
inertial range far from the energy-containing range. However, many previous studies on
atmospheric turbulence have reported that the variation of ζq varies with large-scale factors
such as stratification (Lauren et al. 1999; Shi et al. 2005; Vindel and Yagüe 2011; Cava et al.
2012; Wei et al. 2017), average wind speed (Böttcher et al. 2007; Vindel and Yagüe 2011),
and surface roughness (Lauren et al. 1999; Katul et al. 2006, 2009; Cava et al. 2012). It should
be noted that most observations of atmospheric turbulence focus on the low-frequency end of
the inertial range. Thus, multiscaling at small scales in the inertial range close to the energy-
containing range may be contaminated by large-scale motions (Katul et al. 1994; Mahrt
2014). This phenomenon is referred to as external intermittency, which is distinguished from
so-called internal intermittency in the inertial range far from the energy-containing range.
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A united mathematical framework on small-scale multiscaling and the long-tail distri-
bution is helpful for understanding, simulating and predicting the external intermittency
of atmospheric turbulence. However, possibly due to the diversity of the external intermit-
tency, this problem has been less systematically studied. Here, we note that the multifractal
random walk (MRW) model can be used to resolve this problem (Muzy and Bacry 2002;
Bacry andMuzy 2003). In this model, the small-scale multiscaling, the long-tail distribution,
and the intermittency all emerge from a continuous construction of random multiplicative
cascades. TheMRWmodel formally unifies and extends results of turbulence phenomenolog-
ical models listed above, which makes it suitable for describing the diversity of the external
intermittency. Here, we mainly discuss whether the MRW model can be used to describe
turbulent velocity fluctuations in the atmosphere. To achieve this goal, a high-frequency
(100 Hz) dataset continuously collected during one month is used in our analyis. Statistical
analysis always encounters difficulties due to limited samples with steady meteorological
conditions, and the use of high-frequency data can improve results to a certain extent in
comparison to the use of low-frequency data. In the following, we first briefly introduce the
MRW model (Sect. 2) and then compare the multifractal spectrum (Sect. 4.2) and the prob-
ability density function (Sect. 5.1) of this model with data. A new method is also proposed
for obtaining a more reliable multifractal spectrum at higher orders from data (Sect. 4.1).
Finally, we define the intermittency exponent according to the MRW model (Sect. 5.2) and
analyze the variations of the intermittency exponent with specific boundary-layer parameters
(Sect. 5.3).

2 Multifractal RandomWalk

We briefly review relevant characteristics of the multifractal random walk (MRW) model;
for mathematical details, see Muzy and Bacry (2002) and references therein.

2.1 Multifractal RandomWalk Model

The path of the MRWmodel X(t), which is used to describe the velocity time series, can be
built using two equivalent methods: (i) by subordinating a fractional Brownian motion BH (t)
(Mandelbrot and Van Ness 1968; Feder 1988) with a multifractal random measure M(t); (ii)
by a stochastic integration of M(t) against fractional Brownian noise. We use method (i)
where X(t) is given by

X(t) = BH [M(t)]. (3)

The multifractal random measure M(t) is a positive random process, and depending on the
construction process of M(t), the moments of M(t) are either exact or asymptotic power
functions of t . The asymptotically scaling moments of M(t) are examined in order to inves-
tigate the multiscaling of turbulent velocity fluctuations at small scales. According to the
characteristics of the multifractal random measure and the fractional Brownian motion, one
can deduce that

〈|X(t)|q 〉 ∼ tζq , if t → 0. (4)

The function ζq is usually called the multifractal spectrum and can be derived from

ζq = qH − ϕ(−iqH), (5)
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where H is a parameter that controls the statistical correlation behaviour of the fractional
Brownianmotion and H ∈ (0, 1) (Feder 1988). The functionϕ(p) is the purely non-Gaussian
Lévy–Khintchine variable (Sato 1999), that is

ϕ(p) = imp +
∫

R

(eipx − 1 − ip sin x)ν(dx), (6)

where ν(dx) is a Lévy measure with
∫
R
min(|x2|, 1)ν(dx) < ∞ and ν(0) = 0, and m ∈ R.

