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Abstract Wind-tunnel experiments were carried out on fully-rough boundary layers with
large roughness (δ/h ≈ 10, where h is the height of the roughness elements and δ is
the boundary-layer thickness). Twelve different surface conditions were created by using
LEGO™ bricks of uniform height. Six cases are tested for a fixed plan solidity (λP) with
variations in frontal density (λF), while the other six cases have varying λP for fixed λF. Parti-
cle image velocimetry andfloating-element drag-balancemeasurementswere performed. The
current results complement those contained in Placidi andGanapathisubramani (J FluidMech
782:541–566, 2015), extending the previous analysis to the turbulence statistics and spatial
structure. Results indicate that mean velocity profiles in defect form agree with Townsend’s
similarity hypothesis with varying λF, however, the agreement is worse for cases with varying
λP. The streamwise andwall-normal turbulent stresses, as well as the Reynolds shear stresses,
show a lack of similarity across most examined cases. This suggests that the critical height
of the roughness for which outer-layer similarity holds depends not only on the height of the
roughness, but also on the local wall morphology. A new criterion based on shelter solidity,
defined as the sheltered plan area per unit wall-parallel area, which is similar to the ‘effective
shelter area’ in Raupach and Shaw (Boundary-Layer Meteorol 22:79–90, 1982), is found to
capture the departure of the turbulence statistics from outer-layer similarity. Despite this lack
of similarity reported in the turbulence statistics, proper orthogonal decomposition analysis,
as well as two-point spatial correlations, show that some form of universal flow structure is
present, as all cases exhibit virtually identical proper orthogonal decomposition mode shapes
and correlation fields. Finally, reduced models based on proper orthogonal decomposition
reveal that the small scales of the turbulence play a significant role in assessing outer-layer
similarity.
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1 Introduction and Background

Townsend (1976) first introduced the concept of outer-layer similarity, which states that the
structure of the turbulence, if appropriately scaled, is unaffected by the surface roughness
at a sufficient distance from the wall. This hypothesis is valid provided that the Reynolds
number is sufficiently high (hUτ /ν >> 1), and that the height of the roughness is small
compared with the boundary-layer thickness, h << δ. Here,Uτ is the skin-friction velocity,
h is the height of the roughness elements, δ is the boundary-layer thickness, and ν is the
kinematic viscosity of the fluid. Outer-layer similarity implies that turbulentmotions and their
characteristic structures are independent of the wall topology, and roughness acts merely to
increase the surface stresswithout causing structural changes in the flow (Raupach 1992). The
first studies to offer experimental support of outer-layer similarity include Perry and Abell
(1977), Andreopoulos and Bradshaw (1981) and Acharya et al. (1986), who found good
agreement between scaled mean velocity-defect profiles in the outer layer over both smooth
and rough walls. Further support to outer-layer similarity in both mean velocity profiles and
turbulence quantities can be found in, e.g., Perry and Li (1990), Raupach (1992), Schultz
and Flack (2005), Wu and Christensen (2007), Volino et al. (2007), Castro (2007), Wu and
Christensen (2010), Amir and Castro (2011).

However, some researchers have questioned the validity of outer-layer similarity, stating
that roughness effects can be observed well into the outer layer (Krogstad and Antonia 1999;
Keirsbulck et al. 2002; Tachie et al. 2004; Volino et al. 2009, 2011; Lee et al. 2010). An
important factor leading to violation of outer-layer similarity also appears to be the three-
dimensionality of the roughness morphology. Keirsbulck et al. (2002), Volino et al. (2009,
2011) all reported differences in the Reynolds stresses for two-dimensional transverse bars
when compared with smooth walls. Krogstad et al. (1992) also reported a lack of outer-
layer similarity on mesh-screen rough walls, where the roughness was found to significantly
increase the wall-normal fluctuating velocity component and the second and fourth quadrant
contributions to the Reynolds shear stress.

Jimenez (2004) reviewed most of the studies on rough-wall boundary layers and sug-
gested that the agreement or violation of Townsend’s similarity hypothesis depends on the
relative height of the roughness, δ/h. Violation of outer-layer similarity appears for ‘strong
roughness’ (δ/h < 40), meaning that the typical roughness-element height exceeds a few
percent of the boundary-layer thickness. Others also drew similar conclusions, suggesting
slightly different values for the critical δ/h. Ligrani and Moffat (1986) stated that the break-
down of outer-layer similarity is to be expected when the extent of the roughness sublayer
is larger than the inner layer itself. Flack et al. (2005) argued that the important parameter
for the validity of outer-layer similarity is the ratio between the boundary-layer thickness
to the equivalent sand-grain roughness height hs (Nikuradse 1933), and suggested a critical
value of δ/hs ≥ 40 for outer-layer similarity to be valid. Wu and Christensen (2007) noted
wall similarity in both mean velocity profiles and Reynolds stresses for δ/h = 28 (< 40)
and δ/hs = 48 (> 40), offering further support to the importance of the equivalent sand-
grain roughness height formulated by Flack et al. (2005). It is important to point out that
Mejia-Alvarez and Christensen (2013), in a later study on the same roughness morphology,
found this surface to have a tendency to promote channelling of the flow in the form of
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low- and high-momentum pathways, which influence the structure of the turbulence, causing
the persistence of spanwise heterogeneity across the entire boundary layer. These secondary
flows are accentuated when the spacing of the roughness elements is roughly proportional to
the boundary-layer thickness and do not appear for cases with finer spacing (Vanderwel and
Ganapathisubramani 2015).

The rough surfaces comprised of cubes studied by Castro (2007) also represent an inter-
esting case, as these flows conform to outer-layer similarity up to δ/h ≈ 5, corresponding
to a situation in which the mean height of the roughness elements exceeds some 50% of the
boundary-layer momentum thickness θ . Amir and Castro (2011) further confirmed the valid-
ity of outer-layer similarity in the mean velocity profiles up to δ/h ≈ 5, and also reported an
onset of δ/h ≈ 6.7 for the Reynolds stresses to conform to outer-layer similarity. Numerical
simulations (Leonardi et al. 2003; Hagishima et al. 2009) over cubic roughness elements
for different patterns have shown that outer-layer similarity may apply up to δ/h ≈ 6 − 8,
which is in contrast with other studies with a much smaller roughness that apparently violate
outer-layer similarity (Bhaganagar et al. 2004; Bakken et al. 2005).

The critical ratios introduced by Jimenez (2004), Flack et al. (2005) and others seek to
find a useful roughness characterization able to predict a priori the drag generated by a
wall, based purely on the geometric characteristics of the surface morphology, which has
recently been emphasized in Zhu et al. (2016). Numerous approaches have been applied to
this problem (Moody 1944; Macdonald 1998; Grimmond and Oke 1999; Millward-Hopkins
et al. 2011, among others), but a universal solution is yet to be found, as recently pointed
out in Hong et al. (2012), Yang and Meneveau (2015) and Yang et al. (2016). Despite this,
dating back to Schlichting (1937), the roughness morphology has been often described by
two density parameters: the frontal and plan solidities. The frontal solidity λF is defined as
the total projected frontal area of the roughness elements per unit wall-parallel area, while
the plan solidity λP is the ratio between the plan area and the unit wall-parallel area (see Fig.
1 in Placidi and Ganapathisubramani 2015). When using LEGOTM blocks as roughness, the
pins characterizing the top of the bricks must be included when calculating λF, following
previous convention (Benson 2005; Padhra 2010). The roughness is classified here via the
four parameters λF, λP , δ/h and δ/hs , which have been chosen to facilitate comparisons to
previous work that use regular roughness elements, and especially that carried out with cubic
roughness elements.

