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Abstract
We propose a general concept for the analysis of the results of urban dispersion simulations
of high temporal resolution, taking into account multi-model ensembles. We are motivated
by theoretical considerations related both to the characteristics of the measurements and to
the representation of the multi-model ensemble. Based on typical mathematical notions, we
propose and present several indices, and apply them to the results of the UDINEE dispersion-
modelling exercise. We demonstrate that the median model is the proper representation of
the ensemble results for the presented methodology.

Keywords Multi-model ensemble · Performance analysis · UDINEE exercise · Urban
dispersion modelling

1 Introduction

The results of the UDINEE urban dispersion-modelling exercise are based on the Joint
Urban 2003 (JU2003) experimental campaign conducted in Oklahoma City, U.S.A. (see
Allwine andFlaherty 2006, 2007;Hernández-Ceballos et al. 2018a, b, and references therein).
The observational data are characterized by a high-resolution timestep (0.5 s) and peaks in
measured concentrations when the tracer traverses the station, resulting in measurement
values sensitive to local fluctuations. However, as the peaks are often not long lasting, many
models predict the highest tracer-concentration values at times either prior to or after the
measured peaks, with some of the models underpredicting, while others overpredicting, the
concentration magnitude.

Since the appearance of the ensemble technique applied to atmospheric dispersion mod-
elling, many questions have been raised, such as how to present simulation results versus
measurements, how to compare different models, and how to analyze the ensemble of the
models (Straume et al. 1998; Bellasio et al. 1999; Dabberdt and Miller 2000; Delle Monache
and Stull 2003; Galmarini et al. 2001, 2004). A number of indices can be applied, such
as the factor-of-two index FAC2, which is defined as an index determining the number of
model-predicted values in the range of 0.5 to 2 multiplied by the measured value, and data
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can be compared using scatter diagrams and correlation coefficients. These indices have been
used extensively, for example, while analyzing the results of the European Tracer Experiment
(ETEX) (Girardi et al. 1998; Graziani et al. 1998; Van Dop and Nodop 1998; Mosca et al.
1998). Nevertheless, the optimal method for comparing model data and observations is not
obvious. Specifically related to the results of urban dispersion simulations, this problem has
been investigated, for example, in Zhou and Hanna (2007) and Hanna and Chang (2012),
whosework is the basis for the analysis of theUDINEEdispersion-modelling-exercise results
presented in Hernández-Ceballos et al. (2018a, b). Motivated by theoretical considerations,
we propose a general approach here for comparing modelled and observed data specifically
tailored to the analysis of the ensemble-dispersion models and measurements of high tem-
poral resolution. However, the approach can be also adapted for boundary-layer processes,
which can be investigated by using the ensemble-modelling technique.

Section 2 describes a general concept for model comparison, Sect. 3 deals with the pro-
posed method for ensemble analysis, Sect. 4 presents a simple example of such an analysis
related to the UDINEE exercise, and Sect. 5 contains conclusions.

2 Comparison of the Results and Presentation

Assume two datasets are {Ci }ni�0, {Oi }ni�0, where Ci and Oi are the simulated and observed
concentrations, respectively, at time ti=t0 + i�t, with i=0,…,n (the timestep �t is fixed, but
could also be variable in principle), and define interpolation functions for the interval [t0, tn]
for both the modelled data and observations in general as

C(t) � Interpol({ti }ni�0, {Ci }ni�0), (1a)

O(t) � Interpol({ti }ni�0, {Oi }ni�0), (1b)

where Interpol is an interpolation function (for example linear) over the whole interval [t0,
tn]. The typical norm for integrable functions,

‖C‖t,τ �
t∫

t−τ

|C(t)|dt, (2a)

‖O‖t,τ �
t∫

t−τ

|O(t)|dt, (2b)

can be used to estimate the modelled and measured integrated concentrations, respectively,
in the time interval [t – τ , t], where the parameter τ is the length of the interval over which
the results are integrated (i.e. the time-integration interval).

