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Abstract
Standard turbulence models for the atmospheric boundary layer (ABL) typically use bound-
ary conditions based on the Monin–Obukhov similarity theory (MOST). This can lead to
inconsistency between the boundary condition and the closure model. Here, we propose a
new boundary-condition treatment of the stratified ABL, derived for the so-called explicit
algebraic Reynolds-stress model. The boundary conditions correspond to the relations for
vanishing buoyancy effects that are valid close to the ground. The solution for the stratified
surface layer is in agreement with the surface scaling physics and MOST functions. This
was validated in a simulation of an idealized diurnal cycle of the ABL based on the second
Global Energy and Water cycle Experiment (GEWEX) Atmospheric Boundary Layer Study
(GABLS2) case.

Keywords Boundary conditions · Reynolds-stress model · Surface fluxes · Surface layer ·
Turbulence parametrization

1 Introduction

In the atmospheric boundary layer (ABL) viscous effects are negligible due to ubiquitous
rough surfaces and high Reynolds numbers and a rough-wall model is needed (Raupach et al.
1991). The model relates the surface flux to the aerodynamic roughness length giving the
well-known logarithmic law of the wall that is strictly valid only for the neutrally-stratified
ABL and vanishing pressure gradient.

For numerical computations the first grid point is commonly placed inside the logarithmic
layer. Close to the surface buoyancy effects are usually negligible and turbulence is predom-
inantly produced by shear effects. This makes the logarithmic law for a neutrally-stratified
environment applicable, thus relating the surface flux to the mean wind speed in a simple
form. Above this lower part of the logarithmic layer, turbulence can be strongly affected by
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buoyancy forces, and in this case corrections to the logarithmic law are introduced through
the non-dimensional functions proposed in the well-known Monin–Obukhov similarity the-
ory (MOST) (Monin and Obukhov 1954). These functions are empirically determined from
atmospheric measurements, as in Businger et al. (1971) and Högström (1988), and generalize
the logarithmic law for stratified flows. There have been numerous atmospheric experiments,
see Foken (2006) for a review, proposing different functions relating the surface fluxes to the
mean wind speed and potential temperature profiles.

Turbulence models, used for computations in the ABL, are categorized according to their
complexity regarding the methods used to solve the closure problem (Mellor and Yamada
1974). Regardless of the complexity, all turbulence models require boundary conditions that
influence the solution in the surface layer.Models with detailed physical descriptions, such as
Reynolds-stress transport models, can be corrupted by poor boundary-condition treatment.
On the other hand, proper boundary conditions cannot make up for poor turbulence mod-
elling. Implementing empirical relations in the boundary condition (e.g.MOST functions) for
improving the model solution in the stratified surface layer is not straightforward. In numer-
ous models of the ABL, e.g. Freedman and Jacobson (2003) and Alinot and Masson (2005),
the near-surface behaviour in the model was adjusted in order to give behaviour according
to MOST. However, ABL models are often not fully consistent with MOST (van der Laan
et al. 2017) leading to deviations between the model solution and profiles obtained by using
MOST. This raises a question as to whether the use of MOST in boundary conditions is
the right approach for ABL turbulence models that cannot reproduce the MOST behaviour.
In Richards and Hoxey (1993) and Richards and Norris (2011) boundary conditions for the
neutrally-stratified ABL were presented that should produce the logarithmic law but results
showed anomalous behaviour near the surface, illustrating that the boundary conditions are
not fully consistentwith the turbulence parametrization used for theABL.The authors explain
that these deviations are due to the discretization of the shear production term in the equation
for turbulent kinetic energy.

In the present study we aim to develop a new and consistent treatment for the boundary
conditions. By consistency we mean that the boundary conditions are consistent with the
parametrized relations used in the ABL model and that the boundary conditions together
with the ABL model produce the correct stable and grid-independent near-surface solution.
The requirement of our approach is that the grid resolution is fine enough to resolve the near-
surface layer where buoyancy effects can be neglected. The boundary-condition treatment
that we propose does not involve MOST or other empirically-derived relations.

The boundary-condition treatment is developed for the recently proposed explicit algebraic
Reynolds-stress (EARS) model. The model has been developed in Lazeroms et al. (2013)
and applied in the simulation of the stratified ABL and an ABL involving a diurnal cycle
(Lazeroms et al. 2015, 2016). The EARS model is based on algebraic relations that follow
from the Reynolds-averaged Navier–Stokes (RANS) equations, ensuring that the model is
less dependent on empirical functions and ad hoc corrections thanmany otherABL turbulence
models. We validate the consistency of the boundary-condition treatment and investigate if
the EARS model with these boundary conditions is consistent with MOST without a priori
involving MOST in the model and boundary-condition development. The complexity of
the model requires careful formulations for consistency in the surface layer. The resulting
boundary-condition treatment canbe implemented in a similarway to simplerABL turbulence
models, for example, models that use the transport equation for the turbulent kinetic energy
(TKE).

The following section gives a short model description, while a more detailed derivation of
the EARS model is given in the Appendices. Section 3 covers the derivation of the boundary
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conditions that are responsible for the model’s behaviour near the surface. In Sect. 4 the
set-up of the numerical simulation is explained. Finally, in Sect. 5 results are presented in
both qualitative and quantitative ways and also a new scaling length is introduced that we
refer to as the physical Obukhov length. A summary and discussion are given in Sect. 6.

2 Description of the TurbulenceModel

This section gives a description of a single-column model (SCM) version of the recently
derived EARS model for the ABL. The description is based on Lazeroms et al. (2016),
where the EARS model is derived from the full Reynolds-stress model. Further details about
the model derivation are given in Appendices 1 and 2. The so-called, weak-equilibrium
assumption is applied that makes the model explicit and somewhat similar to the Mellor and
Yamada level-3 model. However, there are significant differences between these two models
that are explained in Lazeroms et al. (2016).

The SCM approach is commonly used to model a vertical column of the ABL where
statistical variations in the horizontal directions are neglected. The solution is considered
to be spatially averaged in the horizontal directions. In the current form, where the flow is
considered to be incompressible and molecular diffusion is neglected, the main quantities
are the mean horizontal wind velocity V = (U , V ) and the mean potential temperature Θ .
The main equations are

DU

Dt
= −∂ u′w′

∂z
− f (Vg − V ), (1a)

DV

Dt
= −∂ v′w′

∂z
+ f (Ug −U ), (1b)

DΘ

Dt
= −∂ w′θ ′

∂z
, (1c)

where D/Dt ≡ ∂/∂t + V · ∇ is the material derivative in the direction of the mean flow,
Vg = (Ug, Vg) is the geostrophic velocity, f =2Ω sin φ is the Coriolis parameter depending
on the rotation rate Ω of the Earth and φ is the latitude. The quantities u′w′ and v′w′ are the
vertical components of the turbulent momentum flux and w′θ ′ is the vertical component of
the turbulent heat flux.