Most of the previous numerical and physical experiments that systematically explored the
effect of surface morphology on the flow have in fact been carried out with cubic roughness
elements (Cheng and Castro 2002; Coceal and Belcher 2004; Kanda et al. 2004; Cheng et al.
2007; Santiago et al. 2008; Hagishima et al. 2009; Leonardi and Castro 2010 among various
others). However, given that the frontal and top faces of a cube are identical, λF ≡ λP by
definition, means that these two parameters are coupled so that the effect of each cannot be
determined independently. However, to our knowledge, only cubic roughness studies have
been able to push the bounds for the validity of outer-layer similarity down to δ/h < 10,which
suggests that cubes are a remarkable case of regular roughness for which this similarity holds.
Therefore, the upper bound for the breakdown in outer-layer similarity is not entirely clear.
It is also unclear whether the geometry and pattern of the roughness elements are important
when assessing the outer-layer similarity. To answer these questions, we performed a series
of experiments by systematically varying λF at a fixed λP and vice versa. A total of twelve
different configurations (from sparse to dense regimes) were tested with the aim of examining
the effect of (non-cubical) surface morphology on the mean velocity, turbulence statistics and
structure, and thereby addressing the validity of Townsend’s similarity hypothesis in the case
of a strong roughness (δ/h ≈ 10).
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Section 2 introduces the details of the experimental facility and the methods used, and
Sects. 3.3 and 3.4 then present the results on the validity of Townsend’s similarity hypothesis
for various mean and higher-order quantities across different surface roughness conditions.
Based on this analysis, Sect. 3.5 introduces and discusses a new criterion to assess outer-layer
similarity. Sections 3.6 and 3.7 present results on the spatial structure of the flow obtained
via proper orthogonal decomposition and the reduced-order models, respectively. Finally,
Sect. 3.8 presents velocity correlation maps, with the final remarks and conclusions drawn
in Sect. 4.

2 Experimental Details

2.1 Experimental Facility

The current experiments were carried out in the suction wind tunnel at the University of
Southampton, whose adequacy for rough wall studies has previously been demonstrated
(Reynolds and Castro 2008; Amir and Castro 2011). The tunnel working section is 4.5 m
long and its cross-section measures 0.9 m× 0.6 m. The freestream turbulence intensity in the
empty tunnel is homogenous and less than 0.3%.We refer to the streamwise, wall-normal and
spanwise directions as (x, y, z) respectively. The plane y = 0 is taken at the bottom surface
of the baseboard onto which the roughness elements were located. The mean velocities along
the three directions are denoted by the capital letters (U, V,W ), while the corresponding
fluctuating quantities are named (u′, v′, w′).

2.2 Surface Roughness Morphology

LEGO™ baseboards in combination with differently arranged LEGO™ bricks were used
to generate the different roughness configurations. The bricks have dimensions of 7.8 mm
× 7.8mm (streamwise × spanwise) and a fixed height of h = 11.4mm (including the pins
at the top), and the geometry and patterns under examination are shown in Fig. 1. A total
of twelve different patterns were tested to examine systematically the individual effects of

(a)

(b)

Fig. 1 Roughness element patterns with a varying λF at λP = constant = 0.27 and b varying λP at λF =
constant = 0.15. Dimensions are not shown to scale for ease of readability (basic square unit: 7.8 × 7.8
mm2). The flow is from left to right. The shaded red areas are further discussed in Sect. 3.5. a Frontal solidity
patterns, b plan solidity patterns
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Table 1 Experimental parameters for the variation in frontal and plan solidity

Case λF λP Ue Uτ d/h Reτ δ/h δ∗/h δ/hs y0
+

LF1 0.09 0.27 11.6 0.65 0.98 5110 10 1.67 69 10

LF2 0.12 0.27 11.6 0.73 0.59 6313 11 2.37 31 28

LF3 0.15 0.27 11.7 0.71 0.80 6140 11 2.28 36 24

LF4 0.18 0.27 11.5 0.80 0.75 6919 11 2.46 16 61

LF5 0.21 0.27 11.6 0.82 0.61 7092 11 2.81 13 77

LF6 0.24 0.27 11.6 0.81 0.73 7005 11 2.72 14 69

LP1 0.15 0.11 11.5 0.81 0.50 7642 12 3.07 12 89

LP2 0.15 0.22 11.6 0.78 0.68 6746 11 2.63 16 60

LP3 0.15 0.27 11.6 0.71 1.00 6140 11 2.46 30 29

LP4 0.15 0.33 11.5 0.67 0.91 5794 11 2.37 31 26

LP5 0.15 0.39 11.5 0.66 0.97 5189 10 2.11 39 18

LP6 0.15 0.55 11.4 0.67 0.97 5268 10 1.84 54 14

The aerodynamic parameters are calculated through a logarithmic-law fit with κ = 0.38 in the range 1.5h ≤
y ≤ 0.2δ. The data presented are from the two-dimensional dataset; Ue and Uτ are reported in m s−1

frontal and plan solidities on the structure of the turbulence. The patterns denoted LF1 to LF6
represent cases for which λF is varied at a fixed λP = 0.27, whilst the plan solidity is varied
in the cases denoted LP1 to LP6 at fixed λF = 0.15, as shown in Table 1. These different
cases were positioned around the location of the peaks in surface drag based on previous
studies (Grimmond and Oke 1999; Jimenez 2004).

2.3 Determination of Skin Friction and Aerodynamic Parameters

The drag generated by the different rough walls was directly measured via a floating-element
drag balance based on the design of Krogstad and Efros (2010). The sensing element was
placed approximately 4 m downstream along the test section, where the flow had devel-
oped over a distance of 20δ to ensure the fully-developed conditions similar to Antonia and
Luxton (1971) and Castro (2007). However, recent studies have highlighted that the flow
regains equilibrium rapidly downstream of step changes in surface roughness (Yang 2016).
This location was also selected for the particle image velocimetry (PIV) measurements dis-
cussed in Sect. 2.4. Further details on the drag-balance construction, accuracy and validation
can be found in Efros (2011), Placidi and Ganapathisubramani (2015) and Placidi (2015),
respectively, where we note here that this independent measurment of the skin friction is
much more accurate and reliable than the commonly-used logarithmic-law fitting procedures
(Acharya et al. 1986; Castro 2007; Segalini et al. 2013). The drag results are not included
here as they were extensively discussed in Placidi and Ganapathisubramani (2015). With the
measured value of Uτ , a least-squares fitting procedure was used to evaluate the zero-plane
displacement d and the roughness length y0 by

U+ = 1

κ
ln

(
y − d

y0

)
, (1)
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which is valid in the fully-rough regime; here, κ is the von Kármán constant. Since a value of
d > h would be physically meaningless in accordance with its definition in Jackson (1981),
we force the condition d ≤ h as performed by Iyengar and Farell (2001). A logarithmic layer
was assumed for 1.5h ≤ y ≤ 0.2δ consistent with Schultz and Flack (2005). The fitting
procedure was carried out with κ = 0.38, with further details and the uncertainty inherent in
this method discussed in Placidi and Ganapathisubramani (2015).

2.4 Particle Image Velocimetry

Planar (two-dimensional) and stereoscopic (three-dimensional) PIV measurements were
acquired for all cases at a freestream velocity U∞ = 11.5 m s−1 at approximately 4 m
downstream in the canopy field. For all cases, the flow was seeded with a vaporized glycol-
water solution of particles (1 μm in diameter) and illuminated by a 0.7-mm thick laser sheet
produced by a pulsed laser system (NewWaveNd: YAG) operating at 200mJ. The time delay
between laser pulses was adjusted, such that the bias error of the PIV velocity measurements
is less than 1% of the full-scale velocity (given that the subpixel determination has an uncer-
tainty of about ±0.1 pixels—see Adrian and Westerweel 2011). The overall uncertainty in
turbulence quantities was determined following Benedict and Gould (1996) to be less than 1,
8 and 10% for themean velocity, turbulence intensities, and the shear stresses, respectively, in
accordance with previous studies (Wu and Christensen 2007). For the two-dimensional case,
streamwise wall-normal planes (x, y) were acquired at the spanwise centreline of the test
section using an ImagerProLX camera (4870×3246 pixel2) equipped with Nikon 105mm
f/8 lenses. The sampling frequency (0.8 Hz) was set so that statistically uncorrelated mea-
surements were acquired for each image pair. For each run, 2000 image pairs were acquired
and processed with DaVis 8.0 software. With the resulting resolution approximately 0.7mm
× 0.7mm for all cases, vectors are spaced at half that distance (i.e. a 50% overlap). Light
reflections limited the wall-normal extent of the field-of-view for the two-dimensional mea-
surements to the flow outside the canopy layer (h < y < 1.3δ), but spanned approximately
1.8δ in the streamwise direction.