We also define the positive and negative parts of the difference between the modelled and
observed values as

(C−O)+(t) � max{C(t) − O(t); 0}, (C−O)−(t) � −min{C(t)− O(t); 0}, (3)

with

∥∥(C − O)+
∥∥
t,τ

�
t∫

t−τ

(C − O)+(t)dt,
∥∥(C − O)−

∥∥
t,τ �

t∫

t−τ

(C − O)−(t)dt . (4)
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The positive (negative) part shows the integrated concentration resulting from model
overprediction (underprediction) in the interval [t – τ , t]. The total error between themeasured
and simulated concentrations in this interval is

‖C − O‖t,τ �
t∫

t−τ

|C(t) − O(t)|dt, (5)

which is equal to the sum
∥∥(C − O)+

∥∥
t,τ +

∥∥(C − O)−
∥∥
t,τ .

Let us define the following indicators,

Rτ (t) � ‖C‖t,τ
‖O‖t,τ , (6a)

N+
τ (t) �

∥∥(C − O)+
∥∥
t,τ

‖(C − O)+‖t,τ +
∥∥(C − O)−

∥∥
t,τ

, (6b)

N−
τ (t) �

∥∥(C − O)−
∥∥
t,τ

‖(C − O)+‖t,τ +
∥∥(C − O)−

∥∥
t,τ

, (6c)

where Rτ (t) is a general index determining whether the model overpredicts or underpredicts
concentration values in the time interval [t – τ , t], and N+

τ (t), N−
τ (t) show themutual relation

between the overpredictions and underpredictions, respectively, with N+
τ (t)+ N−

τ (t) � 1 for
any t and τ .

Depending on the chosen integration interval, the index Rτ (t) can be treated either glob-
ally or locally, which shows global behaviour in the case when the interval τ is the length
of the whole period considered, revealing in principle to what extent the total integrated
concentration is in accordance with the observed value. It is probably more reasonable to
select an integration time longer than the temporal resolution, but not too long, to still enable
the capture of local effects such as peaks (depending on the duration of the peak). The index
Rτ (t) can also be further analyzed statistically for all measurement stations, for example, by
taking the mean, median, and standard deviation of the concentration. Note that the constant
value Rτ (t)�1 demonstrates the best agreement between observations and simulated values.
The comparison of simulated values with measurements can be presented as a function of
time for the consecutive integration times. The same time series can be obviously used for
comparison among models and for the analysis of the whole ensemble of models, which may
be illustrated by presentation of hypothetical measurement and model data in Fig. 1. Figure 2
shows the values of the index Rτ (t) for an integration time five times longer than the temporal
resolution of the data.

However, it is also possible to present on the same axes both the index Rτ (t) and addi-
tional information on the relation between the overpredictions and underpredictions via the
indicators N+

τ (t), N−
τ (t) by defining an angle ϕ(t) based on the ratio between these two

indices tanϕ(t) � N+
τ (t)

N−
τ (t)

. Here, the angle ϕ(t) � π/4 corresponds to an equal amount of

overprediction and underprediction, with ϕ =0 for only overprediction, and ϕ =π/2 for only
underprediction (see Fig. 3). For clearer presentation, we transform this angle to ψ =2ϕ,
giving ψ =π/2 as the balance between over- and underprediction, where ψ <π/2 for over-
prediction, and ψ >π/2 for underprediction. Note that the value ψ =π/2 does not imply the
absence of overprediction or underprediction, but only an equivalent degree of overprediction
and underprediction.

Now we present values in the polar coordinate system (Rτ (t), ψτ (t)) in the upper half-
space as 0≤ψτ (t)≤π. The observational values are at the fixed point (1, π/2) (i.e. (0, 1)
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Fig. 1 Hypothetical observations and model results as a function of time with a temporal resolution of 0.1 s

Fig. 2 The index Rτ (t) for the integration time τ �0.5 s (five times longer than the temporal resolution)