All turbulent fluxes are expressed in terms of correlations of the velocity fluctuations
(u′, v′, w′) and temperature fluctuation θ ′, which are parametrized in terms of the mean
wind speed and mean potential temperature. The EARS model is an advanced turbulence
model that predicts the full Reynolds-stress tensor and heat-flux vector thereby, e.g. being
able to account for anisotropy and horizontal fluxes. More information about the horizontal
turbulent fluxes and model details can be found in Appendix 1. Using the SCM approach
the vertical fluxes appearing in (1) are more important than the horizontal fluxes, and are
expressed as

u′w′ = −νt
∂U
∂z , (2a)

v′w′ = −νt
∂V
∂z , (2b)

w′θ ′ = −κt
∂Θ
∂z + Φ, (2c)
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where νt and κt are the eddy viscosity and eddy diffusivity (the latter is also known as the eddy
thermal diffusivity), respectively, and Φ is an additional term. These terms can be expressed
as

νt = K 2

ε
fm, (3a)

κt = K 2

ε
fh, (3b)

Φ = g

T0

KKθ

ε
fΦ, (3c)

where K = (u′u′ +v′v′ +w′w′)/2 is the TKE, Kθ = θ ′θ ′/2 is half the potential temperature
variance, ε is the dissipation rate of TKE, T0 is the reference temperature, g is the acceleration
due to gravity and fm, fh, fΦ are the core functions of the model.

Instead of relying on empirical model constants as in many eddy-viscosity and eddy-
diffusivity models derived using the Boussinesq approximation (Boussinesq 1897) or
K-theory closure, the EARS model has non-constant core functions following directly from
the model derivation. These are derived from the algebraic approximations of the transport
equations for the normalized Reynolds-stress tensor and normalized turbulent heat-flux vec-
tor. Core functions contain model parameters that have been calibrated for various generic
flow cases and not only atmospheric flows (Wallin and Johansson 2000;Wikström et al. 2000;
Lazeroms et al. 2013, 2016), which makes the EARS model more general and applicable to
different stratified and non-stratified turbulent flows. Full details on core functions are found
in Lazeroms et al. (2015, 2016) and in Appendix 1.

In order to close the expressions in (3) the K−ε model together with a prognostic equation
for Kθ are used, leading to three additional transport equations

DK

Dt
= −u′w′ ∂U

∂z
− v′w′ ∂V

∂z
︸ ︷︷ ︸

P

−ε + g

T0
w′θ ′

︸ ︷︷ ︸

G

+ ∂

∂z

(

νt

σK

∂K

∂z

)

︸ ︷︷ ︸

DK

, (4a)

Dε

Dt
=Cε1

ε

K
P − Cε2

ε

K
ε + Cε3

ε

K
G + ∂

∂z

(

νt

σε

∂ ε

∂z

)

︸ ︷︷ ︸

Dε

, (4b)

DKθ

Dt
= −w′θ ′ ∂Θ

∂z
︸ ︷︷ ︸

Pθ

− Kθ

r K
ε

︸ ︷︷ ︸

εθ

+ ∂

∂z

(

νt

σKθ

∂Kθ

∂z

)

︸ ︷︷ ︸

DKθ

, (4c)

where K/ε represents the time scale for turbulence and r is the ratio between the two time
scales Kθ /εθ and K/ε. The terms P and G represent the production of TKE due to shear and
buoyancy effects (source terms), ε is a sink term, DK ,ε,Kθ is diffusion (transport terms) and
Pθ production of Kθ due to buoyancy and atmospheric stratification. In the EARS model the
source terms P and G are given in closed form, which implies that these terms are exactly
represented without further modelling, and in contrast with simpler turbulence models. The
model parameters follow from earlier studies: Cε1 = 1.44, Cε2 = 1.92, Cε3 = −0.8,
σK = σKθ = 1.0, σε = 1.3 and r = 0.55.

Many other turbulence models use the eddy-viscosity/eddy-diffusivity (EVD) hypothesis
together with empirical functions in order to determine the turbulence length scale, as in
Blackadar (1962). A group of more advanced EVD models such as the Mellor–Yamada
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2.5-level model (Mellor and Yamada 1982) can be derived from simplifying the RANS
equation. Besides a transport equation for TKE this model uses a prognostic equation for
the length scale that contains an empirical correction term. Another EVD approach based on
two-equation modelling, used in ABL modelling for wind-energy applications, is to use the
K − ε model. The model behaviour is controlled by tuning the coefficients and modelling
them as empirical functions of Richardson number and a length scale limiter (Koblitz et al.
2015; Rodrigo et al. 2017). Such models are to a large extent empirical and typically use
integral relations. They are derived and calibrated for statistically quasi-steady situations,
and are unable to capture the effects of local turbulence in more general cases, for example
during the morning and evening transition periods with residual turbulence and turbulence
in a growing layer. Compared to these models, the EARS model is not based on the EVD
hypothesis and has less dependence on empirical functions.

3 Boundary-Condition Treatment

Close to the surface, the turbulent length scale is smaller than the Ozmidov scale (Zonta and
Soldati 2018). Therefore, neutral conditions used for setting the boundary-condition treatment
are locally neutral in the sense that the buoyancy effects vanish close to the surface, also in
the stratified ABL. It is common practice to use the roughness length for boundary-condition
treatment in the ABL. The surface influence on the flow is modelled by the roughness lengths
z0 and z0h for vertical profiles of the wind speed and potential temperature (Wyngaard 2010;
Foken and Nappo 2008), i.e.

V(z)

u∗
= 1

κ
ln

z

z0
, (5)

for the mean wind speed, where u∗ is the friction velocity, V = √
U 2 + V 2 and κ = 0.4 is

the von Kármán constant according to Högström (1996), and

Θ(z) − Θ(z0h )

θ∗
= Prt

κ
ln

z

z0h
, (6)

for the mean potential temperature profile, where θ∗ is the characteristic temperature scale,
Θ(z0h ) is the potential temperature at height z0h and Prt is the turbulent Prandtl number
defined as the ratio between the eddy viscosity and eddy diffusivity, νt and κt respectively.

The boundary conditions are prescribed at z0, and in order to have a consistent model both
boundary conditions and modelled solution must satisfy the proper logarithmic law at the
points closest to the ground. Having consistent boundary conditions, however, is not straight-
forward due to the strong non-linear coupling between the solution, boundary conditions,
surface fluxes and model K − ε − Kθ equations. Aside from the solution being consistent
with the logarithmic law it also should be grid independent and the formulation must be
numerically stable in all parameter regimes.