Given the severity of the surface roughness (δ/h ≈ 10), spanwise flow heterogeneity
could be present, particularly within the roughness sublayer. To investigate this feature and
to validate the two-dimensional datasets, stereoscopic PIV measurements were also carried
out in the spanwise wall-normal plane (y, z) at the same location of the planar measurements.
Two cameraswith the same specifications as the two-dimensionalmeasurementswere used to
acquire 1500 digital image pairs. Three-dimensional measurements were carried out for only
six cases: LF2, LF3, LF5 and LP2, LP4, LP5 as these represent conditions for sparse, medium
and dense regimes: refer to Placidi and Ganapathisubramani (2015) for further details. The
results presented in the following sections have been filtered to match the local resolution as
discussed in the Appendix. However, the filtered data has still a resolution comparable with
previous cross-wire and PIV-based measurements reported in the literature.

2.5 Smooth-Wall Dataset

Although primarily aimed at comparing different types of rough morphologies, results for a
smooth-wall case are also briefly discussed for the sake of completeness. Given the impor-
tance ofmatching Reτ across the rough and the smooth cases, smooth-wall data fromHutchins
et al. (2009), at Reτ ≈ 7300, are used for the comparison.

123



Turbulent Flow Over Large Roughness Elements: Effect of… 105

3 Results and Discussion

3.1 Assessing the Flow Homogeneity

It is important in these high relative roughness flows to investigate the variability of the statis-
tics across the spanwise direction for which Fig. 2 compares two- and three-dimensional PIV
results. Although only a particular case is presented for the sake of brevity, the conclusions
drawn are valid for all cases. Figure 2a shows the profiles across the different spanwise
locations (in grey), where, despite some flow heterogeneity in the roughness sublayer, very
little difference is found in the mean streamwise velocity component across the spanwise
locations in accordance with the criterion highlighted in Vanderwel and Ganapathisubra-
mani (2015). Velocity profiles obtained via two-dimensional PIV (in black) are found to be
consistent (within 2%) with three-dimensional measurements. The normal stresses and the
Reynolds shear stress for the two- and three-dimensional measurements are compared in
Fig. 2b, where the collapse of the datasets across the whole wall-normal range is very good
(particularly in the outer region), ensuring that the turbulence statistics in the outer layer
are homogenous and, hence, independent of the spanwise direction. As results from two-
dimensional PIV data are representative of the bulk flow physics, this justifies performing
most of the subsequent analysis (except when clearly stated) on the two-dimensional mea-
surements, which have a higher resolution and are better converged. The difference between
the two datasets was found to be of the same order of magnitude as the dispersive stress con-
tribution, although this discrepancy is not purely due to the latter. As is discussed in Placidi
(2015), while the dispersive contribution (Raupach and Shaw 1982) is not shown here, it
was calculated for each of the statistics following Nikora et al. (2007), and found to be
largely negligible in the outer region. Any difference greater than these dispersive contribu-
tions (or, equally, than the discrepancies in between the two- and three-dimensional datasets)
has to be considered due to the flow physics and it is not due to the spanwise location of
measurements.

Fig. 2 a Comparison of mean velocity-defect profiles across two-dimensional (black) and three-dimensional
PIV (grey) measurements. Three-dimensional PIV data are reported at each spanwise location. b Flow homo-
geneity and validation between two-dimensional (full marks) and three-dimensional (empty marks) PIV data.
The wall-normal variation of streamwise (black), wall-normal (red) turbulence intensity and Reynolds shear
stress (blue). Both two- and three-dimensional data have been averaged across the field-of-view. Only one in
every five vectors is plotted for clarity
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Fig. 3 Roughness function �U+ as a function of a the roughness Reynolds number h+, and b the equivalent
sand-grain roughness height h+

s for all rough surfaces. The dotted line represents a Nikuradse-type roughness
for uniform sand, while the solid line is the asymptote for the fully-rough regime

3.2 Assessing the Flow Regime

Early experimental studies of rough surfaces were focused on high density rough walls for
which a good representation was found to be the equivalent sand-grain roughness height hs
(Nikuradse 1933). As the debate is still open as to which ratio (δ/h or δ/hs) is critical when
assessing the validity of outer-layer similarity, we estimated both. Nikuradse’s (1933) equiv-
alent sand-grain roughness height can be related to the roughness function �U+ following
the formulation of Schlichting (1979), and, therefore, to the roughness length y0 as shown
in Castro (2007), where

�U+ = 1

κ
ln(hs

+) − 3.5 = B + 1

κ
ln

(
h+) + 1

κ
ln

( y0
h

)
, (2)

where B is the smooth-wall intercept. It should be noted that the equivalent sand-grain rough-
ness is proportional to the aerodynamic roughness length (with a constant of proportionality
that depends on the logarithmic-law constants κ and B). It was shown in Fig. 5 of Placidi and
Ganapathisubramani (2015) that, for all surfaces examined, the measured friction coefficient
C f is constant at different inflow velocities (from 11.5 to 20 m s−1) and, therefore, is inde-
pendent of the Reynolds number, thus satisfying the fully-rough condition. This conclusion
is strengthened by examining the roughness function �U+ as a function of the roughness
Reynolds number h+, where �U+ is calculated following Eq. 4 in Flack and Schultz (2010)
and is reported in Fig. 3a, togetherwith aNikuradse-type roughness function for uniform sand
(Nikuradse 1933). Here, the roughness function for all the examined rough walls appears to
be parallel (for h+ >≈ 350) to the curve for the uniform sand-grain roughness in the fully-
rough regime taken from Schultz and Myers (2003). The equivalent sand-grain roughness
height h+

s can instead be calculated using Eq. 5 of Flack and Schultz (2010), with the results
shown here in Fig. 3b. All cases clearly collapse onto the asymptote of the fully-rough regime
(Flack et al. 2012), which follows a logarithmic-linear relationship between h+

s and �U+
(Squire et al. 2016).

The sand-grain roughness values are listed in Table 11, where it is easy to verify that the
ratio δ/h is roughly constant across all cases, and assumes values in the range 10−12.As these

1 Corrigendum: we are grateful to the anonymous reviewer who pointed out an error in the calculation of the
plan solidity value for the LP6 case in Placidi and Ganapathisubramani (2015). The value previously reported
λP = 0.44 should be replaced by λP = 0.55. All the conclusions of our previous paper remain unchanged.
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values are much smaller than 40, the surfaces are to be considered as ‘strong roughnesses’
based on Jimenez’s (2004) definition. This is important as the focus here is exploring the
upper limit of outer-layer similarity. Furthermore, when the equivalent sand-grain roughness
height is calculated, this also mostly results in surfaces where δ/hs < 40. In this respect,
the current data fail to adhere to both Jimenez’s (2004) and Flack’s (2005) characterizations
of rough surfaces conforming to outer-layer similarity. However, they are within the limits
proposed by Castro (2007) based on cube-roughness data. In a recent study, Squire et al.
(2016) also indicate the validity of outer-layer similarity in wall-bounded flows, highlighting
that the variance of the streamwise velocity component across rough walls is only expected
to conform to Townsend’s similarity hypothesis for flows with Reτ > 14000. However, an
outer-layer collapse should also be guaranteed for flows at lower Reynolds number, provided
that the fully-rough condition is met. In this respect, given the findings discussed in Fig. 3,
and those previously published, profile invariance should be guaranteed for all the cases,
which, while failing to adhere to the first condition, are demonstrated to be well within the
fully-rough regime.

According to Jackson’s interpretation, it is not uncommon for cases of relatively high
roughness (δ/h ≤ 10) to result in large values of the zero-plane displacement (e.g. for the
10-mm cubes investigated by Castro 2007). This is also the case of this study, as shown in
Table 1. Furthermore, if Jackson’s hypothesis that d/h = 0 for smooth walls is correct, one
would expect that, with increasing roughness density, a situation is reached for which a new
shifted smooth-wall is created at h = d (i.e. as λF, λP → 1 then d/h → 1). Therefore, the
behaviour found here has to be expected, and is also consistent withmost of themorphometric
methods (e.g. Macdonald 1998). Having established flow homogeneity and the fact that all
surfaces are in the fully-rough regime, the turbulent statistics can be examined in detail.