Fig. 3 Construction of the coordinates (Rτ (t), ψτ (t))
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Fig. 4 The curve t→ (Rτ (t),ψτ (t)) for two hypothetical models (integration time τ �0.5 s), with
x=Rτ (t)cosψτ (t) and y=Rτ (t)sinψτ (t)

in the Cartesian coordinate system) for all times and the integration interval τ . The function
t→ (Rτ (t), ψτ (t)) describes how far and on which side of the observational value the model-
predicted concentrations are located: points located on the right-hand (left-hand) side imply a
greater overprediction (underprediction). The arc valueRτ (t)�1 shows the threshold between
the total overpredicted and underpredicted integrated concentrations. One can also add curves
presenting factors of two or five—if necessary, a logarithmic scale can also be used. As an
example, the curve t→ (Rτ (t), ψτ (t)) with an integration time of τ �0.5 s is presented
in Fig. 4 (for the hypothetical data shown in Fig. 1), noting that the measurement point
is always at a fixed point (at (0, 1) in the Cartesian coordinate system). In Fig. 4, two
t→ (Rτ (t),ψτ (t)) curves are shown for two models: the scales of the axes are not preserved
for better visualization. Such a graph enables observation of the behaviour of the models in
consecutive timesteps for the assumed integration time.
A few general remarks on this presentation method:
1. In some cases, it can be relevant to consider only measurements and model data above
some threshold. A possible reason can be the removal of low values considered as noise, or
the interest in simply identifying peaks in the data (then a percentage of the peak value can
be defined as the threshold), or the situation when the exceedance of some limit values is the
main purpose of the analysis. When a threshold value is used, an appropriate choice of the
analyzed time period should be made, for example, by taking the first and the last time points
when the threshold is exceeded, for either observations or model data.

2. The time-integration interval τ can be any value starting from the timestep �t up to the
whole interval [t0, tn]. In any case, integration over an interval is related to taking an average
for this interval. Obviously, a shorter interval time enables a more detailed analysis.

3. One of the general drawbacks of such an analysis is related to the fact that it is based on
only point measurements. Since the model spatial resolution is usually only a fewmetres, and
concentration peaks can appear in a short period of time, the peak concentration predicted
by the model may also be shifted in space by a few metres compared with the measured peak
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concentration. Therefore, it would be reasonable to consider an average concentration over
some area, and formally this leads to the relation (instead of Eq. 5),

‖C − O‖t,τ �
t∫

t−τ

∣∣∣∣ 1

|A| ∫
A
C(t, x)dx − O(t)

∣∣∣∣dt, (5′)

where the model concentration is integrated over some area A and averaged, with |A| the area
measure. Actually, while models often use such a formulation, the choice of the value of A
can be a delicate matter.

3 How to Analyze the Ensemble of theModels?

While there are various ways to perform an analysis of the whole model ensemble, sta-
tistical analysis is usually the preferred method. However, the question arises as to which
indicators should be applied, and what their meaning would be? Here, the error between
the measurement O and the single model M is determined by the integral ‖M − O‖t,τ �∫ t
t−τ

|M(t) − O(t)|dt . Suppose we are interested in finding the representative function for
the ensemble of the models. Taking an analogous measurement, we seek a function that
minimizes the error between this representative and the models—the ensemble members. In
other words, we look for the function defined by the following optimization problem (see
also Galmarini and Potempski 2012), i.e. find the function M* such that

m∑
j�1

∥∥M∗ − Mj
∥∥
t,τ � inf

M

m∑
j�1

∥∥M − Mj
∥∥
t,τ ,

where {Mj} is the set of the (interpolation) functions representing the results frommmodels.
The quantity

∑m
j�1

∥∥M∗ − Mj
∥∥
t,τ can be considered as a total spread of the ensem-

ble—hence logically the functionM*,which is supposed to reflect the behaviour of the whole
ensemble, should be chosen to minimize this spread. It should be stressed that this does not
necessarily imply that the value ‖M∗ − O‖t,τ minimizes the error between the ensemble
representative M* and the measurement. The function M* is that which best characterizes
the full set of ensemble models based on this measure.