The boundary conditions influence themodel solution in the surface layer, and a consistent
treatment is crucial for obtaining an accurate solution. The boundary conditions are imposed
at the boundary height z0 as

U (z0) = V (z0) = 0, (7)

Θ(z0) = ΘS(t) + Prt θ∗
κ

ln
z0
z0h

, (8)
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where z0 is defined as the location where the artificially extended logarithmic profile for
wind speed reaches zero. Similarly, ΘS is the temperature at z0h , representing the surface
temperature. The temperature offset between z = z0h and z0 is given by the last term in (8),
following the logarithmic law for Θ(z). In the present study a time-dependent function ΘS

represents the surface forcing of the ABL.
From the transport equations for TKE and Kθ , (4a) and (4c), and assuming that the ABL

is in quasi-stationary state so that the time and advective derivatives as well as the diffusion
terms can be neglected, and by using the logarithmic law for neutrally-stratified boundary
layer, P = ε and P⊆ = εθ , we can derive the following boundary conditions

K (z0) = u∗2
√

fm
, (9)

Kθ (z0) = r Prt
√

fm
θ∗2. (10)

The core function fm in the EARS model acts as a generalization of the coefficient Cμ used
in standard eddy-viscosity models (Richards and Hoxey 1993; Richards and Norris 2011).
Usually, Prt is given as an explicit constant but in the EARS model it is expressed as a
part of the solution using Prt = fm/ fh. For neutral stratification it can be shown that the
EARS model predicts fm = 0.087 and Prt = 0.75. Therefore, these constants are used for
setting the boundary conditions in order to have a consistent solution in the interior and at
the boundaries.

In the following, details of the numerical implementation of the boundary conditions are
given for a cell-centred scheme in a finite volume context. Surface-flux related quantities u∗
and θ∗ are estimated at the height of the first cell centre z1 respectively from the logarithmic
law for V(z) (Eq. 5) and the surface-heat-flux scaling relation as

u∗ = κ

ln z1/z0
V(z1), (11)

θ∗ = −w′θ ′
s

u∗
, (12)

wherew′θ ′
s is the kinematic heat flux obtained by using (2c). Finally, the boundary condition

for ε is derived from the balance relation between the dissipation and production terms in
the logarithmic layer

ε = P = u∗2
dV

dz
, (13)

where the last step is an approximation of the production term that is valid only in the surface
layer. Together with the differential form of (5), expanded in finite differences at the height
z1, and (11) it gives

ε(z0) = u∗3

κ(z1 − z0)
ln

z1
z0

. (14)

Equation 14 is an approximation of the standard logarithmic law and using L’Hôpital’s rule
it can be shown that, in the limiting case z1 → z0, it becomes ε = u3∗/κz0. This ensures
a balance between the production term and dissipation at the height where the boundary
conditions are set. The boundary conditions in (7)–(10) and (14), combined with surface
fluxes through u∗ and θ∗ from (11) and (12), are not sufficient to ensure that the solution has
the correct physical behaviour near the surface and gives P = ε. Therefore, the transport
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equations (4) need to be modified for the first cell centre to correct the solution in that region.
We use

DK

Dt
= b(Plog − ε) + (1 − b) (P − ε + G + DK ) , (15a)

Dε

Dt
= b(εlog − ε)p + (1 − b)

( ε

K
(Cε1P − Cε2ε + Cε3G) + Dε

)

, (15b)

DKθ

Dt
= b(Pθ − εθ ) + (1 − b)

(Pθ − εθ + DKθ

)

, (15c)

where b = 1 in the first cell centre and b = 0 everywhere else. This approach eliminates the
diffusion terms in (15a) and (15c) for the first cell, making the solution in the first cell centre
consistent with the prescribed boundary conditions in (9) and (10). The source term that is
responsible for the total production of TKE in the first cell centre is

Plog = εlog = u∗3

κz1
= u∗4

κ fm
1
4 K

1
2 z1

, (16)

where the last step is added using relation (9) for improved numerical stability. The first term
in (15b) is introduced to relax the value of dissipation rate in the first cell towards

εlog = u∗3

κz1
= fm

3
4 K

3
2

κz1
, (17)

where the value p = 0.5/Δt ensures that in the first cell ε = εlog is valid at every timestep.
Introducing the parameters b and p in the transport equations is a way of predefining the
solution for turbulent properties in the first cell according to the logarithmic law. The current
method is very similar to that in Sørensen (1995) for non-stratified flows where P and ε are
predefined according to the logarithmic-law relationP = ε and diffusion terms are neglected.
Equations 16 and 17 share the same form, because they have to be consistent with the
predefined boundary conditionsP = ε near the surface (when G → 0), although numerically
they are expected to behave differently. For numerical stability reasons it is convenient to
express these equations as a function of K , with the source term inversely proportional to
TKE and the sink term directly proportional to TKE. This implies that for larger values of
K the system tends to limit the growth of TKE, which leads to improved stability of the
simulations. Although this is a somewhat hand-waving argument, a full numerical stability
treatment is beyond the scope of the present study. The scheme of the proposed boundary-
condition treatment, following the description, is illustrated in Fig. 1.

4 Case Description

The boundary-condition treatment is tested in the idealized version of the second Global
Energy and Water cycle Experiment (GEWEX) Atmospheric Boundary Layer Study
(GABLS2) case, which is based on the recent intercomparison study (Svensson et al.
2011). Compared to the original GABLS2 case, for the sake of simplicity we have
adapted the approach used in Rodrigo et al. (2017) and neglected the small subsi-
dence that linearly increases with height, as well as humidity since its effect on the
mean wind speed and potential temperature is not significant due to the very dry envi-
ronment. Simulating the transition between the stable and unstable stratifications is an
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•

•

z1

z0

H

Δ
boundary
conditions

.

.

.

modified transport
equations

standard transport
equations

Fig. 1 Scheme of the boundary-condition treatment applied on a stretched grid. The height of z0 is exaggerated
in order to visualize the scheme

ideal case to test the consistency and stability of the new boundary-condition treat-
ment.

The diurnal cycle is considered for three levels of grid refinement, with the size of the
first grid cell Δ = (0.5, 1, 1.75) m and a total of N = (60, 40, 22) grid points between the
ground and the height of 65 m. The grids are log-linearly distributed (stretched) with finer
resolution near the surface and coarser higher up in the atmosphere. The geostrophic velocity
is considered to be constant during the whole simulation and is taken to be Ug = 3 m s−1 in
the x-direction and Vg = 9 m s−1 in the y-direction. The diurnal cycle is driven by the change
in surface temperature ΘS, which forces the ABL to be stably or unstably stratified. Figure 2
shows the variation of the surface temperature during the simulation at the roughness length
for the temperature z0h = 0.1z0. The model domain is bounded between the roughness length
z0 = 0.03 m and H = 4000 m. Initial profiles of K , ε and Kθ correspond to an ABL with
low turbulence levels. For other initial profiles and parameters we refer to Svensson et al.
(2011). Furthermore, the first three hours of the simulation are regarded as the spin-up period
of the model and are not considered. The timestep in all simulations is Δt = 60 s.

Since the aim is to test the new treatment of the boundary conditions and not model
performancewewill notmake a comparisonwith observations and the large-eddy simulations
(LES) of GABLS2. Instead, we compare results to theoretical predictions, which are known
to be valid in the surface layer. SinceMOST functions are not explicitly used in the boundary
condition for estimating the surface fluxes, the consistency with these is investigated as well.
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Fig. 2 Forcing function that is used in the lower boundary condition forΘS as a function of time, see Svensson
et al. (2011). Results from the time intervals coloured with red and blue are used for the analysis during the
unstable and stable part of the day respectively
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Fig. 3 Time evolution of (a) characteristic temperature andb friction velocity for the grid resolutionΔ = 0.5 m
( ) , 1 m (- - -), and 1.75 m ( )

5 Results

5.1 General Behaviour of Surface Fluxes andMean Profiles

Figure 3 shows the time evolution of u∗ and θ∗. Although u∗ is explicitly dependent on the
height of the first cell centre (z1 ≈ Δ/2), the solution is basically grid independent due to the
use of proper boundary conditions and their consistency with the turbulence model. When a
coarser grid is used θ∗ slightly deviates during the transition periods of the day. The deviations
occur in periods when u∗ is low and | θ∗| is high; however, they converge to a unique solution
as the grid is refined. The deviations are probably related to the strong imbalance between
the turbulence momentum and heat flux.

