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Abstract The problem of boundary conditions for the variances and covariances of scalar
quantities (e.g., temperature and humidity) at the underlying surface is considered. If the
surface is treated as horizontally homogeneous, Monin–Obukhov similarity suggests the
Neumann boundary conditions that set the surface fluxes of scalar variances and covariances
to zero. Over heterogeneous surfaces, these boundary conditions are not a viable choice
since the spatial variability of various surface and soil characteristics, such as the ground
fluxes of heat and moisture and the surface radiation balance, is not accounted for. Boundary
conditions are developed that are consistentwith the tile approach used to compute scalar (and
momentum) fluxes over heterogeneous surfaces. To this end, the third-order transport terms
(fluxes of variances) are examined analytically using a triple decomposition of fluctuating
velocity and scalars into the grid-box mean, the fluctuation of tile-mean quantity about the
grid-boxmean, and the sub-tile fluctuation. The effect of the proposed boundary conditions on
mixing in an archetypical stably-stratified boundary layer is illustrated with a single-column
numerical experiment. The proposed boundary conditions should be applied in atmospheric
models that utilize turbulence parametrization schemes with transport equations for scalar
variances and covariances including the third-order turbulent transport (diffusion) terms.

Keywords Scalar variances and covariances · Surface boundary conditions · Tile approach ·
Turbulence parametrization scheme

1 Introduction

Advanced turbulence parametrization schemes that carry transport equations (with due regard
for the third-order turbulent transport terms) not only for the turbulence kinetic energy (TKE)
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but also for the variances and covariances of scalar quantities (e.g., temperature and humid-
ity) attract increasing attention in geophysical applications, including numerical weather
prediction (NWP) and climate modelling. The schemes developed by Mellor and Yamada
(1974, their level-3 closure), Kenjereš and Hanjalić (2002), Nakanishi and Niino (2004), and
Mironov and Machulskaya (2017) are such examples. These schemes are advantageous in
many respects over one-equation TKE schemes and over more simple algebraic schemes.
Recall that one-equation schemes utilize the transport equation for the TKE,whereas all other
second-moment equations (i.e., the equations for the Reynolds stress and for the fluxes, vari-
ances and covariances of scalar quantities) are reduced to diagnostic expressions byneglecting
the time-rate-of-change, advection, and third-order transport terms. Within the framework
of the algebraic schemes, all second-moment equations, including the TKE equation, are
truncated to the diagnostic expressions. It is worth noting that the simplified treatment of
scalar (co)variances leads to down-gradient formulations of scalar fluxes, although the scalar
(co)variances per se may not be used explicitly by the host atmospheric model. Apart from a
consistent handling of counter-gradient fluxes of scalars (see discussion inMironov 2009) the
advantages of turbulence schemes with the scalar (co)variance transport equations include
a more coherent treatment of kinetic and potential energy of the flow, and an improved
representation of fractional cloudiness within the framework of statistical cloud schemes
(Machulskaya and Mironov 2013).

Transport equations for the scalar variances and covariances require appropriate boundary
conditions at the underlying surface. The present contribution addresses the problemof setting
boundary conditions for scalar (co)variances at heterogeneous surfaces. A proper account of
the surface heterogeneity effects, including physically-sound boundary conditions, is crucial
for describing various important features of atmospheric flows. Secondary circulations in
the convective boundary layer (e.g., Lynn et al. 1995) and enhanced vertical mixing in the
stably-stratified boundary layer over heterogeneous surfaces (e.g., Stoll and Porté-Agel 2009;
Mironov and Sullivan 2016) are illustrative examples.