Because X(t) is assumed to have stationary increments, one can easily deduce that, if τ → 0,

〈|δX(τ )|q 〉 ∼ τ ζq , (7)

where δX(τ ) ≡ X(t + τ) − X(t).

2.2 Multifractal Spectrum

Themultifractal spectrum ζq is determined by the Lévymeasure ν(dx), and if ν(x) is known,
ζq can be computed using Eqs. 5 and 6. In the following, we discuss three examples that are
compared with observations.

(i) Deterministic MRW model. Let ν(dx) = 0, and we obtain

ζq = qH(1 − m). (8)

For homogeneous and isotropic turbulence,
〈|δu(τ )|3〉 ≈ | 〈δu(τ )3

〉 | ∼ τ (Frisch 1995; Benzi
et al. 1993) and thus ζ3 = 1. In this case, H(1−m) = 1/3 and ζq = q/3. One finds that this
model recovers the K41 model only when H(1 − m) = 1/3 (Kolmogorov 1941).

(ii) Log–normal MRW model. Let ν(dx) = μδ(x)dx/x2 with μ > 0, then ϕ(−iq) =
mq + μq2/2. From Eq. 5, one has

ζq = qH − mqH − μ
q2H2

2
, (9)

and for homogeneous and isotropic turbulence with ζ3 = 1,

ζq = q

3
− μ

H2q(q − 3)

2
. (10)

When H = 1/3, the above equation is equivalent to the multifractal spectrum of the log-
normal model (Kolmogorov 1962).

(iii) Log–PoissonMRWmodel. Let ν(dx) = γ (ln β)2δ(x − ln β)dx/x2 with γ > 0, then
ϕ(−iq) = q[m − γ sin(ln β)] + γ (βq − 1). From Eq. 5, one has

ζq = qH [1 − m + γ sin(ln β)] − γ (βqH − 1), (11)

and for homogeneous and isotropic turbulence with ζ3 = 1,

ζq = q

3
[1 + γ (β3H − 1)] − γ (βqH − 1). (12)

When H = 1/3, γ = 2 and β = 2/3, Eq. 12 is equivalent to the multifractal spectrum of
the log–Poisson model (She and Lévêque 1994).
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2.3 Probability Density Function

In this section, we list the main results on the probability density function (p.d.f.) of the
MRW model; a detailed derivation can be found in the Appendix. The following equations
are established with t → 0 because M(t) is built to be asymptotically multiscaling at small
scales. The p.d.f. of the path of the MRW model at time t is

ft (x) =
∫ ∞

0
g

(
x

y

)
w(ln y)

dy

y2
, (13)

where g(x) is the Gaussian distribution with zero mean and variance ρ2. Function w(x) is
the p.d.f. of the random variable lnWH

t whose characteristic function is

〈
eip lnW

H
t

〉
= t ipH e−ϕ(pH)ln t . (14)

Note that the time t above has beenmapped to [0, 1] for convenience. Because of stationarity,
if time t in Eq. 13 is replaced by a time lag τ we obtain the p.d.f. of the increment of the
MRW model over time τ .

(i) Deterministic MRW model. In this case, ϕ(pH) = impH and
〈
eip lnW

H
t

〉
= eip ln t

(1−m)H
, (15)

showing that Wt is deterministic and equals t1−m . The deterministic MRW model is then
proved to be Gaussian distributed with zero mean and variance t2H(1−m)ρ2. It behaves like
a fractional Brownian motion with a Hurst exponent of H(1 − m) if H(1 − m) ∈ (0, 1).

(ii) Log–normal MRW model. In this case, ϕ(pH) = impH − μp2H2/2 and

〈
eip lnW

H
t

〉
= eip ln t

(1−m)H+p2 μH2

2 ln t , (16)

showing that lnWH
t is Gaussian distributed with mean σ̄ = (1 − m)H ln t and variance

σ 2 = −μH2 ln t . According to Eq. 13, the p.d.f. of the log-normal MRW model is obtained
by

ft (x) = 1

2πσρ

∫ ∞

0
e
− x2

2ρ2 y2 e− (ln y−σ̄ )2

2σ2
dy

y2
, (17)

similar to that proposed by Castaing et al. (1990). This type of p.d.f. has been widely used
in the analysis of atmospheric turbulence (Beck et al. 2005; Böttcher et al. 2007; Laubrich
and Kantz 2009; Liu and Hu 2013).