Figures 4 and 5 show V(z) and Θ(z) at 1400 LT and 0200 LT in the near-surface region
from the periods marked in red and blue in Fig. 2 when the ABL is unstably and stably
stratified, respectively. The results are shown starting from the height z0 where the boundary
conditions are set. The results for different grid resolutions coincide well, showing that
the profiles for V and Θ are grid independent. Figure 4c shows that the slope of the non-
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Fig. 4 Vertical profiles of (a), b horizontal wind speed and c scaled horizontal wind speed. Results at 0200
LT stable (blue) and 1400 LT unstable (red) ABL correspond to the periods marked in Fig. 2. Legend as in
Fig. 3, with the addition of green points at the height of first cell centre z1 for different grid resolutions and (-
- -) representing a 1/κ slope for the neutrally-stratified ABL

dimensional wind-speed profile V/u∗ in the first several grid points is 1/κ, in accordance
with the logarithmic law for neutrally-stratified conditions given by (5). Similarly in Fig. 5c,
the slope of the non-dimensional potential temperature profile

(

Θ(z) − Θ(z0)
)

/θ∗ in the
lowest cell centres is in good agreement with the logarithmic law given by (6).

In Richards and Norris (2011) a good agreement is obtained with the logarithmic law but
with a slight deviation in the lowest grid points, considered to be a result of an inconsistency
in the discretization of the production term. Results in the first few cell centres obtained
with the present boundary-condition treatment, presented in Fig. 4c, are closer to the values
predicted by (5) than those presented in Richards and Norris (2011). To show the influence
of boundary conditions on the model solution at the lowest grid points, our results are plotted
from the height z0 at which at the boundary conditions are set. In Richards and Norris (2011)
the results are not shown at the height where the boundary conditions are set, therefore it
is unclear if their boundary-condition treatment leads to the correct asymptotic near-surface
behaviour.

Figures 4c and 5c indicate that the buoyancy effects are negligible close to thewall and that
turbulence in this region is driven mainly by the wind shear. Further away from the surface,
in the region where the buoyancy effects strongly influence the TKE, V and Θ deviate from
the slope that is characteristic for the shear-driven logarithmic layer. The character of the
deviation depends on the type of stratification in the ABL. In Fig. 5c the results in the first
cell centre at the coarsest resolution for both the stable and unstable ABL deviate slightly
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Fig. 5 Vertical profiles of (a),b potential temperature and c scaled difference between the potential temperature
and surface temperature. Results at 0200 LT stable (blue) and 1400 LT unstable (red) ABL correspond to the
periods marked in Fig. 2. Legend as in Fig. 4, with a difference that ( ) represents the Prt/κ slope for the
neutrally-stratified ABL

from the neutral-stratification results since the production of TKE due to buoyancy at the
height of z1 is not fully negligible.

Results for V(z) and Θ(z) for a stable atmosphere have also been reported in Lazeroms
et al. (2016) using the EARSmodel but with other boundary conditions using a fixed value of
Prt , which is not consistent with the neutral limit of the EARS model, and θ∗ was obtained
from (6) at the height of the first cell centre. This procedure resulted in an inconsistency
between the surface momentum and heat flux causing the Θ(z) profile to deviate from the
logarithmic law, and also (12) was not valid in the surface layer. The present formulation
allows Prt = νt/κt to change dynamically, while using (12) for θ∗ overcomes the previous
inconsistency and produces much better results in the region near the surface.

Results for wind direction for different grids interpolated to the same height are shown
in Fig. 6. When the solution is interpolated to the height z = 1m, which is lower than the
height of the first cell in the case of the coarsest grid, the model results are still consistent
with the results from the two finer grids. Also at other heights (not shown) the wind direction
is independent of the grid resolution.

In the context of turbulence model behaviour, it is relevant to investigate the total vertical

momentum flux in the direction of the horizontal mean flow u′w′T , i.e.

u′w′T = u′w′ U√
U 2 + V 2

+ v′w′ V√
U 2 + V 2

. (18)
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Fig. 6 Time evolution of the wind direction interpolated at the height z=1m (0◦ mean that the mean flow is
directed towards north and −90◦ towards east). Legend is the same as in Fig. 3

Figure 7 shows that the scaled total vertical turbulent momentum-flux profile tends to −1

when approaching the surface, which is consistent with the surface-layer scaling u′w′T/u∗2 =
−1. The deviations for different grid resolutions for the unstable surface layer are related to
the deviation of u∗ (Fig. 3) during the convective part of the day. Since the turbulent fluxes
are scaled with u∗2 this error is emphasized. Figure 7 illustrates that the turbulence modelling
is consistent with the boundary-condition treatment and the way u∗ is computed using the
roughness-length model.

Aside from the quantities presented above, the EARS model also predicts turbulence
properties such as anisotropy and horizontal fluxes for the SCM solution. For instance, Fig. 8
shows not only that the EARS model predicts anisotropy but also that it predicts suppressed
and increased vertical mixing, respectively, for the stably- and unstably-stratified ABL. The
boundary-condition treatment controls the solution of the EARSmodel at the points closest to
the ground making u′u′, v′v′ andw′w′ profiles consistent and grid independent (not shown).
An important difference as compared to EVD models is that these simpler models predict
horizontal and vertical correlations u′u′ = v′v′ = w′w′ = (2/3)K .

Additionally, theEARSmodelwith the improved boundary-condition treatmentwas tested
for the GABLS2 case using the offshore values of roughness length z0 = 10−4 m. The results
show the same grid-independent behaviour as the results for the original GABLS2 test case
reported in this section.

5.2 Monin–Obukhov Similarity Theory

The accuracy of the EARSmodelwith the previously proposed boundary-condition treatment
is tested by comparing the results with experimentally obtained MOST profiles (Businger
et al. 1971; Högström 1988). MOST postulates the existence of dimensionless universal
functions, φM and φH, for the V(z) and Θ(z), i.e.