If the grid-box of an atmospheric model adjacent to the underlying surface is treated
as horizontally homogeneous (although it may be heterogeneous in reality), the Neumann
boundary conditions that set the surface fluxes of scalar (co)variances to zero are appropriate.
These boundary conditions are compatible with the surface-layerMonin–Obukhov similarity
relationships. If, however, the surface heterogeneity is taken into account and a tile approach is
used to compute the grid-boxmean surface fluxes of mean quantities, the issue becomesmore
tricky.Within the frameworkof the tile approach, the surfacegrid boxof an atmosphericmodel
is divided into a number of tiles that differ in terms of various surface and soil characteristics,
e.g., land-cover type and soil properties. The fluxes of scalar quantities (and of momentum)
are computed for individual tiles, and the grid-boxmean fluxes are then found as the weighted
mean of the tile fluxes using the tile fractional areas as the weights. In the present paper, we
propose the surface boundary conditions for the variances and covariances of scalar quantities
that are consistent with the tile approach.

2 Transport Equations for Scalar (Co)Variances

Turbulence parametrization schemes used in atmospheric models are formulated in terms of
thermodynamic variables that are approximately conserved in the condensation and evapo-
ration processes. Herein, we use the total water specific humidity qt = q + ql and the liquid
water potential temperature θl = θ − (θ/T )

(
Lv/cp

)
ql as moist quasi-conservative vari-
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Surface Boundary Conditions for Scalar (Co)Variances 141

ables. Here, q is the specific humidity (the mass of water vapour per unit mass of moist air),
ql is the liquid water specific humidity (the mass of cloud water per unit mass of moist air),
θ is the potential temperature, T is the absolute temperature, Lv is the heat of vaporization,
and cp is the specific heat of air at constant pressure. In unsaturated conditions (ql = 0), qt
and θl reduce to the dry variables q and θ , respectively. In what follows, qt and θl are also
referred to as simply the humidity and temperature, respectively.

Within the framework of the so-called boundary-layer approximation (where all horizontal
derivatives are neglected and the grid-boxmean vertical velocity is zero in the second-moment
equations but not in the equations formean fields), the transport equation for the temperature–
humidity covariance reads

∂

∂t
〈θ ′

l q
′
t 〉 + ∂

∂z
〈w′θ ′

l q
′
t 〉 = −〈w′q ′

t 〉
∂〈θl〉
∂z

− 〈w′θ ′
l 〉

∂〈qt 〉
∂z

− 2εθq , (1)

where t is time, z is the height above the underlying surface, w is the vertical velocity, and
εθq is the dissipation rate of

〈
θ ′
l q

′
t

〉
. The angle brackets denote (grid-box) mean quantities,

and a prime denotes a fluctuation about the mean. Replacing qt with θl (θl with qt ) in Eq. 1,
we obtain the temperature-variance (humidity-variance) equation.

Within the framework of the algebraic and one-equation TKE schemes, the left-hand
side (l.h.s.) of Eq. 1 is neglected. Then, parametrizing the temperature–humidity covariance
dissipation rate in terms of the dissipation time scale τθq (which is usually set proportional
to the TKE dissipation time scale), i.e., εθq = 〈

θ ′
l q

′
t

〉
/τθq , one obtains an explicit algebraic

expression for
〈
θ ′
l q

′
t

〉
. If the l.h.s. of Eq. 1 is retained, a parametrization of the third-order

term 〈w′θ ′
l q

′
t 〉 (flux of temperature–humidity covariance) is required, the simplest of which

is the down-gradient diffusion formulation
〈
w′θ ′

l q
′
t

〉 = −Kθq∂
〈
θ ′
l q

′
t

〉
/∂z, where Kθq is the

eddy diffusivity with respect to
〈
θ ′
l q

′
t

〉
(commonly expressed in terms of the TKE e and the

turbulence time scale τ or length scale l, Kθq ∝ τe ∝ le1/2). If the surface grid box of an
atmospheric model is treated as horizontally homogeneous, a zero third-order flux condition
is appropriate,

〈w′θ ′
l q

′
t 〉 = 0 at z = 0, (2)

or −Kθq∂
〈
θ ′
l q

′
t

〉
/∂z = 0 when the down-gradient formulation of the third-order moment is

used. As stated above, Eq. 2 is compatible with the surface-layer Monin–Obukhov similarity
relationships. If, however, the subgrid-scale (SGS) surface heterogeneity is taken into account,
a different boundary condition is required.