The relation between the ensemble spread and the error between the measurement and
ensemble representative can be expressed using the following inequalities,∥∥M∗ − O

∥∥
t,τ ≤ ∥∥M∗ − Mj

∥∥
t,τ +

∥∥Mj − O
∥∥
t,τ

, for j � 1, . . . ,m, (7)

which are summed to yield

∥∥M∗ − O
∥∥
t,τ ≤ 1

m

m∑
j�1

∥∥M∗ − Mj
∥∥
t,τ +

1

m

m∑
j�1

∥∥Mj − O
∥∥
t,τ . (8)

The above relation shows that the error between ensemble representative and the measure-
ments can be estimated by the average spread and the average error between the ensemble
models and observations. The meaning of this relation is analogous to the accuracy-diversity
equation applied in many various contexts, such as in the fields of machine learning and
neural networks (see Krogh and Vedelsby 1995) or Optiz and Shavlik 1996), where this type
of expression is specifically used for the ensemble mean and mean squared error. The norms
we use here are related rather to the time-integrated concentration (or doses) than to the
concentration itself.
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As the second term in (8) is independent of the chosen ensemble representative, it is
justified that the function minimizing the first term of the right-hand side (i.e. the average
spread) should be taken as M*. To prove that the median function is the solution of the
minimization problem posed above, let us first define the median function formally,

Med(t) �

⎧⎪⎪⎨
⎪⎪⎩

M[m
2

]
+1(t) if m is odd

M[m
2

](t) + M[m
2

]
+1(t)

2
if m is even

(9)

where [x] indicates the highest integer number<x (in fact, any value between M[m
2

]+M[m
2

]
+1

can be chosen for an even number of models).
We need to show that for any functionM, we have

m∑
j�1

∥∥Med − Mj
∥∥
t,τ ≤

m∑
j�1

∥∥M − Mj
∥∥
t,τ , (10)

and since

m∑
j�1

∥∥M − Mj
∥∥
t,τ �

m∑
j�1

t∫

t−τ

|M(t) − Mj (t)|dt �
t∫

t−τ

m∑
j�1

∣∣M(t) − Mj (t)
∣∣dt, (11)

it is sufficient to show that the sum
∑m

j�1

∣∣M(t) − Mj (t)
∣∣ for each point t is minimized by the

median. Without loss of generality, we assume that the values Mj(t) are in ascending order,
i.e., Mj(t)≤Mj+1(t) for any fixed point t. Obviously, for any value v outside the interval
[M1(t), Mm(t)], we have

∑m
j�1

∣∣Med(t) − Mj (t)
∣∣ ≤ ∑m

j�1

∣∣v − Mj (t)
∣∣. Hence, suppose

that v ∈ [Mk, Mk+1] for some k, and assume that k ≤ [m
2

]
, then

∑m
j�1

∣∣Med(t) − Mj (t)
∣∣ �∑[m/2]

j�1

(
Mm− j+1(t) − Mj (t)

)
, so that for the value v ∈ [Mk, Mk+1], we have

m∑
j�1

∣∣v − Mj (t)
∣∣ �

k∑
j�1

(
Mm− j+1(t) − Mj (t)

)
+

[m/2]∑
j�k+1

[(
Mj (t) − v

)
+ (Mm− j+1(t) − v)

]

�
k∑
j�1

(
Mm− j+1(t) − Mj (t)

)
+

[m/2]∑
j�k+1

[(
Mm− j+1(t) − Mj (t)

)
+ 2(Mj (t) − v)

] .

(12)

As the last term in the second sum is always positive, then∑m
j�1

∣∣Med(t) − Mj (t)
∣∣ ≤ ∑m

j�1

∣∣v − Mj (t)
∣∣. The case k > m/2 can be treated analo-

gously, and, as such, consideration is valid for any time t and v, which proves (10).
The main purpose of using an ensemble approach concerns the problem of model pre-

dictability. It is expected that the average of the ensemble represents the most probable
realization of physical processes, while the spread is related to the inherent uncertainty, and
shows the range of other possible realizations. Having this inmind,we assume that the ensem-
ble spread is an indicator representing the uncertainty of the results. In order to examine this
quantitatively, we use the following quantity,

∑m
j�1

∥∥M∗ − Mj
∥∥
t,τ

‖M∗‖t,τ
(13)
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or the average spread, to observe the degree of discrepancy between models in comparison
with the average concentration determined by the ensemble (according to the above consid-
eration, the median is a good choice forM*). These indicators depend on the problem under
consideration—in principle, if the spread is a small percentage of the concentration values,
then there is quite good agreement among models, which suggests low uncertainty. In con-
trast, several reasons can cause a higher spread, such as inherent uncertainties associated with
the problem, limitations of the models, and various difficulties in modelling physical phe-
nomena. In the case when measurements are additionally available, taking into account the
inequality (8), one can check the relation between the ensemble spread