∂V

∂z
= u∗

κz
φM

( z

L

)

, (19a)

∂Θ

∂z
= θ∗

κz
φH

( z

L

)

. (19b)
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Fig. 7 Vertical profiles of u′w′T for a 0200 LT stable, and b 1400 LT unstable ABL. Time instances correspond
to the periods marked in Fig. 2. Legends as in Fig. 3
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Fig. 8 Vertical profiles of non-dimensional u′u′, v′v′ and w′w′ for a 0200 LT stable and b 1400 LT unstable
ABL. Time instances correspond to the periods marked in Fig. 2

Usually, it is assumed that the universal functions depend on only one dimensionless group1

ξ = z/L , where L is the Obukhov length defined as

L = − u3∗T0
κgw′θ ′

s
= u2∗T0

κgθ∗
, (20)

1 An additional dimensionless group, which depends on the scaled height of the boundary layer has been
added in Johansson et al. (2001). However, this is beyond the scope of the current work.
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Fig. 9 Scaled profiles showing stability function for a horizontal wind speed, and b potential temperature
plotted against the stability parameter, obtained by scaling the height with the physical Obukhov length LΔ

(blue) and classical Obukhov length L (yellow); Experimental data: (- - -) from Businger et al. (1971) and
( ) from Högström (1988)

where the latter form is obtained by using (12). MOST has been validated by numerous
atmospheric experiments, and the functions φM and φH have been determined from atmo-
spheric measurements (Foken 2006) and more recently from high-resolution LES of the
ABL (Maronga 2014; Maronga and Reuder 2017). Most commonly referred shapes of the
universal functions are given in Businger et al. (1971), which were obtained from the Kansas
experiment, and in Högström (1988).

Results of the simulation with the finest grid resolution, corresponding to the marked
periods in Fig. 2, are cast in form of dimensionless functions φM and φH using (19). The
dimensionless group ξ was obtained by scaling the height at which the results were taken
by the Obukhov length. In the present analysis, two different formulations for the Obukhov
length are used: the classical formulation for defining L from (20) in terms of near-surface
local conditions, and the presently introduced physical Obukhov length LΔ defined as the
heightwhere the buoyancy termG(z) in (4a) equals the shear production.Appendix 3 contains
a detailed explanation of LΔ. It should be pointed out that the calculation of LΔ would require
an analysis of the boundary layer in the vertical direction. The classical Obukhov length, on
the other hand, is completely expressed in terms of surface fluxes.

Figure 9 shows that themodel results in the surface layer agree with the scaling predictions
of MOST. That is to say, when V and Θ are scaled appropriately, as in (19), the results
collapse and form functional dependences. Thus, the results in Fig. 9 indicate a realistic
physical treatment of the turbulence in the EARS model. The results for the stably-stratified
surface layer (ξ > 0) agree well with the experimental data. The results scaled with L follow
Businger’s data, while the results scaled with LΔ are closer to Högström’s data. Results for
the unstably-stratified surface layer (ξ < 0) deviate substantially from the experimental data
for both φM and φH, but the prediction is slightly improved for φH. In Mellor and Yamada
(1982) a similar underestimation of φM was obtained with the level-2.5 closure model.
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In the simulated ideal diurnal cycle the boundary layer undergoes transition from stable
to unstable conditions and vice versa, and does not remain neutrally stratified. Consequently,
part of the results corresponding to the neutral region (z/L=0) ismissing fromFig. 9. In order
to obtain results in the near-neutral limit, data are taken near the surface where z/L → 0.
This requires caution because MOST is not valid on the scale of the roughness length z0,
see discussion in Basu and Lacser (2017). The results are obtained without any tuning of
model coefficients with the given experimental data, in contrast to Mellor (1973) where the
model coefficients were tuned to match the data. Furthermore, the present model does not
rely on MOST functions for calculating u∗ and θ∗, meaning that MOST is not predefined
in the EARS model. This is not so in Chang et al. (2018), where MOST was used as a wall
function for estimating u∗ and θ∗ and then for comparing the profiles of V(z) and Θ(z)
predicted by MOST to the model result. Hence, their model results cannot be considered to
be independent of the imposed MOST functions.

6 Discussion and Conclusions

New boundary conditions for the recently developed EARSmodel are proposed. The bound-
ary conditions require that the grid is fine enough for the model to capture the region near the
surface where buoyancy effects can be neglected. The surface fluxes are estimated accord-
ing to the logarithmic law valid for neutral stratification. In order to ensure that the neutral
logarithmic law is valid at the height of the first cell centre the conditions z1 < 0.05L and
z1 < 0.17L for the finest and coarsest resolution respectively were imposed in the simula-
tion. Our approach is different from that commonly used where surface fluxes are estimated
from the empirical Monin–Obukhov functions. The proposed boundary conditions lead to
results that agree well with the standard logarithmic law very near the surface. The gen-
eral approach in this new boundary-condition treatment could also be applied to simpler
eddy-viscosity/eddy-diffusivity models, and should be expected to give improvements also
there.

Simulations of an idealized diurnal cycle were carried out with different grid resolutions.
Results of the vertical profiles for the stable and unstable surface layer indicate that the
EARS model with these new boundary conditions predicts the stratified logarithmic law
for the mean horizontal wind-speed and mean potential-temperature profiles without using
empirical functions. It is shown that the boundary conditions are consistent with turbulence
modelling in the EARS model and MOST functions for the stable ABL, and gives a grid-
independent solution, with accurate prediction of the surface fluxes, despite the explicit
dependence on the height of the first cell centre. Results for the wind direction also give a
grid-independent solution even when interpolation is done to a height below the height of
the first cell. We emphasize that the present boundary treatment is basically driven by the
behaviour of the modelling in the interior and no inconsistency was observed with MOST in
Figs. 4 and 5 for stable and unstable conditions. Moreover, in the transition phases between
stable and unstable conditions, when the assumptions of MOST are not strictly valid, the
boundary conditions are consistent with the interior modelling. This is not explicitly shown
but indicated by the grid independence shown in Figs. 3 and 6. Another limitation is that the
MOST formulation is not applicable in cases with strong lateral inhomogeneity when there
are rapid variations in atmospheric conditions or surface topography. Such conditions should
not cause major inconsistencies with the present boundary formulation, although not tested
yet.
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When expressed in dimensionless MOST form the model results collapsed on to a single
curve, forming a clear functional dependence and indicating that the physics is well described
by the turbulence model. The comparison with experimentally observed MOST profiles
shows good agreement for the stably-stratified surface layer, but there are discrepancies in
the unstably-stratified surface layer.
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Appendix 1: Details for the Generalized EARSModel

The basis for the generalized EARSmodel is the standard differential Reynolds-stress model.
The model is derived from Reynolds averaging of the Navier–Stokes equations and a gen-
eralized coordinate-free formulation of a differential Reynolds-stress model with buoyancy
effects, and has the following form

Du′
i u

′
j

Dt
− Di j = Pi j + Gi j + Πi j − εi j , (21a)

Du′
iθ

′
Dt

− Dθ i = Pθ i + Gθ i + Πθ i − εθ i , (21b)

where terms correspond to (from left to right) advection, diffusion, shear and buoyancy
production, pressure redistribution and dissipation. The shear and buoyancy production terms
are explicit and follow directly from the derivation of the differential Reynolds-stress model,
and so need no modelling

Pi j = − u′
i u

′
k

∂Uj

∂xk
− u′

j u
′
k

∂Ui

∂xk
, (22a)

Pθ i = − u′
i u

′
j

∂Θ

∂x j
− u′

jθ
′ ∂Ui

∂x j
, (22b)