3 Tile Approach

A tile approach is often used in atmospheric models to (approximately) account for the SGS
heterogeneity of the underlying surface (e.g., Avissar and Pielke 1989; Moene and Dam
2014). Consider the following triple decomposition (e.g., Avissar and Chen 1993),

f = 〈
f
〉 + f

′′ + f s, (3)

where f is a generic variable. As in the previous section, the angle brackets denote the
quantity averaged over a grid box of a host model, an overbar denotes a mean over a tile, and
a double prime denotes a fluctuation of a tile mean quantity about a grid-box mean quantity.

The superscript “s” denotes a sub-tile fluctuation. By construction,
〈
f
′′〉 = 0 and f s = 0, i.e.,

the grid-box mean of the inter-tile fluctuations and the tile-mean of the sub-tile fluctuations
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142 E. Machulskaya, D. Mironov

Fig. 1 A sketch illustrating triple decomposition given by Eq. 3

are zero. The relation between f
′′
, f s and the single-primed variables f ′ introduced in the

previous section, that is f ′ = f
′′ + f s , is illustrated in Fig. 1. Using (3), we obtain the

following expression for the grid-box mean vertical flux of f ,

〈
w′ f ′〉 =

〈(
w′′ + ws

) (
f
′′ + f s

)〉
=

〈
w′′ f ′′〉 + 〈

ws f s
〉 = 〈

ws f s
〉
, (4)

where the last equality follows from the fact that w = 0 at the surface. The grid-box mean
vertical flux of f is the result of averaging of fluxes over individual tiles. In practice, the
weighted mean is used, where the weights are equal to the fractional areas of the various
tiles.

Transport equations for mean scalar quantities contain the divergence of second-order
moments, i.e., fluxes of mean quantities. Likewise, transport equations for second-order
moments (scalar variances and covariances) contain the divergence of third-order moments,
i.e., fluxes of variances and covariances. If a tile approach is used to account for the effect
of surface heterogeneity on the surface fluxes of mean scalar quantities, it is inconsistent to
ignore the influence of heterogeneity on the surface fluxes of scalar (co)variances. In order to
communicate the available information on the surface heterogeneity to the boundary-layer
turbulence, third-order flux boundary conditions different from (2) should be used. This will
increase the consistency between various components of an atmospheric model.

4 Surface Boundary Conditions Consistent with the Tile Approach

Using Eq. 3, we obtain the following expression for the triple correlation of the vertical
velocity, w, and the two scalars, θl and qt ,

〈
w′θ ′

l q
′
t

〉 =
〈
(
w′′ + ws

) (
θl

′′ + θ sl

) (
qt ′′ + qst

)〉

=
〈
w′′θl

′′
qt

′′〉 +
〈
w′′θ sl q

s
t

〉
+

〈
θl

′′
wsqst

〉
+

〈
qt

′′wsθ sl

〉
+

〈
wsθ sl q

s
t

〉

≡
〈
w′′θl

′′
qt

′′〉 +
〈
w′′θ sl q

s
t
′′〉 +

〈
θl

′′
wsqst

′′〉 +
〈
qt

′′wsθ sl
′′〉 +

〈
wsθ sl q

s
t

〉
, (5)

where the second equality follows from the condition
〈
f
′′〉 = 0. The first two terms on the

right-hand side (r.h.s.) of Eq. 5 are zero at the surface because of the zero vertical velocity
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Surface Boundary Conditions for Scalar (Co)Variances 143

w. The last term on the r.h.s. cannot be estimated if a Monin–Obukhov-type surface-layer
parametrization scheme that neglects the third-order covariances is applied to individual tiles
(see comment below). The third and the fourth terms on the r.h.s. of Eq. 5 are zero if the
grid box of the host model is horizontally homogeneous. If the grid box is heterogeneous,
the temperature θl and humidity qt differ between the tiles and so do the temperature and
humidity fluxes, wsθ sl and wsqst . Then, the third-order velocity–scalar covariance