∑m
j�1

∥∥M∗ − Mj
∥∥
t,τ

and the ensemble error
∑m

j�1

∥∥Mj − O
∥∥
t,τ or ‖M∗ − O‖t,τ , representing the error of the

whole ensemble, where the median function can be taken asM*.
Three cases can be considered:

– the ensemble spread is small in comparisonwith the ensemble error: this shows the situation
when there are probably more fundamental difficulties with modelling the problem;

– the ensemble spread and the ensemble error are comparable: this is the case when similar
agreement iswithin the ensemble andwith themeasurements; hence, the uncertainty should
not be too high;

– the ensemble spread is high in comparison with the ensemble error: this indicates high
uncertainty, which could be caused by different factors, as already mentioned.

We now present a few additional remarks concerning the representation of the ensem-
ble results. If we are interested in the root-mean-square error expressed by the norm

in L2 space, i.e. ‖M − O‖t,τ �
(∫ t

t−τ
|M(t) − O(t)|2dt

)1/2
and, consequently, wish to

find the representative function by looking for the solution of the optimization problem,√∑m
j�1

∥∥M∗ − Mj
∥∥2
t,τ � infM

√∑m
j�1

∥∥M − Mj
∥∥2
t,τ , it can then be shown that the mean

function Mean(t) � 1
m

∑m
j�1 Mj (t) should be the representative function for the whole

ensemble. The simplest formal proof can be made by finding the derivative of the func-
tion (in some space function) F(M) � ∫ t

t−τ

∑m
j�1

(
M(t) − Mj (t)

)2
dt using the Gateaux

derivative,

dF(M + hP)

dh
|h�0�

∫ t

t−τ

m∑
j�1

d

dh

(
M(t) + hP(t) − Mj (t)

)2|h�0dt �

t∫

t−τ

2
∑m

j�1

(
M(t) − Mj (t)

)
P(t)dt � 0. (14)

As this equation should be valid for any function P(t), we immediately obtain∑m
j�1

(
M(t) − Mj (t)

) � 0, which produces the relation for the mean. A general framework
for finding the optimal combination of ensembles can be found in Potempski and Galmarini
(2009).

Similarly, one can use the supremum norm (Chebyshev norm) for the error, i.e.
‖M − O‖t,τ � supz∈[t−τ ,t]|M(z) − O(z)| and, consequently, consider the optimization
problem for this norm. It is easy to check that the midpoint function
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Mid(t) �
min
j

M j (t) + max
j

M j (t)

2
(15)

is the solution of this minimization problem.
Summarizing all these points, different representations of the ensemble are related to a

differentmetric applied formeasuring the spread of the ensemble, which, due to the properties
of these metrics, can be expressed in the following ways:

a. Themidpointwith the corresponding spread (expressed as supz∈[t−τ ,t]

∣∣Mid(z) − Mj (z)
∣∣)

defines the rectangular region containing all model values. This spread can be considered
as the worst-case scenario as it shows the maximum discrepancy between the ensemble
representative and the model, and, hence, is the most sensitive to the outliers.

b. The mean value with its spread
√∑m

j�1

∥∥Mean − Mj
∥∥2
t,τ defines the circle containing

the model values, which would correspond to the minimization of the variance if the
model results were treated as random variables, and, hence, in some sense, gives the
value loaded with the smallest uncertainty. This also corresponds to the fact that the
mean squared error for the ensemble mean is less than that for any ensemble member (a
more exhaustive explanation is given in Rougier 2016). In relation to climate models, see
Christiansen (2018), where the detailed investigations are based on the assumptions that
the models have a normal distribution with different variances. Concerning the problem
of dimensionality described in Christiansen (2018), one can also mention Riccio et al.
(2012), where the problem of the reduction of data complexity has been investigated to
deal with this issue.

c. Themedian is the ensemble representative being possibly the least sensitive to the outliers.
A general property of the median is such that it minimizes the mean absolute error
associated with the random variable, i.e., it corresponds in some way to the bias.