3.3 Outer-Layer Similarity: Mean and Turbulence Statistics

To assess the validity of outer-layer similarity, one generally starts by examining the mean
velocity profiles, which are shown in Fig. 4a in defect form for the LF1 to LF6 cases. To
normalize the wall-normal distance, the Clauser scaling parameter is used consistent with
Castro (2007) and Amir and Castro (2011), which is defined as � = (δ∗Ue)/Uτ , where δ∗
is the displacement thickness, and Ue is the velocity at the edge of the boundary layer. The
mean velocity profiles show a good agreement across all the different cases throughout the
entire outer region. The rough-wall cases also appear to collapse fairly well onto the smooth-
wall case at a comparable Reynolds number (data from Hutchins et al. 2009). Figure 4b
shows the equivalent quantities for the plan solidity cases. Again, a reasonable agreement
across all the different cases is shown in the outer region (y − d)/� ≥ 0.1, however, the
quality of the collapse is poorer compared with the results for the frontal solidity cases,
and degrades closer to the wall. Furthermore, the rough walls also appear to divert from
their smooth counterpart, with a weakening collapse for (y − d)/� < 0.1, suggesting that
outer-layer similarity breaks down with variations in plan solidity, with the smooth wall
sitting just below the rough cases. Although not shown here for brevity, the spread in the data
across different wall-normal locations and different cases has been calculated and compared
with previous experiments reported in the literature (e.g. Amir and Castro 2011), and it was
found to be significantly larger than previously reported, indicating a breakdown of outer-
layer similarity. Similar comparisons were performed for all quantities reported here, and
the assessment of the degree of correspondence with outer-layer similarity is based on these
comparisons. Additionally, the dispersive stress contribution was also taken into account;
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Fig. 4 Mean velocity profiles in defect form as a function of a λF (λP = constant = 0.27) and b λP
(λF = constant = 0.15). Only one in every five vectors is plotted for clarity
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Fig. 5 Wall-normal variation of the streamwise component of turbulence intensity (u′u′/Uτ
2) and wall-

normal turbulence intensity (v′v′/Uτ
2) as a function of a λF (λP = constant = 0.27) and b λP (λF =

constant = 0.15). Only one in every five vectors is plotted for clarity

this was generally found to be one order of magnitude smaller than the spread in the data in
the outer region, and therefore neglected.

Figure 5a shows the streamwise and the wall-normal fluctuating velocity components for
different values of λF. The profiles of the rough-wall streamwise component of turbulent
intensity collapse reasonably well for (y − d)/� > 0.2, whilst major differences appear
closer to the wall. The LF1 and LF3 cases exhibit the largest differences and departure from
the other cases for (y − d)/� < 0.2. However, the profiles of the streamwise fluctuating
velocity component for the rough walls are significantly lower in value than those of the
smooth case for (y − d)/� < 0.15, which is partially due to the much higher friction
velocity generated by the rough walls.2 The wall-normal component of turbulence intensity
shows a better collapse (in % spread) throughout the entire range of wall-normal locations
in comparison with the previously reported percentage spread in Amir and Castro (2011),

2 It is important to comment on the apparent lack of the inner peak in the streamwise fluctuating velocity
component for the smooth wall. This is purely due to an artefact of the scaling of the ordinate axis in Fig. 5,
where the rough-wall data are only available for y ≥ h. The inner peak in smooth walls is commonly found
at a much lower wall-normal range (i.e. y+ ≈ 15), as in Hutchins et al. (2009).
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Fig. 6 Wall-normal variation of Reynolds shear stress (−u′v′/Uτ
2) as a function of a λF (λP = constant =

0.27) and b λP (λF = constant = 0.15). Only one in every five vectors is plotted for clarity

although smooth-wall data for this velocity component are not available. Figure 5b shows
the streamwise and the wall-normal fluctuating velocity components for different values of
λP. Both profiles of the streamwise and wall-normal components of the turbulence intensity
show a more evident lack of similarity across the entire wall-normal range, which confirms
the lack of similarity found in the previous studies, especially for two-dimensional roughness
elements (Volino et al. 2009) and for low values of frontal solidities (Ganapathisubramani
and Schultz 2011). The velocity fluctuations for the smooth-wall case sit just above both the
rough-wall cases in accordance with Keirsbulck et al. (2002).

To further analyze the collapse of the different rough-wall profiles, Fig. 6a, b present
the Reynolds shear stress for the different λF and λP cases, respectively. The shear stress
seems to be the most affected quantity by the roughness, where a lack of collapse throughout
the entire (y − d)/� range is shown for both λF and λP. Particularly significant is the
difference for the LP6 case, which shows much lower turbulence stresses across almost
the entire wall-normal range. It is perhaps worth discussing why the normalized Reynolds
shear-stress profiles displayed in Fig. 6 do not reach a plateau at unity, as is commonly
reported in the literature. Cheng and Castro (2002) showed that for boundary-layer flows
over staggered arrays of cubical elements, extrapolating the skin friction from Reynolds
shear-stress profiles underestimates it by ≈ 25%, for which they recommended applying
the numerical correction contained in Reynolds and Castro (2008). As our study has been
conducted in the same facility and has very similar surface morphologies (h = 10 mm) as
those in Cheng and Castro (2002), we believe that a similar correction should be applied.
This is confirmed by the fact that only after this correction is applied do the results of the total
stress method match the drag-balance results (within 5%), which raises new questions about
the validity of outer-layer similarity in previous studies that have used indirect methods to
obtain the skin friction on large roughness elements. Here, we have used a drag balance for
the estimation of Uτ to overcome this shortcoming.

3.4 Outer-Layer Similarity: Diagnostic Plot

Thus far, the topic of outer-layer similarity has been discussed according to the classical
definition, i.e. the variation of mean and fluctuating quantities with the appropriately-scaled
wall-normal distance. Recently, an alternative solution using the ‘diagnostic plot’ has been
proposed (Alfredsson and Örlü 2010; Alfredsson et al. 2011; Castro et al. 2013) to find
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Fig. 7 Diagnostic plot for the different rough surfaces as a function of a λF (λP = constant = 0.27) and b
λP (λF = constant = 0.15). The black solid line represents the fully-rough regime from Castro et al. (2013),
while the grey line is the smooth-wall limit reported by Alfredsson et al. (2011). Only one in every five vectors
is plotted for clarity

that fully-rough data scaled in diagnostic form appear to collapse in the outer layer, which
eliminates the uncertainty in determining Uτ , the actual wall-normal position and the zero-
plane displacement. Figure 7a, b presents the current data for λF and λP cases, respectively,
in the diagnostic form, where data in the fully-rough regime should collapse onto the solid
black line, which is a linear best fit from various datasets in the fully-rough regime taken
from Castro et al. (2013). The figures also show the best fit in the outer layer for smooth
walls (grey line), which is in good agreement with the smooth-wall data of Hutchins et al.
(2009). However, the collapse across the current cases is poor, with the lack of collapse more
pronounced in the λP cases (Fig. 7b), which is consistent with our findings based on classical
scaling, and is further proof of the breakdown of outer-layer similarity in these flows. Note
that our data do not collapse on the trend line for the fully-rough regime (black solid line),
but fall predominantly between the smooth and the fully-rough asymptotes; this, Castro et al.
(2013) have argued, is a common behaviour for transitionally rough flows.However, the value
for y+

0 in our dataset is significant (y+
0 > 10), and comparable to their cases that follow the

fully-rough trend lines. Moreover, the spatial resolution of our measurements is comparable
to previous measurements that show outer-layer similarity. Therefore, for these reasons, the
lack of collapse displayed by our data must be interpreted as a breakdown of outer-layer
similarity, which raises the possibility that the fully-rough asymptote in the diagnostic plot
is, in fact, dependent on other additional parameters, such as surface-roughness morphology,
δ/h, h+, δ/y0, which is a possibility recognized in Castro et al. (2013). The most significant
difference between our data and those of Castro et al. (2013) is that δ/h is consistently around
10 (compared with the much higher values for various datasets in their paper). This suggests
that the diagnostic plot (and thus its asymptotes) is more sensitive to surface parameters for
low values of δ/h. Our analysis seems to suggest that the breakdown of outer-layer similarity
depends not only on the relative height of the roughness elements (i.e. δ/h or δ/hs), but also
strongly on the local characteristics of the wall. Therefore, applying Townsend’s hypothesis
to anywall below a certain height of the roughness elements, irrespective of its characteristics,
may lead to erroneous conclusions, which is consistent with the recent suggestions of Squire
et al. (2016).