〈
w′θ ′

l q
′
t

〉
,

i.e., the flux of temperature–humidity covariance, is generally non-zero at the surface. The
expressions for

〈
w′θ ′2

l

〉
and

〈
w′q ′2

t

〉
are obtained from Eq. 5 by replacing qt with θl and θl

with qt , respectively.
Note a close analogy between the above analysis and the analysis ofMironov and Sullivan

(2016). They used large-eddy simulation (LES) to explore the second-moment budgets in the
stably-stratified planetary boundary layer (PBL) over thermally homogeneous and thermally
heterogeneous surfaces. Importantly, the LES-based second-moment budgets were estimated
with due regard for the SGS contributions. Taking account of the SGS contributions revealed
that the third-order velocity-scalar covariances are non-zero at the heterogeneous surfaces
and are essential for the maintenance of second-moment budgets in the heterogeneous PBL.
That finding helped explain the enhanced vertical mixing in the stably-stratified PBL over
thermally heterogeneous surfaces.

Based upon the above considerations, we propose the following surface boundary condi-
tions for the scalar variances and scalar covariance that are consistent with the tiled surface
schemes,

〈
w′θ ′2

l

〉 = 2
〈
θl

′′
wsθ sl

′′〉
,

〈
w′q ′2

t

〉 = 2
〈
qt

′′wsqst
′′〉

,

〈
w′θ ′

l q
′
t

〉 =
〈
θl

′′
wsqst

′′〉 +
〈
qt

′′wsθ sl
′′〉

. (6)

Note that Eq. 6 reduces to the zero third-order flux boundary conditions over homogeneous
surfaces, cf. Eq. 2.

We note in passing that the above considerations would make no change as to the surface
boundary condition for the TKE, even though the surface may be heterogeneous. Indeed,
replacing qt and θl in Eq. 6 with ui yields a zero third-order flux

〈
w′u′2

i

〉
at the surface

because of no-slip surface boundary condition for the velocity ui = 0.
A comment on the fidelity of Eq. 6 is in order. As the tile approach outlined above is

applied, it is tacitly assumed that the inter-tile fluctuations f
′′
(considerably) exceed the

sub-tile fluctuations f s . If f
′′ � f s , the members of Eq. 6 account for a major part of the

surface heterogeneity. There are surface types, however, whose heterogeneity is very difficult,
if possible at all, to describe by means of the conventional tile approach. Examples are forest
canopieswith their small-scale, very complex structure. For such surfaces, the last term on the
r.h.s. of Eq. 5 is large and should not be neglected. A surface-layer parametrization scheme is
then required that is capable of estimating the third-order velocity–scalar covariances. This
basic problem is beyond the scope of the present studywhose aim is to reconcile the treatment
of the third-order and the second-order fluxes within the framework of the conventional tile
approach.

The surface boundary conditions given by Eq. 6 provide an intimate coupling of the scalar
variances and covariance with many other quantities characterizing the atmosphere and the
soil. In order to illustrate this coupling, consider the moisture and heat balance equations at
the underlying surface for individual tiles. The moisture balance equation reads

PP + ρwsqst = Gq + Q, (7)
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144 E. Machulskaya, D. Mironov

where ρ is the density, Gq is the ground moisture flux at the surface, Q is the surface
run-off, and PP denotes the sum of all forms of precipitation, including (relatively slow)
sedimentation of water droplets and ice crystals. Subtracting from Eq. 7 its horizontal mean,
multiplying the result with qt ′′, and averaging horizontally, we obtain

〈
qt

′′wsqst
′′〉 = ρ−1

[〈
qt

′′Gq
′′〉 +

〈
qt

′′Q′′〉 −
〈
qt

′′PP
′′〉]