(iii) Log–PoissonMRWmodel. In this case, ϕ(pH) = ipH [m−γ sin(ln β)]+γ (β ipH −
1) and

〈
eip lnW

H
t

〉
= exp

{
ipH [1 − m + γ sin(ln β)] ln t − γ (eip ln βH − 1) ln t

}
. (18)

This shows that lnWH
t has the same distribution as a random variable aη + b where η is a

Poisson distribution with mean λ = γ (− ln t) and

a = ln βH , (19)

b = [
1 − m + γ sin(ln β)

]
H ln t . (20)
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According to Eq. 13, the p.d.f. of the log-Poisson MRW model is obtained from

ft (x) = 1√
2πρ

∞∑

k=0

1

eak+b
exp

(
− x2

2ρ2e2ak+2b

)
λke−λ

k! . (21)

3 Data

Datawere collected inAugust 2007 at a site located to the south-east ofDunhua (43◦12.643′N,
128◦32.254′E) in the north-east of China. The experimental site is surrounded by ridges that
are about 100 m high in the east and south-west directions (see Fig. 1a). The surrounding
terrain was a farmland planted with crops and soya beans, with height ≈ 1 m. In the north-
west direction, there is a village that located about 1.5 km from the experiment site (see
Fig. 1b). Turbulence data including high-frequency velocity and temperature were collected
using three ultrasonic anemometers (R3A-100, Gill, Lymington, UK) deployed at 2-m, 30-m
and 100-m levels respectively on a 102-m tower (see Fig. 1c). The sampling frequency of
the ultrasonic anemometer is 100 Hz.

A double rotation method is used to transform the instrument reference frame to the
streamline reference (Kaimal and Finnigan 1994). Herein, we focus on the wind speed u,
computed from

u =
√
u2l + u2v + u2w, (22)

where ul , uv and uw are velocity components in the longitudinal, lateral, and vertical direc-
tions after a double rotation. All boundary-layer parameters, such as the Obukhov length L
and the friction velocity u∗, are also computed using the rotated velocity components (Stull
1988). Data records are chronologically grouped into many samples each lasting 5 min. The
same analysis introduced in the following sections is repeated for each sample; samples with
suspicious spikes and missing values are discarded with more than 7000 samples remaining.
Unless otherwise noted, the averaging period is 5 min throughout.

4 Small-Scale Multiscaling

4.1 Sequential Extended Self-Similarity

Statistical moments of turbulence are found to obey the so-called extended self-similarity at
a wide range of scales, even at large scales where the power-law scalings do not exist (Benzi
et al. 1993). The mathematical expression of extended self-similarity is

〈|δu(τ )|q 〉 ∼ 〈|δu(τ )|p〉ξp,q , (23)

and according to this expression, a better estimate of the multifractal spectrum ζq is achieved
by avoiding to recognize scaling intervals artificially. For homogeneous and isotropic tur-
bulence,

〈|δu(τ )|3〉 ∼ τ and the scaling exponent ξp,q with p = 3 equals ζq . Thus, ξ3,q
is commonly used to estimate the multifractal spectra of turbulent velocity fluctuations
(Böttcher et al. 2007; Vindel and Yagüe 2011; Kiliyanpilakkil and Basu 2015).

Although sometimes ξ3,q is a good estimate of ζq , it may perform poorly when q is far
from3. Besides, ζ3 is not always observed to be unity by analyzing turbulent data fromnormal
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Fig. 1 a Elevation map around the experiment site (marked by a white cross). Data are from Version 2 of
the ASTER Global Digital Elevation Model with a space resolution of 1 arc second (downloadable at https://
gdex.cr.usgs.gov/gdex/); b Google Earth image around the experiment site (marked by a yellow pushpin). c
A photo of the 102-m tower. The surrounding houses were built for the experiment
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meteorological instruments such as the ultrasonic anemometer. The turbulence observational
data may coexist with large-scale motions that are generally non-homogeneous and non-
isotropic. In these cases, use of ξ3,q seems to be unreasonable. To improve the estimate of ζq
especially with large values of q , we propose a newmethod that applies inmore general cases.
This method uses 〈|δu(τ )|q〉 versus 〈|δu(τ )|q−1