Before discussingwhat parameter governs this lack of outer-layer similarity, it is important
to consider the nature of the roughness in terms of its effect on the nearby flow. In the limit
of very dense and shallow roughness (h << δ), as in the case of closely packed sand grains,
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a good agreement with outer-layer similarity has generally been reported. However, in the
limit of very sparse roughness (e.g. when both λF and λP → 0), the flow resembles a situation
more similar to that of flow over isolated obstacles (or bluff bodies), and the universality of
the flow is bound to break down, as this is locally perturbed. Here, we consider the validity
of outer-layer similarity for flows over severe roughness for sparse to dense regimes, which
is chosen to explore the upper bound of the validity of outer-layer similarity, and to compare
with the previous studies on sparse cubes discussed in Sect. 1. Despite these conditions,
it is important to recall that, for all surfaces here, the extent of the roughness sublayer was
calculated in Placidi andGanapathisubramani (2015), with the flow found to be homogeneous
across the spanwise direction (when outside the roughness sublayer). Although in the sparse
regime, the cases examined are far from being flows over isolated obstacles.

Finally, considering the shape of the roughness used here, LEGO™ bricks are charac-
terized by pins on the top surface much smaller than the blocks, and with a characteristic
length scale one order of magnitude smaller. A similar roughness was investigated by Cole-
brook and White (1937) who found that a small background roughness superimposed on
sparse large-scale morphology can significantly modify the skin friction. However, Schultz
and Flack (2005) repeated a similar experiment concluding that ‘the addition of a secondary
roughness length scale had no effect on the Reynolds stresses throughout the entire boundary
layer, indicating that the larger-scale roughness had a dominant effect on the turbulence’.
They also noted that Colebrook and White (1937) did not have sufficient data in the fully-
rough regime, which may have led the small-scale roughness having an effect on the mean
flow. The surfaces examined here do not suffer from this limitation as they are in fully-rough
conditions. Therefore, the breakdown of outer-layer similarity should be attributed to the
large-scale roughness (i.e. the bricks) and not to the presence of the finer-scale features.

3.5 Reconciling the Lack of Outer-Layer Similarity

To further investigate parameters that are responsible for the breakdown of outer-layer sim-
ilarity, the data in Fig. 7 can be conditioned in terms of the deviation from the suggested
rough-wall asymptote in a procedure similar to that described in Hanson and Ganapathisub-
ramani (2016). The deviation is quantified by the means of the norm ‖ε‖ in between the
measured data points and the fully-rough asymptote within the range 0.6 < U/Ue < 0.9,
which is purely based on the previous collapse of the data presented in Castro et al. (2013),
with the results shown in Fig. 8. It is clear how the data show trends for both frontal and plan
solidity cases. Increasing the frontal solidity (from case LF1 to case LF6) results in a smaller
norm, i.e. a smaller deviation from the empirically defined asymptote, with the same effect
obtained instead for a decrease in plan solidity (going from case LP6 to LP1). This means
that, by adding roughness in one case (by increasing λF), we introduce turbulent fluctuations
with a self-similar character, while in the other case (by increasing λP), the associated turbu-
lent fluctuations are highly dependent on the details of the local morphology, contributing to
the breakdown of outer-layer similarity.

As it is clear from the above discussion that the deviation from outer-layer similarity could
be related to the surface morphology, it is useful to examine the possibility of correlating the
lack of similarity with a specific surface-roughness parameter. Of the different morphometric
parameters of the surface examined, the shelter solidity λS was found to be the most useful
in distinguishing the surfaces based on their deviation from outer-layer similarity, which is
defined as

λS = AT − AS

AT
, (3)
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Fig. 8 The norm ‖ε‖ of the deviation from the turbulent asymptote in Fig. 7 as a function of a λF (λP =
constant = 0.27) and b λP (λF = constant = 0.15) calculated in the range 0.6 < U/Ue < 0.9. Black dashed
lines indicate a second-order polynomial fit of the data points. The grey shaded area represents data that do
not satisfy the condition ‖ε‖ ≤ 20% as discussed in Sect. 3.5

Fig. 9 Shelter solidity λS as a function of a λF (λP = constant = 0.27) and b λP (λF = constant = 0.15).
Black dashed lines indicate a second-order polynomial fit of the data points. Grey shaded area represents data
that do not satisfy the condition λS ≤ 80%

where AT is the total plan area of a repeating unit and AS is the ‘sheltered’ plan area of the
roughness in a repeating unit. This sheltered area is identified by the red, shaded region in
Fig. 1, while the total plan area is simply the whole area comprising a repeated unit. The
sheltered plan area AS can be interpreted as the area sheltered by the roughness elements
within the repeated unit, and is very similar to the ‘effective shelter plan area’ previously
outlined in the literature. In Raupach (1992), the definition of the shelter area is based on the
wake growth of an individual roughness element. Here, we do not assumewake growth/decay,
but simply approximate the sheltered regions with straight lines (in the direction of the flow)
within the repeating unit. Consequently, AS can also be interpreted as the wetted plan area
downstream of the roughness elements within a repeated unit.

Furthermore, another distinctionwith the previous definition is that, here,wedonot include
the area occupied by the elements themselveswhen calculating the sheltered area,which helps
to eliminate some limitations of the previous definition found in Raupach (1992). Figure 9
shows the variation of λS for different λF and λP cases. It is striking how the trends found
for the deviation from the similarity asymptotes (in Fig. 8) are captured by this parameter.
For all the cases reported here, it is found that for λS ≥ 0.8, the statistics in Fig. 7 show a
high degree of deviation from outer-layer similarity. This condition is indicated by the grey,
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Fig. 10 Dependence of the a roughness function �U+, and b the quantity hs/h on the shelter solidity for
all cases. Black lines indicate a first-order polynomial and exponential fits of the data, respectively

shaded area in both figures. Therefore, any surface within this shaded region is expected to
show a significant deviation from the rough-wall asymptote suggested by Castro et al. (2013)
and, generally, result in the breakdown of outer-layer similarity. The condition λS ≥ 0.8,
which corresponds to ‖ε‖ ≥ 20% in Fig. 8, represents situations where the total sheltered
area due to the rough elements is below one-fifth of the total plan area of the repeated unit.

The above correlation does not explain the breakdown of outer-layer similarity observed
in two-dimensional spanwise roughness, such as bars/groves (Keirsbulck et al. 2002; Volino
et al. 2009, 2011). The value of λS for two-dimensional roughness depends on the pitch-
to-width (p/k) ratio of the roughness. The plan area is proportional to the pitch, while the
sheltered area (as per our definition) is given by the difference between the pitch and width
(p− k). For p > k, λS approaches zero with increasing p/k. However, if the roughness is in
the form of elongated roughness elements (i.e. p/k << 1), then the values of λS are closer
to unity again, which suggests that the lack of outer-layer similarity is likely to occur for both
large and small values of λS.

Finally, our proposed surface parameter can also be used to reconcile the variations in
surface drag. Figure 10a shows the dependence of the roughness function on λS, where a
linear relationship (inverse proportionality) is found to be representative of most of the data.
We also plot the quantity hs/h as a function of λS in Fig. 10b, where the shelter solidity seems
to adequately capture the behaviour of the normalized equivalent roughness height, which
is very similar to the relationship between hs/h and the effective slope found in previous
studies on irregular roughness (Napoli et al. 2008;Yuan and Piomelli 2014). Further studies
must address the robustness of this new parameter, and potentially calibrate it to different
geometries and less severe roughness.