. (8)

Thefirst two terms in brackets on the r.h.s. ofEq. 8 are generally non-zero.Over heterogeneous
surfaces, the totalwater content, the groundmoisture flux and the surface run-off vary between
the tiles because of the difference in soil and/or vegetation properties. Then, the fluctuations of
the ground moisture flux and of the surface run-off are likely correlated with the fluctuations
of the total water content. As to the third term on the r.h.s., there is no good reason to assume
that rain, snow, or hail falls differently onto some tiles than onto the others. However, if the
term PP includes sedimentation of water droplets and ice crystals from fog layers and there

is fog over some tiles but not over the other tiles, then PP
′′
and the covariance

〈
qt ′′PP

′′〉
may

appear to be different from zero. Rain or snow falling through the fog layers may amplify
the influence of fog via the seeder-feeder effect (e.g., Houze 1993, and references therein).

Consideration of the heat balance of the underlying surface,

Rs + Rl + ρcpwsθ sl + ρLvwsqst = Gθ , (9)

yields the following expression,
〈
θl

′′
wsθ sl

′′〉 = (
ρcp

)−1
[〈

θl
′′
Gθ

′′〉 −
〈
θl

′′
Rs

′′〉 −
〈
θl

′′
Rl

′′〉

−Lv

(〈
θl

′′
Gq

′′〉 +
〈
θl

′′
Q

′′〉 −
〈
θl

′′
PP

′′〉)]
. (10)

Here, Gθ is the ground heat flux at the surface, and Rs and Rl are, respectively, the solar
radiation balance and the longwave radiation balance at the surface. The first three terms on
the r.h.s. of Eq. 10 are generally non-zero. The solar radiation balance varies between the tiles
because of the difference in the tile albedo, and the longwave radiation balance and the ground
heat flux vary because of the difference in temperature between the tiles. The fourth term
may also be appreciable if the surface temperature and humidity are correlated (the ground
moisture flux is to a large extent determined by the surface humidity). The magnitude of the
last two terms on the r.h.s. of Eq. 10, namely, the correlations of the surface temperature with
the run-off and with the precipitation flux, is difficult to estimate a priori. These correlations
are presumably small.

For the flux of the temperature–humidity covariance, the following expression holds,
〈
θl

′′
wsqst

′′〉 +
〈
qt

′′wsθ sl
′′〉 = (

ρcp
)−1

[〈
qt

′′Gθ
′′〉 −

〈
qt

′′Rs
′′〉 −

〈
qt

′′Rl
′′〉]

+ρ−1
[ 〈

θl
′′
Gq

′′〉 +
〈
θl

′′
Q

′′〉 −
〈
θl

′′
PP

′′〉

− Lv

cp

(〈
qt

′′Gq
′′〉 +

〈
qt

′′Q′′〉 −
〈
qt

′′PP
′′〉) ]

, (11)

where a number of terms on the r.h.s. of Eq. 11 are generally non-zero over heterogeneous
surfaces for similar reasons as discussed above.

It should be realized that, although the boundary conditions given byEq. 6 look like the flux
boundary conditions, this is not the case. The point is that the surface fluxes wsθ sl and wsqst
are not merely “prescribed” but are determined jointly with the temperature and moisture
profiles within the soil (and hence with the surface temperature and moisture). The coupling
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Surface Boundary Conditions for Scalar (Co)Variances 145

of the soil and the atmosphere is provided by the surface balance equations for heat, Eq. 9, and
moisture, Eq. 7. The surface boundary conditions given by Eqs. 6, 8, 10 and 11 are, in fact, the
so-called Robin boundary conditions, also known as the impedance boundary conditions, or
convective boundary conditions. The Robin boundary condition is a weighted combination
of Dirichlet and Neumann boundary conditions that relates the quantity in question and its
derivative normal to the boundary. This may be written symbolically as

AX + B
∂X

∂z
= C. (12)