〉
instead of versus

〈|δu(τ )|3〉, and call this
method the sequential extended self-similarity. In this method, ζq is estimated by a recurrence
relation ζq = ζq−1ξq−1,q , and if ζ1 is obtained by fitting ln 〈|δu(τ )|〉 versus ln τ linearly,
then

ζq = ζ1ξ1,2ξ2,3 · · · ξq−1,q . (24)

The uncertainty in ζq is also estimated by a recurrence relation (Taylor 1997),

ε(ζq) =
√[

ζq−1ε(ξq−1,q)
]2 + [

ε(ζq−1)ξq−1,q
]2

, (25)

where ε(ξq−1,q) denotes the estimation uncertainty of ξq−1,q when fitting 〈|δu(τ )|q〉 versus〈|δu(τ )|q−1
〉
. The estimation uncertainty is calculated from a 95% confidence bound.

Three methods to obtain ζq using a 5-min sample are illustrated in Fig. 2. The first method
directly fits ln 〈|δu(τ )|q〉 as a linear function of ln τ , where the fitting interval, where data
nearly follow a line in the log–log plot, is usually recognized by eye. This procedure is shown
in Fig. 2a. For simplicity, the upper boundaries of all fitting intervals are set to be 1s. In fact,
with the increase of q , the artificial recognition of fitting intervals becomes more and more
difficult. This would increase uncertainties of fittings (see squares in Fig. 2d). The second
method fits ln 〈|δu(τ )|q 〉 as a linear function of ln

〈|δu(τ )|3〉. This procedure is shown in
Fig. 2b. When q is not far from 3, one can see that the data follow a linear function almost
in the whole interval of τ . With the increase of q , the data become more fluctuating. The
uncertainties of ζq will also increase with q but will be generally smaller than those in the
first method (see circles in Fig. 2d). The third method that is the sequential extended self-
similarity fits ln 〈|δu(τ )|q 〉 as a linear function of ln

〈|δu(τ )|3〉. The uncertainties of ζq are
computed by Eq. 25. This procedure is shown in Fig. 2c.We found that even with large values
of q the data in the log–log plot also vary linearly in the whole interval of τ . Comparing with
the first and second methods, we find that the uncertainties of ζq are further reduced by the
third method (see triangles in Fig. 2d). More examples with different average wind speedU ,
average local temperature T , surface-layer stability z/L , and observation height z, are shown
in Fig. 3. Symbols in each panel of Fig. 3 have the same meaning as in Fig. 2d. As shown in
Fig. 3, the third method has the least uncertainties under most situations, and performs better
than the commonly used first and second methods. We use the third method to obtain ζq in
the following analysis.

4.2 Comparison to Models

Here the measured multifractal spectra ζq are compared with the spectra of the deterministic,
log–normal and log–Poisson MRW models. Figure 3 shows four examples under various
contrasted boundary-layer conditions (seeTable 1): (i) smaller and larger averagewind speeds
with similar stabilities and average temperatures at the same observation height (see Fig. 3a,
b); (ii) higher and lower average temperatureswith similar stabilities and averagewind speeds
at the same observation height (see Fig. 3c, d); (iii) stable and unstable conditionswith similar
average wind speeds and temperatures at the same observation height (see Fig. 3e, f); (iv)
lower and higher observation heights at the same observation time (see Fig. 3g, h). From
the examples of (i), (ii) and (iii), one can see that the multifractal spectra ζq are likely to
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Fig. 2 Illustration of three
methods to obtain the multifractal
spectrum ζq of a 5-min sample of
wind speeds. All fitting intervals
in the first method are set to have
the same upper bound (denoted
by a broken line in panel a). Both
the second (panel b) and the third
method (panel c) fit data over the
whole interval. For clarity, data
points for q > 1 have been
shifted down arbitrarily. The
coefficients of determination R2

are also shown. The multifractal
spectra obtained by the three
methods are shown in panel d.
Uncertainties estimated by Eq. 25
are denoted by error bars in this
panel
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Fig. 3 Examples of the measured multifractal spectra and their comparisons with the multifractal spectra of
the deterministic, the log–normal and the log–Poisson MRW models. Markers have the same meaning as in
Fig. 2d
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Table 1 Flow characteristics of
examples illustrated in Figs. 3, 4
and 5