Gi j = − giu′
jθ

′ + g ju′
iθ

′

T0
, (22c)

Gθ i = − 2Kθ gi
T0

. (22d)

The dissipation rate tensor is assumed to be isotropic, hence

εi j = 2

3
ε δi j , (23)

where δi j is the Kronecker delta. The pressure redistribution terms contain new correlations
and therefore require further modelling. The model for Πi j follows from Rotta (1951) and
Launder et al. (1975) and where the buoyancy contribution is added from Launder (1975) so
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that

Πi j = −c1ε

(

u′
i u

′
j

K
− 2

3
δi j

)

− c2 + 8

11

(

Pi j − 1

3
Pkkδi j

)

− 30c2 − 2

55
K

(

∂Ui

∂x j
+ ∂Uj

∂xi

)

− 8c2 − 2

11

(

−u′
i u

′
k

∂Uk

∂x j
− u′

j u
′
k

∂Uk

∂xi
− 1

3
Pkkδi j

)

− c3

(

Gi j − 1

3
Gkkδi j

)

. (24)

The other pressure redistribution term Πθ i is modelled according to Launder (1975) and
Wikström et al. (2000) as

Πθ i − εθ i = −
(

cθ1 + cθ5
K

εKθ

u′
kθ

′ ∂Θ

∂xk

)

ε

K
u′
iθ

′ + cθ2u′
jθ

′ ∂Ui

∂x j

+ cθ3u′
jθ

′ ∂Uj

∂xi
+ cθ4u′

i u
′
j
∂Θ

∂x j
+ cθg

Kθgi
T0

, (25)

where c1, c2, c3, cθ1, cθ2, cθ3, cθ4, cθ5 and cθg are themodel constants that are not defined.
The differential Reynolds-stress model can be expressed in terms of dimensionless quantities
(Mellor and Yamada 1974), Reynolds-stress anisotropy and normalized heat flux that are
respectively given as

ai j = u′
i u

′
j

K
− 2

3
δi j , (26a)

ξi = u′
iθ

′
√
KKθ

. (26b)

The prognostic Eqs. 21a and 21b are then rewritten as

Dai j
Dt

− 1

K

(

Di j − u′
i u

′
j

K
DK

)

= 1

K

(

Pi j + Gi j + Πi j − εi j − u′
i u

′
j

K
(P − ε + G)

)

, (27a)

Dξi

Dt
− 1√

KKθ

(

Dθ i − u′
iθ

′
2

(DK

K
+ DKθ

Kθ

)
)

= 1√
KKθ

(

Pθ i + Gθ i + Πθ i − εθ i − u′
iθ

′
2

(P − ε + G
K

+ Pθ − εθ

Kθ

)
)

, (27b)

where all the terms are still generalized and in coordinate-free form so that P and G are
respectively half the trace of Pik and Gik and Pθ = −u′

jθ
′∂Θ/∂x j .

Themain idea of algebraicmodels is to solve for turbulent fluxes using algebraic equations
instead of solving the prognostic equations. In order to simplify (27) Rodi (1972, 1976)
introduced the weak-equilibrium assumption that states that both advection and diffusion of
ai j and ξi can be neglected. This assumption is more general than neglecting advection and
diffusion of the turbulent fluxes in (21). After applying the weak-equilibrium assumption the
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left-hand side of Eq. 27 is neglected, viz.

u′
i u

′
j

K
(P − ε + G) = Pi j + Gi j + Πi j − εi j , (28a)

u′
iθ

′
2

(P − ε + G
K

+ Pθ − εθ

Kθ

)

= Pθ i + Gθ i + Πθ i − εθ i . (28b)

The transport equations for TKE, ε and Kθ in their general form (similar to Eqs. 4, only
generalized), together with (28), form a closure problem similar to Mellor–Yamada level 3
that is discussed in Lazeroms et al. (2016). The following relations

Si j =τ

2

(

∂Ui

∂x j
+ ∂Uj

∂xi

)

, (29a)

Θi =τ

√

K

Kθ

∂Θ

∂xi
, (29b)

Ωi j =τ

2

(

∂Ui

∂x j
− ∂Uj

∂xi

)

, (29c)

Γi =τ

√

Kθ

K

gi
T0

, (29d)

where τ = K/ε is the turbulence time scale, together with (26), transform (28) into non-
dimensional form

Nai j = − 8

15
Si j + C1

(

aik Sk j + Sikak j − 2

3
akm Skmδi j

)

+ C2(aikΩk j − Ωikak j ) − C3

(

Γiξ j + ξiΓ j − 2

3
Γkξkδi j

)

, (30a)

Nθ ξi = −(cS Si j + cΩΩi j )ξ j − cΘ

(

ai j + 2

3
δi j

)

Θ j − cΓ Γi . (30b)

The constants are related to those previously introduced, as follows

C1 = 9c2 − 5

11
, C2 = 7c2 + 1

11
, C3 = 1 − c3,

cS = 1 − cθ2 − cθ3, cΩ = 1 − cθ2 + cθ3, cΘ = 1 − cθ4, cΓ = 2 − cθg. (31)

In Wallin and Johansson (2000) it was argued that the constant c2 = 5/9; such a choice
leads to C1 = 0, implying that the second term on the right-hand side in Eq. 30a vanishes
and significantly simplifies the complexity of the EARS model derivation. However, the two
parts of Eq. 30 are still implicit in ai j and ξi and mutually coupled trough the buoyancy term.
Additionally, they are also non-linear as they contain two non-constant factors

N =c1 − 1 + P + G
ε

= c1 − 1 − akm Skm − Γkξk, (32a)

Nθ =cθ1 + 1

2

(P + G
ε

− 1 − 1

r

)

+
(

1

2
− cθ5

) Pθ

rεθ

= cθ1 + 1

2

(

N − c1 − 1

r

)

+
(

cθ5 − 1

2

)

ξ jΘ j . (32b)
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This problem of non-linearity was carefully addressed in Lazeroms et al. (2015) and an
approximative solution for N and Nθ was found using the shear- and buoyancy-dominated
limits of the flow. A summary explaining the approximative solution for N and Nθ is given
in Appendix 2. Therefore, we assume that N and Nθ are known and that the non-linearity has
been dealt with. As in the method used in Pope (1975), however with an extended solution
for buoyant flows, ai j and ξi are written as linear expansions of basis tensors and vectors

a =
M

∑

k=1

βkT (k), (33a)

ξ =
M ′
∑

k=1

λkV (k). (33b)

It has been found that in the case of a two-dimensional mean flow there exists a set of 10
basis tensors T (k)