By way of illustration consider Eq. 10, in which case X =
〈
θl

′′2〉
. Using the first member

of Eq. 6 and invoking the down-gradient diffusion formulation,

2
〈
θl

′′
wsθ sl

′′〉 = 〈
w′θ ′2

l

〉 = −Kθθ

〈
θl

′′2〉

∂z
, (13)

we obtain B = − 1
2Kθθ (Kθθ being the eddy diffusivity with respect to the temperature

variance). The surface longwave radiation balance Rl is the sum of the downward longwave
radiation flux from the atmosphere Fa and the upward longwave radiation flux from the
surface εσT 4, where ε is the surface emissivity, and σ is the Stefan-Boltzmann constant.
Linearizing T 4 about the grid-box mean temperature, neglecting sub-tile fluctuations, using
the definition of the liquid water potential temperature to express T through θl and ql , and
neglecting the pressure fluctuations (this assumption yields T/θ = 〈

T
〉
/
〈
θ
〉
), we obtain the

following expression for the fluctuation of the tile-mean longwave radiation balance about
its grid-box mean value,

Rl − 〈
Rl

〉 ≡ Rl
′′ = Fa

′′ + εσ
〈
T

〉3
(
Lv

cp
ql

′′ +
〈
T

〉

〈
θ
〉 θl

′′
)

. (14)

Multiplying Eq. 14 by θl
′′
and averaging, we obtain

〈
θl

′′
Rl

′′〉 =
〈
θl

′′
Fa

′′〉 + εσ
〈
T

〉3
(
Lv

cp

〈
θl

′′
ql

′′〉 +
〈
T

〉

〈
θ
〉
〈
θl

′′2〉
)

, (15)

where it can be seen that
〈
θl

′′
Rl

′′〉
contributes to A andC in Eq. 12. Since the ground heat flux

Gθ depends on the surface temperature, the correlation
〈
θl

′′
Gθ

′′〉
also contributes to A, and

may also contribute toC , e.g., due to inter-tile variations of the soil temperature conductivity.
The shortwave radiation balance Rs , the ground moisture flux Gq , the run-off Q, and the
precipitation flux PP do not explicitly depend on the surface temperature, so the correlations

of their inter-tile fluctuations with θl
′′
do not contain

〈
θl

′′2〉
. Hence,

〈
θl

′′
Rs

′′〉
,
〈
θl

′′
Gq

′′〉
,

〈
θl

′′
Q

′′〉
and

〈
θl

′′
PP

′′〉
contribute to C . In summary, each of the three coefficients in Eq. 12

is different from zero, suggesting that the surface boundary condition for the temperature
variance given by Eqs. 6 and 10 is indeed the Robin boundary condition.

Note finally that, in practice, either the l.h.s. or the r.h.s. of Eq. 10 can be used to specify
(compute) the boundary condition for the temperature variance (similarly for the humidity
variance, Eq. 8, and for the temperature–humidity covariance, Eq. 11). The choice depends on
the numerical approximation scheme used in the atmospheric model in question, the degree
of its implicitness, numerical stability of solutions, and the model code architecture.
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146 E. Machulskaya, D. Mironov

5 Single-Column Numerical Experiment

In order to illustrate the impact of the surface boundary conditions for the scalar (co)variances
on the boundary-layer structure and mixing intensity, a single-column numerical experiment
is performed. An idealized, dry, stably-stratified PBL set-up is used. The TKE – Scalar
Variances (TKESV) turbulence parametrization scheme (Mironov and Machulskaya 2017)
is used to describe the vertical mixing in the boundary layer. The underlying surface of the
column is divided into two tiles with different prescribed surface temperatures. Turbulent
fluxes of sensible heat and momentum at the surface are computed individually for each tile
using the Monin–Obukhov flux-profile relationships (e.g., Dyer 1974), and the tile-specific
fluxes are then averaged to provide the surface boundary conditions for the mean potential
temperature and mean wind velocity. The two tiles have equal relative weights of 1/2. For the
potential temperature variance, the Neumann boundary condition at the underlying surface
is used, see Eq. 13. The temperature-variance flux

〈
w′θ ′2

l

〉
is either set to zero (the effect of

surface heterogeneity on the temperature variance is ignored), or is computed using the first
member of Eq. 6 (the effect of surface heterogeneity is accounted for).