However, there are also other possible less sensitive ensemble representatives than the
mean, such as the winsorized mean or the trimmed mean. In both cases, the first step is
to choose the limit percentile and either replace the outliers defined by this percentile by
the nearest values within the percentile (for the winsorized mean) or simply remove them
(for the trimmed mean) before calculating the mean. However, while this approach needs
the definition of the limit percentile that, in general, is case dependent, the method can
nonetheless be useful as a reasonable estimator if properly applied. The winsorized mean
can also be presented in the form based on the notion of norms, but with a specific weighted
norm that depends on the chosen percentile.

4 Example for the UDINEE Exercise

Here, a simple example of the application of the analysis method described above is demon-
strated for the UDINEE exercise, using data from the second puff release of IOP4 (IOP –
intensive operating period: time horizon of puff release) at sensor location L11, the fourth
puff of IOP6 at station L15, and the first and second releases of IOP9 at the stations L05 and
L17, respectively (see Fig. 5, and see Hernández-Ceballos et al. (2018a, b) for a full descrip-
tion of the UDINEE project). This selection was made because of the relatively good quality
of the measurements. The main peaks are observed in the following periods: 160–180 s for
IOP4, 110–180 s for IOP6, 330–370 s for the first puff of IOP9, and 210–320 s for the second
puff of IOP9. Data are available from five models in the first two cases, and from six models
in the last two cases.
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Fig. 6 Indicator values Rτ (t) for, a τ �20 s, and b τ �30 s for IOP 4, puff 2, station L11

First we present in Fig. 6 the values of the index Rτ (t) for τ �20 s and τ �30 s in
consecutive timesteps for the five models, the mean and median for IOP4 (due to the high
values, logarithmic values of concentration have been used in Fig. 6). Both values of τ give a
decrease in the values of the index Rτ (t) starting at about 150 s, with higher values observed
for several models starting from 600 s, illustrating that the choice of τ is important—a sharp
peak for model 2 at time 100 s appears only in Fig. 6a for the shorter interval time τ �20 s
(model 2 also produces two zero values from 1000–1200 s for τ �20 s).

Values ofRτ (t) for τ �30 s are presented in Fig. 7 for IOP6 and two puffs of IOP9, showing
the common feature that, in the peak period, the values of Rτ (t) for all models improves (i.e.
closer to one), but outside the peak periods, there are models when this value is reduced. In
Fig. 8, t→ (Rτ (t), ψτ (t)) curves for IOP4 (corresponding to Fig. 6b) are shown for times
up to 720 s, illustrating that most of the values are located on the right-hand side of the
diagram, which corresponds in general to model overprediction. Restricting the time horizon
to the interval from 130–230 s in Fig. 9, corresponding to the time of peak concentration, we
demonstrate that the curves for τ �10 s have a better time resolution.
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Fig. 7 Indicator values Rτ (t) for τ �30 s: a IOP6, puff 6, station L15; b IOP9, puff 1, station L5; c IOP9, puff
2, station L17

From these plots, one concludes that model results are closer to the measurements in the
time frame corresponding to the peak time than in the other time periods. In general, the
median model better characterizes the whole ensemble than the mean model, which is much
more sensitive to the peculiar values of a single model. Similar diagrams are presented in
Fig. 10 for IOP6, and two puff releases of IOP9 (for τ �10 s), illustrating the median as
better representing the ensemble than the mean. An extreme case can be observed for IOP6
(Fig. 10a) when model 2 forces the mean to completely overpredict the concentration.
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Fig. 8 The t→ (Rτ (t), ψτ (t)) curves for τ �30 s for IOP 4, puff 2, station L11

Fig. 9 The t→ (Rτ (t), ψτ (t)) curves for IOP 4, puff 2, station L11 from 130–230 s showing the five models
in the left column: (a) and (c), and the mean and median models in the right column: (b) and (d); τ �30 s –
graphs (a) and (b), τ �10 s –plots (c) and (d)

A cumulative column diagram enables a detailed analysis of the behaviour of the models,
for which Fig. 11 shows overprediction and underprediction in consecutive timesteps for
the integration time τ �20 s for five models (see the diagram for the precise values of
N+