3.6 Similarity of Proper Orthogonal Decomposition Modes

A snapshot-based proper orthogonal decomposition (POD) analysis on the basis of Berkooz
et al. (1993) was presented in Placidi and Ganapathisubramani (2015). As the energy con-
tained in the POD modes depends on the local spatial resolution of the measurements (see
Appendix), the current data have been filtered to match the local resolution at l+2D = 45.
The field-of-view of combined (u′, v′) data across the different cases is also matched to the
region −0.6δ < x < 0.6δ and 1.5h ≤ y ≤ δ (streamwise × wall-normal) to allow for
meaningful comparisons. Figure 11 shows the first five most energetic POD modes. While
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Fig. 11 The first five low-order POD modes for the case LF5 calculated for the combined (u′, v′) field in the
(x, y) plane. The flow is from left to right

Fig. 12 The first five low-order PODmodes for both the frontal and plan solidities calculated on the combined
(u′, v′, w′) field in the (y, z) plane for the cases LF5 and LP5 shown as the top and bottom rows, respectively.
The flow is from left to right

most of these modes were discussed in Placidi and Ganapathisubramani (2015), they are
also presented here to introduce the subsequent analysis. Placidi and Ganapathisubramani
(2015) also showed that all frontal and plan solidity cases present similar POD mode shapes
across all sparse to dense regimes, which is remarkable considering how different the wall
topologies are across the cases examined. The more quantitative POD information reported
in Placidi (2015) is omitted here for brevity.

To further comment on the similarity of PODmodes, the same technique has been applied
to the cross-plane PIV, for which the full velocity vector (u′, v′, w′) is available, with similar
boundaries to the previous case used to compute the POD modes. The results are shown in
Fig. 12 for both λF and λP, which are presented on the top and bottom rows, respectively.
Comparedwith results on the (x, y) plane (see Fig. 11), these cross-planemode shapes appear
to be generally smaller, which is not surprising given the added contribution of the (w′) field,
which is bound to leave an imprint on the structures of the PODmodes. Despite some changes
in the hierarchy of the modes (i.e. mode 1 and 2 and mode 3 and 4 between frontal and plan
solidity cases), an exceptional degree of similarity is still evident across the whole dataset.
The remaining cases (omitted here) look indistinguishable (in both size and shape) from
those presented. The mode swap could be due to the different spanwise arrangement of the
elements and the higher sensitivity of the (y, z) data to the heterogeneity within the roughness
sublayer, as further discussed in Placidi and Ganapathisubramani (2015). Alternatively, a
phase difference between the combination of the first and second modes across experiments
may also explain the discrepancy. Nevertheless, changes in frontal and plan solidities do
not seem to affect the shape of the energetic POD modes, which are found to be universal
across the different wall morphologies. This is a testimony to the spatial universality of the
turbulence structure over roughwalls. In this respect, the PODmode criteria can be considered
as a spatial variant of ‘spectral’ similarity.
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Fig. 13 Diagnostic plot for the large-scale fields reconstructed from a reduced model (i.e. 0.5E) of the
different rough surfaces as a function of a λF (λP = constant = 0.27) and b λP (λF = constant = 0.15).
The black solid line represents the fully-rough regime from Castro et al. (2013), while the grey line is the
smooth-wall limit reported by Alfredsson et al. (2011). Only one in every five vectors is plotted for clarity

3.7 Reduced-Model Similarity

To address those particularly sized structures responsible for the lack of outer-layer similarity,
POD modes can be used to bandpass filter the velocity fields to obtain a spatially-filtered
representation of the original field (Wu and Christensen 2010; Wu 2014). Bandpass-filtered
velocities are generated after reconstructing each individual fluctuating velocity field by
projecting it onto the most energetic φi−th modes containing 50% of the total turbulent
kinetic energy (Wu and Christensen 2010), which is denoted 0.5E . While the number of
modes required to reach this arbitrary limit of energy varies for the different cases, the
comparison is reasonable as it is based on the definition of POD basis.

Once the reduced model is constructed, the turbulence statistics for the large-scale con-
tributions are examined, which allows determination of the breakdown of the outer-layer
similarity due to the relative contributions of the large and small scales. The POD calculation
is applied to a region of approximately δ × δ (streamwise × wall-normal) field-of-view on
the (u′) field. Results of this procedure for the streamwise component of the fluctuations are
presented in Fig. 13, with a showing results for the variation of λF, while b concerns the λP
cases. This ‘diagnostic plot’ form is chosen to represent this information since it eliminates
the need to define an ad hoc scaling for the velocities (see discussion in Sect. 3.3), especially
an appropriate skin friction for the reduced-order models, which is not obvious and needs to
be defined. In all cases, the reduced model statistics (i.e. subscript LS) seem to show better
self-similar propertieswhen comparedwith the unfiltered data in Fig. 7. It is also interesting to
note how all cases have moved towards the smooth-wall asymptote (grey line) and collapsed
onto it for 0.6 < U/Ue < 0.85. This suggests that the small-scale turbulence generated by
the roughness (which has been filtered out) is highly sensitive to the surface morphology.
Previous studies (Hong et al. 2011) have also discussed how the small-scale turbulence can
contain a clear roughness signature across the entire wall-normal range, despite the fact that
the imprint of the roughness is reduced in the outer layer, in accordance with outer-layer
similarity. However, this is in contrast with Wu and Christensen (2010) who found that the
small scales should be insensitive to roughness effects. Further studies are required to clarify
this point.
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Fig. 14 Two-point correlations centred at y/δ = 0.4. a Ru′u′ ,b Rv′v′ and c Ru′v′ . The innermost contours
for Ru′u′ & Rv′v′ is 0.8 and contour spacing is 0.1. For Ru′v′ , the innermost contour is −0.4 and the spacing
is 0.05. Grey is used for the LF3 case, whist black is used for the LP3 case. The flow is from left to right

3.8 Two-Point Velocity Correlations Similarity

To further investigate the universality of the large-scale turbulence across rough walls,
two-point velocity correlations at a chosen wall-normal location (y = 0.4δ) are evaluated
following Ganapathisubramani et al. (2005). Figure 14a shows contours of the two-point
correlations of the streamwise component of fluctuating velocities. The two cases LF3 and
LP3 are plotted in grey and black, respectively, and superimposed to facilitate comparison.
A large forward-leaning structure of positive correlation is visible in both cases, which is
consistent with recurrent features in the instantaneous snapshots (not shown), as well as with
several previous studies (Ganapathisubramani et al. 2003, 2005; Wu and Christensen 2006;
Volino et al. 2007, 2009; Dennis and Nickels 2011). Here, the two cases are found to be
virtually indistinguishable within experimental uncertainty. The angle of inclination of these
structures was found to be approximately 15◦ ±3◦ for all cases, which is in line with previous
observations.

The two-point correlation of the wall-normal fluctuations Rv′v′ is presented in Fig. 14b,
where the correlation structure is much more compact in the streamwise direction as previ-
ously shown (Volino et al. 2009). This is not surprising given that the streamwise velocity
component depends on the advective speed of the hairpin packets, whereas the wall-normal
velocity component does not (Volino et al. 2007). Once again, the two cases show remarkable
collapse. Finally, the two-point correlation of the Reynolds shear stress Ru′v′ is presented
in Fig. 14c, where, in agreement with that reported in the literature, a backwards-leaning
structure of strong negative correlation is found whose extent is larger than the wall-normal
correlation, but smaller than the streamwise coherence. The two cases still show very good
agreement despite the fact that the experimental uncertainty in this quantity is larger.

We stress that, although the correlation maps are shown for just two cases, the findings
are consistent across all other cases, with the shapes consistent across the different roughness
morphologies, which further supports the presence of self-similarity in the spatial structure
of turbulence, despite dissimilar statistics. This is perhaps understandable due to the fact that
the large scales of the turbulence are the major contributors to the correlation structure and
lower-order POD modes, while the turbulence statistics are locally influenced by the small
scales, and thus intimately linked to the local wall topology.