The following governing parameters are used in our numerical experiment (cf. Beare et al.
2006; Stoll and Porté-Agel 2009; Mironov and Sullivan 2016). The Coriolis parameter is
fc = 1.39 × 10−4 s−1, the buoyancy parameter β = g/θr is constant, with the acceleration
due to gravity g = 9.81 m2 s−1 and the reference temperature θr = 265 K. A constant
aerodynamic roughness length of z0 = 0.1 m is utilized for both temperature and velocity.
The flow is driven by a constant streamwise geostrophic velocity component Ug = 8 m s−1

(the spanwise geostrophic velocity component is zero). The initial temperature profile consists
of a mixed layer of depth 100 m and a height-constant potential temperature of 265 K and
a stably-stratified layer above, where potential temperature increases linearly at a rate of
0.01 K m−1. The initial streamwise velocity component increases linearly from zero at the
surface to Ug at the mixed-layer top and is equal to Ug aloft. The initial spanwise velocity
component is zero. Both surface tiles are initialized with the same temperature equal to the
initial temperature of the mixed layer. Then, the temperature of one tile is kept constant in
time, whereas the other tile is cooled at a rate of −1.5 K h−1 over eight hours. Following the
8-h cooling period, the runs are continued over two more hours, keeping the temperature of
both tiles constant in time. The results presented below are obtained by means of averaging
over the last two hours of simulations.

Figure 2 shows vertical profiles of potential-temperature variance, vertical potential-
temperature flux, TKE, and mean potential temperature from the runs with zero and non-zero
surface flux of the temperature variance. As seen from Fig. 2a, the temperature variance in
the run with non-zero third-order flux is larger in the lower part of the PBL as compared to
the run with zero flux. In the present simulations, the buoyancy stratification in the surface
layer is stable over the “cold” tile, but proves to be slightly convective over the “warm” tile.
The surface layer remains stably stratified in the average (mean over the two tiles) sense.
Over the cold tile, where θ

′′
< 0, the surface temperature flux is more negative than the

mean flux, hence wsθ s
′′

< 0, while over the warm tile, where θ
′′

> 0, the surface temper-
ature flux is larger than the mean flux, wsθ s

′′
> 0. As a result, θ and wsθ s are positively

correlated, leading to a positive (directed upward) third-order flux of the temperature vari-
ance. This is illustrated schematically in Fig. 3. Note that the surface layer over the warm
tile may be convective (as in our simulations), neutral, or even stable; the last possibility
is shown in Fig. 3 with the dashed line. An important point is that the flux wsθ s over the
warm tile is less negative than over the cold tile (the opposite case can also be encountered
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Surface Boundary Conditions for Scalar (Co)Variances 147

(a) (b)

(c) (d)

Fig. 2 Vertical profiles of a potential-temperature variance, b vertical potential-temperature flux, c TKE (e)
and d mean potential temperature from the runs with the zero flux of the temperature variance at the surface
(blue curves) and with the temperature-variance flux computed from the first member of Eq. 6 (red curves).
Shown are the values from the first model level upwards
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148 E. Machulskaya, D. Mironov

Fig. 3 A sketch illustrating the application of the surface boundary condition for the temperature variance
given by the first member of Eq. 6

as briefly discussed below). A positive temperature-variance flux in the run using a non-zero
temperature-variance flux computed from the first member of Eq. 6 leads to an increased
temperature variance near the surface as compared to the run with zero temperature-variance
flux.