Ti j
(1) = Si j , Ti j

(2) = Sik Sk j − 1

3
IIS δi j , Ti j

(3) = ΩikΩk j − 1

3
IIΩ δi j ,

Ti j
(4) = SikΩk j − Ωik Sk j , Ti j

(θ1) = ΓiΘ j + ΘiΓ j − 2

3
γ (θ) δi j ,

Ti j
(θ2) = ΓiΘk Sk j + SikΘkΓ j − 2

3
γ

(θ)
S δi j ,

Ti j
(θ3) = ΓiΘkΩk j − ΩikΘkΓ j − 2

3
γ

(θ)
Ω δi j ,

Ti j
(θ4) = ΓiΘk SklΩl j − Ωik SklΘlΓ j − 2

3
γ

(θ)
SΩ δi j ,

Ti j
(g1) = ΓiΓ j − 1

3
Γ 2δi j , Ti j

(g2) = ΓiΓkΩk j − ΩikΓkΓ j , (34)

and eight basis vectors V(k)

Vi
(θ1) = Θi , Vi

(θ2) = Si jΘ j , Vi
(θ3) = Ωi jΘ j , Vi

(θ4) = SikΩk jΘ j ,

Vi
(g1) = Γi , Vi

(g2) = Si jΓ j , Vi
(g3) = Ωi jΓ j , Vi

(g4) = SikΩk jΓ j . (35)

TheseT(k) andV(k) span the solution space of (30) and any other tensorial combination of Si j ,
Ωi j , Θi and Γi can be reduced to T(k) and V(k) groups using the Cayley-Hamilton theorem.
Substituting ai j and ξi with tensorial and vector groups forms an 18×18 linear system for the
coefficients βk and λk . The solution for this system was found in Lazeroms et al. (2013) for
the special case of horizontal two-dimensional mean flow with coplanar gradients of mean
velocity, mean temperature and gravitational acceleration and cS = cΩ = 0. The extended
model (different from Lazeroms et al. (2013)) is

β1 = − 8

15

N

Du
, β2 = 0, β3 = − 8

15

C2C3Q6

DuQ2
, β4 = − 8

15

C2

Du
,

βθ1 = 2

15

cΘC3Q3Q4

DuQ1Q2
, βθ2 = −16

15

cΘC3

DuQ1

(

Nθ D̃u − cΘC3Nγ (θ)
)

,

βθ3 = 4

15

cΘC2C3Nθ Q4

DuQ1Q2
, βθ4 = −32

15

cΘC2C3

DuQ1
(NNθ + Q3) ,

βg1 = 8

15

C3Q3Q5

DuQ1Q2
, βg2 = 8

15

C2C3Nθ Q5

DuQ1Q2
,
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λθ1 = − 2

15

cΘQ4

DuQ1Q2

(

Nθ Du − cΘC3Nγ (θ)
)

, λθ2 = 16

15

cΘQ3

Q1
,

λθ3 = 4

15

cΘ
2C2C3Q4γ

(θ)

DuQ1Q2
, λθ4 = 32

15

cΘC2Nθ

Q1
,

λg1 = − 4

15

Q5

DuQ1Q2

(

Nθ Du − cΘC3Nγ (θ)
)

, λg2 = 0,

λg3 = 8

15

cΘC2C3Q5γ
(θ)

DuQ1Q2
, λg4 = 0, (36)

where

Du = N 2 − 2C2
2 IIΩ ≥ 0, D̃u = N 2 + 2C2

2 IIΩ,

Q1 = 2 Q3
2 − 4C2

2 IIΩNθ
2 ≥ 0,

Q2 = 6NDuNθ
2 − 2 cΘC3γ

(θ)Nθ (6N
2 + Du) + 8 cΘ

2C3
2Nγ (θ)2,

Q3 = NNθ − cΘC3γ
(θ),

Q4 = Q2(15Du + 8C2 IIΩ) + 2 cΘC3γ
(θ)Nθ Du(15Du + 16C2 IIΩ)

− 6DuNNθ
2(5Du + 8C2 IIΩ) − 60 cΓ C3DuΓ

2(NQ3 + C2
2 IIΩNθ ),

Q5 = 15cΓ cΘ
2C3

2NDuγ
(θ)2 − 30cΓ cΘC3γ

(θ)Nθ Du(2N
2 − C2

2 IIΩ)

+ 45cΓ NNθ
2Du

2

+ 2 cΘ
2C3NΘ2

(

3NNθ (5Du + 8C2 IIΩ) − cΘC3γ
(θ) (15Du + 16C2 IIΩ)

)

,

Q6 = −16C3NcΘ
2γ (θ)2 + 6 cΘNθ γ

(θ)
(

5C2Du + 2D̃u

)

+ 45cΓ C2NθΓ
2Du, (37)

and the invariants are

IIΩ = ΩkmΩmk, Θ2 = ΘkΘk, γ (θ) = ΓkΘk, γ
(θ)
Ω = ΓkΘmΩmk,

IIS = Skm Smk, Γ 2 = ΓkΓk, γ
(θ)
S = ΓkΘmSmk, γ

(θ)
SΩ = ΓkΘmSmjΩ jk . (38)

The extended model is somewhat simplified as compared to Lazeroms et al. (2013, 2015,
2016), and is consistent with the EARS model given in Wallin and Johansson (2000) for
the case of vanishing stratification and the passive scalar model in Wikström et al. (2000).
The remaining constants in the EARS model are c1 = 1.8, c3 = 0.3, cθ1 = 4.51, cθ2 =
1, cθ3 = 0, cθ4 = 0, cθ5 = 0.5, cθg = 0.75. Singularities in the model are very unlikely,
but possible because Q2 cannot be proven to be positive in all conditions. This is not the case
for Du and Q1, which are always positive. Potential singularities can be treated numerically
using the substitution

1

Q2
→ Q2

max(Q2
2, ε)

, (39)

where ε is a small number, e.g. ε = 0.001 so that the sign is retained. All denominators in
βk and λk expressions must be limited by ε, e.g.

1

Du
→ 1

max(Du, ε)
,

1

Q2
→ Q2

max(DuQ1Q2
2, ε)

. (40)

At this point, the turbulent momentum flux u′
i u

′
j and heat flux u′

iθ
′ are expressed using

(26) and (33). The basic tensors and vectors have to be formed in terms of (29). Considering
only the terms with β1 and λθ1 corresponds to the simple EDV model, and including the
additional terms leads to the full EARS model solution containing the complete u′

i u
′
j tensor
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andu′
iθ

′ vector. In the turbulent parametrizationof theABL, themost commonlyparametrized
turbulent fluxes are the vertical fluxes. In their most compact form, the vertical fluxes in the
EARS model can be written in the following form

u′w′ = − fm
K 2

ε

∂U

∂z
, (41a)

v′w′ = − fm
K 2

ε

∂V

∂z
, (41b)

w′θ ′ = − fh
K 2

ε

∂Θ

∂z
+ fΦ

KKθ

ε

g

T0
, (41c)

where the core functions are

fm = − 1

2

(

β1 + (βθ2 − βθ3) γ (θ) − βg2Γ
2
)

, (42a)

fh = −
(

λθ1 − 1

2
IIΩλθ4

)

, (42b)

fΦ = − λg1. (42c)

In addition, in a similar way, the EARS model also predicts the individual normal stresses
u′u′ etc. (not shown here) and horizontal fluxes

u′θ ′ = 1

2
(λθ2 + λθ3)

K 3

ε2

∂U

∂z

∂Θ

∂z
− λg3

K 2Kθ

ε2

g

2T0

∂U

∂z
, (43a)

v′θ ′ = 1

2
(λθ2 + λθ3)

K 3

ε2

∂V

∂z

∂Θ

∂z
− λg3

K 2Kθ

ε2

g

2T0

∂V

∂z
, (43b)

which hence are non-zero also for the SCM solution.