4 Conclusions

Experiments were carried out on fully-rough boundary layers developed over large roughness
(δ/h ≈ 10), with twelve different surface conditions explored using LEGO™ bricks of
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uniform height. Six cases presented a fixed-plan solidity while varying the frontal density,
and a further six obtained vice versa. These contribute to a unique and extensive dataset
exploring the impact of surface morphology on flow statistics and their universality.

Mean velocity profiles in defect form conform to outer-layer similarity for different λF
cases, while the collapse degrades marginally across λP cases, which suggests that, for a
given frontal blockage, the plan arrangement of the roughness leads to the violation of outer-
layer similarity. The streamwise and wall-normal turbulent intensities, as well as Reynolds
shear stresses, show a lack of outer-layer similarity for almost all cases considered. So for
these rough surfaces with a significant relative height (δ/h ≈ 10), the flow does not follow
outer-layer similarity, particularly in higher-order quantities. This disagrees with Amir and
Castro (2011) who suggested that outer-layer similarity is present down to δ/h ≈ 7 in
cubic roughness. Therefore, the maximum relative height of the roughness elements for
which outer-layer similarity hold depends not only on the ratios δ/h or δ/hs , as previously
suggested (Jimenez 2004; Flack et al. 2005), but also on the local roughness morphology,
as well as the geometry of the individual roughness elements. A new geometric parameter
named the shelter solidity λS is proposed to correlate the lack of similarity to features of the
surface morphology. It was found that, if the sheltered area within one repeated roughness
unit is less than some 20% of its total plan area (so that λS > 0.8), then the flow over that
surface does not conform to outer-layer similarity.

Proper orthogonal decomposition (POD) analysis shows that the significantly different
rough walls exhibit virtually identical POD modes both in the (x, y) and (y, z) planes,
suggesting that, although the spatial organisation of the turbulence appears to be universal
across all rough-wall boundary layers (in accordancewith the previous literature), its strength
is modulated by the wall-local morphology. Therefore, the similarity of POD mode shapes
can be considered as a relaxed form of Townsend’s hypothesis immune from problems arising
from the inappropriate scaling of the velocity profiles. The reduced-order model statistics
derived from the POD analysis seem to suggest that the turbulence at small scales, which
can be linked to the local surface morphology, play a substantial role in the breakdown of
outer-layer similarity.

Finally, it is confirmed that the turbulence at large scales truly behaves in a universal
manner across rough walls, as two-point correlations of velocity fluctuations are shown to
be virtually indistinguishable across frontal and plan solidity cases, which corroborates this
universality.
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Fig. 15 Effect of filter size on
the cumulative energy content
E1,i versus mode number for the
LF1 case
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Table 2 Effect of filter size on fractional turbulent kinetic energy and cumulative turbulent kinetic energy
contents

Dataset Filter l+ Ei (i = 1, 2, 3, 4, 5) E1,i (i = 5, 100, 500, 1000)

LF1 No filter 28 12–7–6–4–3 32–66–84–92

LF1 3 × 3 84 14–7–5–4–3 32–69–88–95

LF1 5 × 5 140 15–7–5–4–3 33–72–91–97

LF1 7 × 7 196 15–7–5–4–3 35–75–92–97

LF1 9 × 9 252 16–7–5–4–3 36–77–94–98

LF1 11 × 11 308 16–8–6–4–3 37–79–95–99

Appendix: Effect of Spatial Resolution on the Proper Orthogonal Decom-
position Analysis

To demonstrate that the turbulent statistics, and, in particular, the results obtained via the POD
analysis depend on the local spatial resolution of the dataset, one case (LF1) has been digitally
filtered with increasingly bigger kernel size, and the POD analysis has been performed on
the filtered dataset. Results from filtered and unfiltered data are then compared. Kernel sizes
from 3×3 to 11×11 are used for this purpose, with the results of this procedure shown in
Fig. 15. The cumulative energy E as a function of the mode number is clearly shown to be
dependent on the resolution (i.e. on the kernel size). A larger amount of energy is locked
into each lower-order mode with increasing filter size. The fractional energy contribution Ei

of the i th POD mode φi to the total E is also affected by the dataset resolution as shown
in Table 2. The energy in the first mode goes from E1 = 12% for the unfiltered case to
E1 = 16% when an 11×11 filter is applied. Additionally, the cumulative contribution of
the first five modes E1,5 also varies from 32% to 37%. It is, therefore, obvious that spatial
filtering the data (hence reducing its resolution) redistributes the relative energy toward the
lower-order modes (and hence the large scales). This process occurs because the small-scale
flow features are removed by the filtering procedure, and hence, the first fewmodes represent
proportionatelymore andmore of the total energy of the flow (Pearson et al. 2013). Therefore,
when comparing statistics of the POD results across different datasets, it is important tomatch
the resolution to make appropriate comparisons.

123



Turbulent Flow Over Large Roughness Elements: Effect of… 119

References

AcharyaM,Bornstein J, EscudierMP (1986) Turbulent boundary layers on rough surfaces. Exp Fluids 4:33–47
Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge
Alfredsson HP, Örlü R (2010) The diagnostic plot—a litmus test for wall bounded turbulence data. Eur J Mech

B/Fluids 29(6):403–406
Alfredsson HP, Segalini A, Örlü R (2011) A new scaling for the streamwise turbulence intensity in wall-

bounded turbulent flows and what it tells us about the “outer” peak. Phys Fluids 23(4):041,702
Amir M, Castro IP (2011) Turbulence in rough-wall boundary layers: universality issues. Exp Fluids 51:313–

326
Andreopoulos J, Bradshaw P (1981) Measurements of turbulence structure in the boundary layer on a rough

surface. Boundary-Layer Meteorol 20:201–213
Antonia RA, Luxton RE (1971) The response of a turbulent boundary layer to a step change in surface

roughness Part 1. Smooth to rough. J Fluid Mech 48:721–761
Bakken OM, Krogstad PA, Ashrafian A, Andersson HI (2005) Reynolds number effects in the outer layer of

the turbulent flow in a channel with rough walls. Phys Fluids 17(6):065,101
Benedict LH, Gould RD (1996) Towards better uncertainty estimates for turbulence statistics. Exp Fluids

22:129–136
Benson J (2005) Boundary Layer response to a change in surface roughness. Ph.D. thesis, University of

Reading, Department of Meteorology, The University of Reading
Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent

flows. Annu Rev Fluid Mech 25:539–575
Bhaganagar K, Kim J, Coleman G (2004) Effect of roughness on wall-bounded turbulence. Flow Turbul

Combust 72:463–492
Castro IP (2007) Rough-wall boundary layers: mean flow universality. J Fluid Mech 585:469–485
Castro IP, Segalini A, Alfredsson HP (2013) Outer-layer turbulence intensities in smooth- and rough-wall

boundary layers. J Fluid Mech 727:119–131
Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 105:411–432
Cheng H, Hayden P, Robins AG, Castro IP (2007) Flow over cube arrays of different packing densities. J Wind

Eng Ind Aerodyn 95(8):715–740
Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J R Meteorol Soc

130(599):1349–1372
Colebrook CF, White CM (1937) Experiments with fluid friction in roughened pipes. Proc R Soc 161A:376–

381
Dennis DJC, Nickels TB (2011) Experimental measurement of large-scale three-dimensional structures in a

turbulent boundary layer. Part 1. Vortex packets. J Fluid Mech 673:180–217
EfrosV (2011) Scructure of turbulent boundary layer over a 2-D roughness. Ph.D. thesis, NorwegianUniversity

of Science and Technology
Flack KA, Schultz MP (2010) Review of hydraulic roughness scales in the fully rough regime. J Fluid Eng

132(4):041,203
Flack KA, Schultz MP, Shapiro TA (2005) Experimental support for Townsend’s reynolds number similarity

hypothesis on rough walls. Phys Fluids 17(3):035,102
Flack KA, Schultz MP, Rose WB (2012) The onset of roughness effects in the transitionally rough regime. Int