U (m s−1) T (◦C) z/L z (m)

Example (i)

Figures 3a, 4a 0.53 28.4 − 1.65 30

Figures 3b, 4b, 5a 7.96 29.3 − 0.36 30

Example (ii)

Figures 3c, 4c 1.06 31.8 − 2.51 30

Figures 3d, 4d 1.03 14.7 − 3.01 30

Example (iii)

Figures 3e, 4e 0.88 25.1 10.02 30

Figures 3f, 4f, 5b 1.06 26.0 − 10.52 30

Example (iv)

Figures 3g, 4g, 5c 0.88 26.7 0.39 2

Figures 3h, 4h, 5d 2.02 27.2 19.42 100

be more curved with a larger average wind speed and smaller average temperature in the
unstable boundary layer. The example of (iv) shows that the ζq measured at higher height is
more curved, and may be related to a larger average wind speed at a greater height. It should
be noted that the more curved multifractal spectra may not necessarily correspond to more
intermittent turbulent velocity fluctuations. The reason will be explained in the next section
where the curvature of ζq , the intermittency of atmospheric turbulence and their relations
with boundary-layer parameters are discussed thoroughly in the framework of the MRW
model.

From Fig. 3c, e and g, one can see that nearly linear multifractal spectra could be well
fitted by the deterministic MRW model (black broken lines). These linear spectra can also
be well fitted by the log–normal (red lines) and the log–Poisson MRW models (blue lines),
because the two model both include the deterministic MRW model as their special cases.
Besides, examples show that the twomodel spectra can also fit non-linear spectra and the log–
normal MRW models fit data slightly better than the log–normal spectra. We have analyzed
all samples and found that both the log–normal and the log–Poisson MRWmodels indeed fit
the multifractal spectra of turbulent velocity fluctuations well under most situations.

5 Long-Tail Distribution and Intermittency

5.1 Probability Density Functions At Different Scales

In Sect. 2.3, we have derived the probability density functions (p.d.f.s) of the deterministic,
the log–normal and the log–Poisson MRW models at different time scales. In this section,
we compare these model p.d.f.s with data. From Eqs. 13 and 14, one can see that the p.d.f.
for the MRWmodel at a fixed time scale is defined by a parameter ρ and a function ϕ(pH).
The function ϕ(pH) can be estimated by fitting the observed multifractal spectra with model
data. This step has been discussed in the above section. The parameter ρ can be obtained by
the probability-of-return as follows.
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The probability-of-return for a symmetrical p.d.f. is defined by the probability density at
the origin. Because the deterministic MRWmodel is Gaussian distributed, its probability-of-
return is simply obtained from

fτ (0) = 1√
2πρ

τ−H(1−m). (26)

According to Eqs. 17 and 21, the probability-of-return is

fτ (0) = 1√
2πρ

τ−μH2/2−(1−m)H (27)

for the log–normal MRW and is

fτ (0) = 1√
2πρ

τ−[1−m+γ sin(ln β)]H−γ (β−H−1) (28)

for the log–Poisson MRW model. Because the p.d.f. of the MRW model is derived at small
scales, the corresponding Eqs. 26, 27 and 28 only hold when τ is small enough.

The probabilities-of-return of the three MRWmodels are all power functions. Parameters
in the power exponents have been determined in the fitting processes of the multifractal
spectra. The remaining unknown parameter ρ can be obtained by fitting model probabilities-
of-return with data. In the data analysis, the probability defined on a small interval (− h, h)

can be used as an approximation of the probability-of-return. The examples used to illustrate
the multifractal spectra in Fig. 3 are also used to illustrate the probabilities-of-return in
Fig. 4. In the cases with nearly linear multifractal spectra (see Fig. 4c, g), one can see that
the deterministic MRW model (black broken lines) can fit the data at small time scales as
well as the log–normal MRWmodel (red lines) or the log–Poisson MRWmodel (blue lines).
However, there are exceptions. As shown in Fig. 4e, any of the three models cannot fit the
data, even the data behave as a power function over several orders of τ and the corresponding
multifractal spectra are well fitted by models. In the non-linear cases, the log–Poisson MRW
model would fit the data slightly better than the log–normal MRW model in general (see
Fig. 4a, d, f and h) but there are also exceptions (for example, see Fig. 4b).