τ (t), N−
τ (t)). The mean and median of the ensemble for IOP4, IOP6, and two puffs of

IOP9 are presented in Fig. 12.
Themeanmodel generally gives higher values than themedianmodel,which is particularly

distinct for IOP6, and is explained by the deterioration of the mean by model 2 (see Fig. 10).
Interestingly, at the times of peak concentration,more underprediction is observed.Asmodels
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Fig. 10 The t→ (Rτ (t), ψτ (t)) curves for IOP6 4, puff 4, station L11 (a) and (b); IOP9, puff 1, station L5 (c)
and (d); IOP9, puff 2, station L17 (e) and (f). Presented are the ensemble members in the left column (a), (c),
(e), and the mean and median in the right column (b), (d), (f) for τ �10 s (IOP time periods as for Fig. 7)

have difficulties in timing the exact peak, if the integrated values are considered (doses), the
models better predict the higher values (which, in principle, is generally true), and the results
are more dispersed in time. The reason for such behaviour may be because of difficulties
in modelling very local phenomena, and the usage of parametrizations based on averaged
values in both time and space. As already mentioned, another problem is related to the point
measurements; more adequate would be to compare the model results with measurements
from devices able to perform area scans.

Finally for IOP4 and for IOP6, Fig. 13 compares the spread with the median and the error
of the ensemble (expressed as the error between the observation and median) in terms of
the ratios between the respective quantities, illustrating that the spread is generally high, and
usually the better agreement between the models is in the time interval related to the peak
period; the spread is also higher in comparison with the ensemble error (again the smallest
spread is in the peak period). In contrast, the spread may also depend on the value of the
concentration—if the peak values are not high and sharp enough, the impact of noise can
usually be observed. In general, this confirms the previous finding that the ensemble behaves
better in the peak interval than in other periods.

While this simple analysis cannot be treated as representative of the results of the whole
UDINEE modelling exercise, it does give indications relating to the behaviour of the ensem-
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Fig. 11 Cumulative column diagram showing the overprediction and underprediction for five models for the
case IOP4

ble, and illustrates one of the possible ways for performing such an analysis, with a valuable
feature being the possibility of using various integration intervals in a unified way, while
observing the variability in time. In most presentations, global indicators are used when
sometimes it is difficult to catch some nuances.

5 Conclusions

Many different indicators can be used for the analysis and presentation of high-resolution
results of dispersion simulations, including the model ensemble. A general concept has
been elaborated here based on typical mathematical notions. The methodology is unified
in the sense that it can be applied for different degrees of accuracy, which can be defined
by changing simple parameters, such as the integration time and the time horizon of the
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Fig. 12 Cumulative columndiagram showing the overprediction and underprediction for themean (left column)
and median (right column) for cases IOP4 station L11 (a), (b), IOP6 station L16 (c), (d) and two puffs of
IOP9 stations L05 and L17, respectively (e), (f) and (g), (h)

analysis, with the proper selection of the period of the integrated concentration playing an
important role. However, in general, the method enables analysis of the ensemble results
by taking into account the variability in time of the required precision. Simple theoretical
considerations have shown that the median model can be treated as representative of the
ensemble for this type of analysis. The multi-model ensemble approach gives additional
information related to the uncertainty of the simulation results, while finding areas requiring
further model improvement. Application of the presented method to selected cases from the
UDINEE dispersion-modelling exercise reveals that, although the analysis cannot be treated
as representative for all cases, the method describes the typical behaviour of the ensemble
fairly well, with a quite large spread of model predicted concentrations in general, and better
agreement in the time window related to the measured peak concentration. The proposed
method may also be applied to other types of ensembles, such as those built by perturbing
the initial parameters, and can be used in sensitivity studies. The sensitivity analysis for each
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model can be very useful in the construction of an optimal ensemble (see Potempski and
Galmarini 2009).

For this type of experiment, it would generally be better if the observations were a continu-
ous function in time and space, resulting from, for example, a very dense network of sensors
combined with interpolation based on geospatial techniques, which can also give quite a
good estimation of the measurement uncertainties, or devices scanning the concentration
over some area.
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