An increase of the temperature variance in the run with non-zero third-order flux explains
the results shown in Fig. 2b–d (the chain of arguments is the same as inMironov and Sullivan
2016). Consideration of the temperature-flux budget in stably stratified flows suggests that a
downward (negative) temperature flux is generated by themean-gradient term. The buoyancy
term, represented by the temperature variance times the buoyancy parameter, generates an
upward (positive) temperature flux that partially compensates the downward flux. As the
temperature variance increases, the resulting temperature flux becomes less negative; this is
clearly seen in Fig. 2b. In a stably stratified flow, the buoyancy flux, i.e., the temperature flux
times the buoyancy parameter, is the sink term in the TKE budget. A reduced magnitude of
the buoyancy flux results in an increased TKE, Fig. 2c, which in turn leads to an enhanced
vertical mixing and in a more vertically homogeneous boundary-layer temperature, Fig. 2d.

It should be pointed out that Eq. 6 does not necessarily yield a positive (upward)
temperature-variance flux as schematized in Fig. 3. A negative (downward) temperature-
variance flux is also possible, a situation that may be encountered in strongly stable surface
layer. In a weakly or moderately stable flow, an increase of the temperature gradient in the
surface layer results in an increased magnitude of the surface temperature flux (the flux
becomes more negative), since the static stability is not large enough to significantly reduce
the vertical turbulent heat transfer. In a strongly stable surface layer, turbulence is so power-
fully suppressed by the buoyancy forces that an increase in the temperature gradient results in
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a reduced magnitude of the surface temperature flux. As a result, θ
′′

< 0 and wsθ s
′′

> 0 (the
temperature flux is less negative) over a cold tile, and θ

′′
> 0 andwsθ s

′′
< 0 (the temperature

flux is more negative) over a warm tile. Then, θ and wsθ s are negatively correlated, leading
to a negative (downward) third-order flux of the temperature variance at the surface.

Numerical experiment discussed above shows an appreciable effect of the surface bound-
ary conditions for the temperature variance on the PBL structure andmixing intensity. Results
from other numerical experiments (not shown) suggest that in many situations the effect is
small or even negligible. It should be stressed that this fact cannot be the reason for not using
Eq. 6 to specify the boundary conditions for the scalar (co)variances that are in harmony
with the tile approach. Whether the effect of non-zero surface fluxes of scalar (co)variances
is substantial or not is difficult to say a priori, let alone an increased overall consistency of
an atmospheric model that makes use of Eq. 6.

6 Conclusions

The problem of boundary conditions for the variances and covariances of scalar quantities at
the underlying surface is considered. Boundary conditions are proposed that are consistent
with the tile approach used to compute fluxes of scalar quantities (liquid water potential tem-
perature and totalwater specific humidity) over heterogeneous surfaces. The proposed surface
boundary conditions provide an intimate coupling of the scalar (co)varianceswithmany other
quantities characterizing the atmosphere and the soil, such as the spatially-heterogeneous
ground fluxes of heat and moisture and the surface radiation balance. It is shown that the pro-
posed conditions are the so-called Robin boundary conditions, also known as the impedance
boundary conditions, or convective boundary conditions. The Robin boundary conditions are
weighted combinations of Dirichlet and Neumann boundary conditions that relate the quan-
tity in question (e.g., temperature variance) and its derivative normal to the boundary. The
effect of the proposed boundary conditions onmixing in an archetypical, dry, stably-stratified
PBL is illustrated with a single-column numerical experiment.

The proposed boundary conditions should be applied in atmospheric models utilizing
the tile approach and turbulence parametrization schemes that carry transport equations for
scalar (co)variances with due regard to the third-order transport (diffusion) terms. The use
of Eq. 6 instead of simply setting the third-order scalar (co)variance fluxes at the surface
to zero makes the entire atmospheric model more consistent. The associated computational
burden is negligible. The proposed boundary conditions for scalar (co)variances are imple-
mented into the test version of the NWP model COSMO that utilizes the TKESV turbulence
parametrization scheme (Mironov and Machulskaya 2017).
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