Once the parameter ρ and the function ϕ(pH) are obtained, the model p.d.f.s are defined.
We then compare the model p.d.f.s with observations. Before calculating p.d.f.s from obser-
vations, the velocity increments δu(τ ) at the smallest time scale, that is τ = 0.01s, are divided
by their standard deviations. The p.d.f. at any scale is calculated by using these normalized
data. In Fig. 5, some examples of p.d.f.s of velocity increments at scales τ = 0.01 s (circles),
0.57 s (squares) and 40.96 s (triangles) are shown.

The left and right columns of Fig. 5 are comparisons of data with the p.d.f.s of the
log–normal and the log–Poisson MRW models respectively. The Gaussian distributions at
corresponding scales are also shown (broken lines in each panel). From this figure, one can
see that p.d.f.s of velocity increments are generally symmetrical and go from non-Gaussian
behaviour at smaller scales to Gaussian-like behaviour at larger scales. The non-Gaussian
distributions at smaller scales have longer tails than the Gaussian distributions, which implies
that at smaller scales large velocity fluctuations occur more frequently than is predicted from
the Gaussian distribution and atmospheric turbulence at these scales would appear to be more
intermittent than the Gaussian noise. Besides, one can see that the log–normal MRW model
fits the tails of the observed p.d.f. much better than the log–Poisson MRW model at small
scales (see Fig. 5a, b and dwhere the data correspond to those in Fig. 3b, f and h respectively).
In linear cases (for example, see Fig. 5c in which the data correspond to those in Fig. 3g), both
the log–normal and the log–Poisson MRW models can fit the data as well as the Gaussian
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Fig. 4 Examples of probabilities of return and their comparisons with the MRW models. Note that the time
scale τ has been normalized by the sample time Ts of 5 min. Data used in each panel are in one-to-one
correspondence with those in Fig. 3
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Fig. 5 Examples of p.d.f.s at time scales τ = 0.01 s (circles), 0.57 s (squares) and 40.96 s (triangles) and
their comparisons with the log–normal (left column) and the log–Poisson (right column) MRWmodels. Data
used in panels a–d are in one-to-one correspondence with those in Fig. 3b, f, g and h respectively. Gaussian
distributions with the same standard deviations of data are also shown for comparison (broken lines). Lines
with different colours denote model fittings at τ = 0.01 s (red), 0.57 s (green) and 40.96 s (blue) respectively.
Note that velocity increments at τ = 0.01 s have been normalized by their standard deviations and velocity
increments at other scales are obtained by the normalized data. The determination coefficient R2 at τ = 0.01 s
is also shown in each panel
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distributions. We have analyzed all samples and found that in general the log–normal MRW
model indeed fits tails of the p.d.f. better than the log–Poisson MRW model, even the latter
fits multifractal spectra slightly better.

5.2 Intermittency Exponent

In the above sections, we have shown that the log–normal MRW model is a good model
to describe the small-scale multiscaling and the long-tail distributions of turbulent velocity
fluctuations. Here, we revisit the issue of intermittency by using this model. In the classic
log–normal model of isotropic and homogeneous turbulence (Kolmogorov 1962), the inter-
mittency of velocities is attributed to the intermittency of dissipation. The idea is clearly
manifest in a p.d.f. model of turbulent velocities proposed by Castaing et al. (1990). In this
model, one can see that the only parameter, controlling p.d.f. tails of dissipation, also con-
trols p.d.f. tails of turbulent velocities. With the increase of this parameter, p.d.f. tails become
longer and longer and the corresponding time (or spatial) series of dissipation or velocities
appear to be more and more intermittent. Because of this reason, this parameter, called the
intermittency exponent, is commonly used to describe the intensity of turbulence intermit-
tency. Although atmospheric turbulence is generally non-homogeneous and non-isotropic
and its intermittency may not be attributed to the intermittency of dissipation, the intermit-
tency exponent or its equivalent variants are also widely used to describe the intermittency
of atmospheric turbulence (Vindel and Yagüe 2011).