Appendix 2: Approximative Solution for N and N�

Treating Eqs. 30 as a linear set of equations involves computing N and Nθ in advance. An
analytical solution for (32) does not exist and numerically solving such a coupled system of
polynomial equations is not trivial due to the existence of multiple solutions. Therefore an
approximative explicit solution is used. Substituting ai j and ξi in (32a) gives

N = c1 − 1 +
P/ε

︷ ︸︸ ︷

IIΩ
(

β1 + γ (θ)(βθ2 − βθ3) − Γ 2βg2

)

−
(

γ (θ)

(

λθ1 − 1

2
IIΩλθ4

)

+ Γ 2λg1

)

︸ ︷︷ ︸

G/ε

, (44)

and for the choice of model constant cθ5 = 0.5, the last term in (32b) is zero and Nθ becomes
a function of N . The approximative solution for N in the case of parallel shear flow depends
on atmospheric stability

N =
{

N (0), γ (θ) ≥ 0 (unstable/neutral)

N (1), γ (θ) < 0 (stable).
(45)
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It is shown in Lazeroms et al. (2015) that for unstable/neutral stratification N (0) is suffi-
ciently accurate but for stable stratification a one-step iteration N (1) is required. The zeroth
approximation used for unstable/neutral and stable stratification is, respectively, given by

N (0) = N (S) + N (B) − c1 + 1, (46)

˜N (0) = ˜N (S) + N (B) − c1 + 1. (47)

N (S) and ˜N (S) are the shear-dominant limits for unstable/neutral and stable stratification
respectively (γ (θ) → 0) and N (B) is the buoyancy-dominant limit (IIΩ → 0) of Eq. 44. In
the mentioned limits (44) together with (32b) forms a third-order polynomial equation that
has analytical solutions

N (S) = 4

9

(

c′
1

3
+ fM (P1, P2)

)

, (48a)

˜N (S) = 4

9

(

c′
1

3
+ fM (˜P1, ˜P2)

)

, (48b)

N (B) =c′
θ1

3
+ fM (Pb1, Pb2), (48c)

where c′
1 = 9/4(c1 − 1), c′

θ1 = 2c1 − 2cθ1 + 1/r − 1 and

fM (R1, R2) =
⎧

⎨

⎩

fV (R1 + √
R2) + fV (R1 − √

R2), R2 ≥ 0,

2(R1
2 − R2)

1/6 cos

(

1
3 arccos

(

R1√
R1

2−R2

))

, R2 < 0,
(49)

and in order to chose the real negative root of (R1 ± R2)
1/3 when the argument is negative

Wallin and Johansson (2000) suggested

fV (R) = sign(R)|R|1/3. (50)

The roots in Eqs. 48 are

P1 = c′
1

(

1

27
c′
1
2 + 9

20
IIS − 2

3
IIΩ

)

,

P2 = P1
2 −

(

1

9
c′
1
2 + 9

10
IIS + 2

3
IIΩ

)3

,

˜P1 = c′
1

(

1

27
c′
1
2 + 9

20
IIS AS − 2

3

(

IIΩ − ˜Q

2C2
2

))

,

˜P2 = ˜P1
2 −

(

1

9
c′
1
2 + 9

10
IIS AS + 2

3

(

IIΩ − ˜Q

2C2
2

))3

,

Pb1 = c′
θ1

(

1

27
c′
θ1

2 + 1

3
αθ (c1 − 1) + 2

9
cΘ (2C3 + 1) γ (θ) + 1

3
cΓ Γ 2

)

−4

3
cΘC3 (c1 − 1) γ (θ),

Pb2 = Pb1
2 −

(

1

9
c′
θ1

2 + 2

3
αθ (c1 − 1) + 4

9
cΘ (2C3 + 1) γ (θ) + 2

3
cΓ Γ 2

)3

, (51)
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where αθ = cθ1 − (c1 + 1/r)/2,

AS = 1 + 1

6

cΘC3

c1N∗
θ

(15C2 − 8) γ (θ) + 15

4

cΓ C2C3

c1N∗
θ

Γ 2,

Q̃ = −1

3

cΘC3

c1N∗
θ

(

7c1
2 + 2C2

2 IIS
)

γ (θ) + 4

3

(

cΘC3
γ (θ)

N∗
θ

)2

, (52)

and N∗
θ = c1/2 + αθ .

As mentioned, for stable stratification a one-step iteration of ˜N (0) is used to improve the
accuracy of the approximative solution. The iteration is based on computing (44)

N (1) = c1 − 1 + IIΩ
(

β1
′ + γ (θ)(βθ2

′ − βθ3
′) − Γ 2βg2

′)

−
(

γ (θ)

(

λθ1
′ − 1

2
IIΩλθ4

′
)

+ Γ 2λg1
′
)

, (53)

where ˜N (0) replaces N for all β ′ and λ′ in (36).

Appendix 3: Definition of the Physical Obukhov Length

The physical Obukhov length LΔ is a new scaling length for the surface layer. The classical
Obukhov length (20) is derived from non-dimensionalizing Eq. 4a in the surface layer with
P (Stull 1988). The dimensionless buoyancy production term G/P has the following form

G
P = g

T0

w′θ ′
s

−u′w′T dV /dz
≈ g

T0

κzθ∗
u2∗

= z/L. (54)

0.0 0.5 1.0 1.5
| G |κz/u3

∗

(b)

0.0 0.5 1.0 1.5
| G |κz/u3

∗

0

25

50

75

100

z
(m

)

(a)

Fig. 10 Profile of |G | scaled by u3∗/κz at a 0200 LT for the stable, and b 1400 LT unstable ABL. Time
instances correspond to the periods marked in Fig. 2. Black dot indicates z = LΔ where the dimensionless
quantity |G |κz/u3∗ = 1
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Close to the surface G/P < 1 implies that z < L , however higher up in the atmosphere the
buoyancy production term becomes comparable with the shear production term leading to
G/P ≥ 1 where in that case z ≥ L must be fulfilled. Therefore, the physical meaning of the
Obukhov length is the height above which the buoyancy production term is comparable to
the shear production term.

In order to obtain LΔ, the absolute value of G is scaled by P relevant for the surface layer
u3∗/κz. This length scale represents the height at which the buoyancy effects on turbulence
become comparable to the shear effects, which is consistent with the physical meaning of
the Obukhov length (54). Figure 10 shows vertical profiles of the dimensionless quantity
|G |κz/u3∗ = f (z), for unstably- and stably-stratified surface layer, where the height at
which |G(z = LΔ) |κz/u3∗ = 1 is defined as LΔ. This way of defining the Obukhov length is
convenient for the EARS model because G is given in a closed form (Lazeroms et al. 2013),
unlike most eddy-visocsity/eddy-diffusivity models.
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