When the multifractal spectrum of the log–normal MRWmodel formally collapses to that
of the classic log–normal model, the parameter μ in the log–normal MRW model is just
the intermittency exponent in the model of Castaing et al. (1990). Thus, the parameter μ

is equivalent to this intermittency exponent. Although the use of parameter μ as an inter-
mittency exponent is similar to much previous work, there is also a significant difference
between our work and others. Many works estimated intermittency exponents only by fitting
multifractal spectra, and did not test their estimations with observed p.d.f.s which are direct
indicators of intermittency. We here put the estimated μ into the model of the log–normal
MRW model and compare model p.d.f.s with observed p.d.f.s at the smallest scale. If devi-
ation between observed and model p.d.f.s is large, the MRW model fails to describe data
and the corresponding intermittency exponents, defined by this model, would be unreliable.
The importance of the p.d.f. test is demonstrated in Fig. 6 where three time series of velocity
increments at τ = 0.01 s are shown as examples. Data used in Fig. 6a and b are the same as
in Fig. 5a and c. The time series in Fig. 6a seems to be more intermittent than that in Fig. 6b,
because the former has a lager intermittency exponent and longer p.d.f. tails (see Fig. 5a,
c). The time series in Fig. 6c was obtained at the height of 100 m. The corresponding flow
characteristics are U = 6.43 m s−1, z/L = − 0.18 and T = 30.1 ◦C. This series seems to
be more intermittent than that in Fig. 6b but has a smaller intermittency exponent. This is
because the determination of coefficient of the p.d.f. of the time series in Fig. 6c is very small
and the corresponding intermittency exponent fails to describe intermittency intensity.

5.3 Variations of Intermittency ExponentsWith Friction Velocities,Wind Speeds,
Temperatures, and Stabilities

In this section, we analyze the variations of intermittency exponents μ with friction velocity
u∗, local average wind speed U , local average temperature T , and surface-layer stability
z/L . Before analyzing, we first test whether each 5-min sample can be described by the log–
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(a)

(b)

(c)

Fig. 6 Time series of velocity increments at τ = 0.01 s. The intermittency exponent μ and the corresponding
determination coefficient R2 of the p.d.f. fitting at τ = 0.01 s are also shown in each panel

normalMRWmodel. If the determination of coefficient of its multifractal spectrum is greater
than 0.99 or the determination of coefficient of its p.d.f. at the smallest scale (τ = 0.01 s)
is greater than 0.80, the sample is considered to be well described by the log–normal MRW
model. Samples that do not satisfy this condition are discarded in the following analysis. At
the end, about 82.5%, 76.3% and 74.4% samples at 2 m, 30m and 100m are left respectively.
The corresponding numbers of remaining samples are 6417, 5934 and 5788.

The final results are shown in Fig. 7 where grey points represent the calculations of all
5-min samples and colour points represent the hourly-averaged values (black for 2-m data,
blue for 30-m data and red for 100-m data). From Fig. 7a, one can see that if the friction
velocity u∗ is very small, the corresponding intermittency exponent μ is also very small.
With the increase of u∗,μwould quickly approach to the intermittency exponent of isotropic
and homogeneous turbulence at the inertial range (denoted by broken lines). It means that
the surface Reynolds stress may be a sensitive factor to the appearance of intermittency of
turbulent velocity fluctuations. However, itmay not be sensitive to the change of intermittency
intensity if turbulent velocity fluctuations is already very intermittent. The variation ofμwith
U is similar to that with u∗ but the former is more scattered (see Fig. 7b). Intermittency seems
to be unrelated to the local temperature T (see Fig. 7c) but seems to be related to the surface-
layer stability. It is found that large intermittency may appear more frequently in the unstable
layer than in the stable one (see Fig. 7d), which means that the static stability may be a
relevant factor to the change of intermittency intensity. Boundary-layer structures such as
thermals in the unstable layer (Liu et al. 2012, 2014) and low-level jets, gravity waves or
meandering motions in the stable layer (Mahrt 1999) possibly relate to the intermittency of
turbulent velocity fluctuations.

123



Multifractal Random-Walk Description of Atmospheric... 367

a b

c d

Fig. 7 Variations of intermittency exponents with friction velocity u∗, local average wind speed U , local
average temperature T and surface-layer stability z/L . The value of each grey point is computed from a 5-min
sample. Colour points denote the hourly-averaged values of grey points at z = 2 m (black), 30 m (blue) and
100 m (red) respectively. The broken line in each panel denotes the intermittency exponent of homogeneous
and isotropic turbulence at the inertial range

6 Conclusions and Discussions

We have used a high-frequency (100 Hz) velocity dataset continuously recorded for one
month to analyze the intermittency of atmospheric turbulence. A new method, called the
sequential extended self-similarity, is proposed to calculate the multifractal spectrum, i.e.,
the function of scaling exponent of qth-order velocity moments at small scales with q .
Results show that our method generally gives a better estimate than those commonly used.
The multifractal spectrum is universal for homogeneous and isotropic turbulence but varies
from case to case for atmospheric turbulence. The multifractal random walk (MRW) model,
a mathematical model constructed by generalizing the randommultiplicative cascade model,
has a varied multifractal spectrum. This model is also found to have long-tail non-Gaussian
distributions at small scales in general cases. We here compared the multifractal spectrum
and the probability density function of the MRW model with atmospheric observations and
found that the MRW model with a log–normal multifractal measure fits data well. Besides,
our results suggest that the intermittency exponent, defined to describe the intermittency
intensity and usually obtained from the multifractal spectrum, should be validated with the
corresponding probability density function. It is because that long tails of a probability
density function (compared with the tails of Gaussian distribution) are direct indicators of
intermittency. If the probability density function of theMRWmodelwith the same parameters
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as the corresponding multifractal spectrum is not fitted to data, the intermittency exponent
estimated from the multifractal spectrummay be meaningless in describing the intermittency
intensity. Finally, variations of validated intermittency exponents with boundary parameters
are analyzed. Compared with the wind speed, the local temperature and the surface-layer
stability, the intermittency exponent is found to be most relevant to the friction velocity.
Large intermittency is also found to appear more frequently in the unstable surface layer than
in the stable one.

Our work provides reliable statistical model of turbulent velocity fluctuations that would
inspire new statistical simulation or forecasting methods in wind engineering. More impor-
tantly, we have raised some interesting problems. For homogeneous and isotropic turbulence,
themultifractalmeasure in theMRWmodel is just the dissipation rate, but for the atmospheric
turbulence, the intermittency is a kind of external intermittency and is possibly not mainly
related to the dissipation rate. So, what is the physical meaning of the multifractal measure
for atmospheric turbulence? Besides, what is the coherent structures of intermittency for
atmospheric turbulence? Is there any other statistical indices that describe these coherent
structures besides the intermittency exponents?
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Appendix

Amathematical derivation of the probability density function of theMRWmodel is presented
here. According to the self-similarity of the fractional Brownian motion (Nourdin 2012), one

has that BH (t)
d= εt H where ε denotes a Gaussian random variable with zero mean and

variance ρ2. The symbol “
d=” repersents equality in probability, and we have assumed that

BH (0) = 0 without loss of generality. According to Eq. 3 in Sect. 2.1, one obtains

X(t)
d= εM(t)H , (29)

where ε is independent of the multifractal random measure M(t). Muzy and Bacry (2002)
have proved that M(t) follows a continuous cascade equation,

M(λt)
d= WλM(t), (30)

where Wλ is a positive random variable independent of M(t) and

Wλ = λeΩλ, (31)
〈
eipΩλ

〉 = e−ϕ(p) ln λ, (32)

with λ ∈ (0, 1]. In the MRW model, M(t) is generally assumed to be one in the whole time
interval of a time series (Mandelbrot et al. 1997), implying that, if the time t is mapped into
[0, 1], M(1) = 1. Let λ = t and t = 1, one obtains

X(t)
d= εWH

t (33)
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from Eqs. 29 and 30. According to Eqs. 33, 13 is then obtained. From Eq. 32, one can deduce
that Ωt is a infinitely divisible random variable (Sato 1999), and so lnWt is also a infinitely
divisible random variable and its characteristic function is

〈
eip lnWt

〉
= t ip

〈
eipΩt

〉 = t ipe−ϕ(p) ln t . (34)

Equation 14 is then obtained.
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