J Heat Fluid Flow 35:160–167
Ganapathisubramani B, SchultzMP (2011) Turbulent boundary layer structure over sparsely distributed rough-

ness. In: 8th International symposium on turbulence and shear flow phenomena, Poitiers, France August
28–30

GanapathisubramaniB, LongmireEK,Marusic I (2003)Characteristics of vortex packets in turbulent boundary
layers. J Fluid Mech 478:35–46

Ganapathisubramani B, Hutchins N, Hambleton WT, Longmire EK, Marusic I (2005) Investigation of large-
scale coherence in a turbulent boundary layer using two-point correlations. J Fluid Mech 524:57–80

Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived, from analysis of surface
form. J Appl Meteorol 38:1262–1292

Hagishima A, Tanimoto J, Nagayama K, Meno S (2009) Aerodynamic parameters of regular arrays of rect-
angular blocks with various geometries. Boundary-Layer Meteorol 132:315–337

Hanson RE, Ganapathisubramani B (2016) Development of turbulent boundary layers past a step change in
wall roughness. J Fluid Mech 795:494–523

Hong J, Katz J, Schultz MP (2011) Near-wall turbulence statistics and flow structures over three-dimensional
roughness in a turbulent channel flow. J Fluid Mech 667:1–37

123



120 M. Placidi, B. Ganapathisubramani

Hong J, Katz J, Meneveau C, Schultz MP (2012) Coherent structures and associated subgrid-scale energy
transfer in a rough-wall turbulent channel flow. J Fluid Mech 712:92–128

Hutchins N, Nickels TB, Marusic I, Chong MS (2009) Hot-wire spatial resolution issues in wall-bounded
turbulence. J Fluid Mech 635:103–136

Iyengar AKS, Farell C (2001) Experimental issues in atmospheric boundary layer simulations: roughness
length and integral length scale determination. J Wind Eng Ind Aerodyn 89:1059–1080

Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25
Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196
Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within

and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112(2):343–368
Keirsbulck L, Labraga L, Mazouz A, Tournier C (2002) Surface roughness effects on turbulent boundary layer

structures. J Fluid Eng 124:127–135
Krogstad PA, Antonia RA (1999) Surface roughness effects in turbulent boundary layers. Exp Fluids 27:450–

460
Krogstad PA, Efros V (2010) Rough wall skin friction measurements using a high resolution surface balance.

Int J Heat Fluid Flow 31(3):429–433
Krogstad PA,AntoniaRA,BrowneLW(1992)Comparison between rough and smoothwall turbulent boundary

layers. J Fluid Mech 245:599–617
Lee SH, Kim JH, Sung HJ (2010) Direct numerical simulation and PIV measurement of turbulent boundary

layer over a rod-roughened wall. In: Nickels TB (ed) IUTAM symposium on the physics of wall-bounded
turbulent flows on rough walls. Springer, Dordrecht, pp 1679–1687

Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J
Fluid Mech 651:519–539

Leonardi S, Orlandi P, Smalley RJ, Djenidi L, Antonia RA (2003) Direct numerical simulations of turbulent
channel flow with transverse square bars on one wall. J Fluid Mech 491:229–238

Ligrani PM, Moffat RJ (1986) Structure of transitionally rough and fully rough turbulent boundary layers. J
Fluid Mech 162:69–98

Macdonald RW (1998) An improved method for the estimation of surface roughness of obstacle arrays.
Boundary-Layer Meteorol 97:1857–1864

Mejia-Alvarez R, Christensen KT (2013)Wall-parallel stereo particle-image velocimetry measurements in the
roughness sublayer of turbulent flow overlying highly irregular roughness. Phys Fluids 25(11):115,109

Millward-Hopkins JT, Tomlin AS, Ma L, Ingham D, Pourkashanian M (2011) Estimating aerodynamic
parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol
141(3):467–490

Moody LF (1944) Friction factors for pipe flow. Trans ASME 66(8):671–684
Napoli E,ArmenioV,DeMarchisM (2008) The effect of the slope of irregularly distributed roughness elements

on turbulent wall-bounded flows. J Fluid Mech 613:385–394
Nikora V, McLean S, Coleman S, Pokrajac D, Walters R (2007) Double-averaging concept for rough-bed

open-channel and overland flows: theoretical background. J Hydraul Eng 133:873–883
Nikuradse J (1933) Laws of flow in rough pipes. Tech. Rep. 1292, NACA Tech. Memo
Padhra A (2010) Estimating the sensitivity of urban surface drag to building morphology. Ph.D. thesis, Uni-

versity of Reading, Department of Meteorology, University of Reading
Pearson DS, Goulart PJ, Ganapathisubramani B (2013) Turbulent separation upstream of a forward-facing

step. J Fluid Mech 724:284–304
Perry AE, Abell CJ (1977) Asymptotic similarity of turbulence structures in smooth- and rough-walled pipes.

J Fluid Mech 79:785–799
Perry AE, Li J (1990) Experimental support for the attached-eddy hypothesis in zero-pressure-gradient turbu-

lent boundary layers. J Fluid Mech 218:405–438
PlacidiM (2015)On the effect of surfacemorphology onwall turbulence. Ph.D. thesis,University of Southamp-

ton. Engineering and the Environment, University of Southampton
Placidi M, Ganapathisubramani B (2015) Effects of large roughness on aerodynamic parameters and the

roughness sublayer in turbulent boundary layers. J Fluid Mech 782:541–566
Raupach MR (1992) Drag and drag partition on rough surfaces. Boundary-Layer Meteorol 60:375–395
Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer

Meteorol 22:79–90
Reynolds RT, Castro IP (2008) Measurements in an urban-type boundary layer. Exp Fluids 45:141–156
Santiago JL, Coceal O, Martilli A, Belcher SE (2008) Variation of the sectional drag coefficient of a group of

buildings with packing density. Boundary-Layer Meteorol 128:445–457
Schlichting H (1937) Experimental investigation of the problem of surface roughness. Tech. Rep. 823, NACA

Tech. Memo

123



Turbulent Flow Over Large Roughness Elements: Effect of… 121

Schlichting H (1979) Boundary layer theory. Springer, Dordrecht
Schultz MP, Flack KA (2005) Outer layer similarity in fully rough turbulent boundary layers. Exp Fluids

38(3):328–340
Schultz MP, Myers A (2003) Comparison of three roughness function determination methods. Exp Fluids

35(4):372–379
Segalini A, Örlü R, Alfredsson HP (2013) Uncertainty analysis of the von Kármán constant. Exp Fluids

54:1460
Squire DT,Morrill-Winter C, Hutchins N, SchultzMP, Klewicki JC,Marusic I (2016) Comparison of turbulent

boundary layers over smooth and rough surfaces up to highReynolds numbers. J FluidMech 795:210–240
Tachie MF, Bergstrom DJ, Balachandar R (2004) Roughness effects on a mixing properties in open channel

turbulent boundary layers. Exp Fluids 35:338–346
Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge
Vanderwel C, Ganapathisubramani B (2015) Effects of spanwise spacing on large-scale secondary flows in

rough-wall turbulent boundary layers. J Fluid Mech 774:R2
Volino RJ, Schultz MP, Flack KA (2007) Turbulence structure in rough- and smooth-wall boundary layers. J

Fluid Mech 592:263–293
Volino RJ, Schultz MP, Flack KA (2009) Turbulence structure in a boundary layer with two-dimensional

roughness. J Fluid Mech 635:75–101
Volino RJ, Schultz MP, Flack KA (2011) Turbulence structure in boundary layers over periodic two- and

three-dimensional roughness. J Fluid Mech 676:172–190
WuY (2014) A study of energetic large-scale structures in turbulent boundary layer. Phys Fluids 26(4):045,113
WuY, Christensen KT (2006) Population trends of spanwise vortices in wall turbulence. J FluidMech 568:55–

76
Wu Y, Christensen KT (2007) Outer-layer similarity in the presence of a practical rough-wall topography.

Phys Fluids 19(8):085,108
Wu Y, Christensen KT (2010) Spatial structure of a turbulent boundary layer with irregular surface roughness.

J Fluid Mech 655:380–418
Yang XIA (2016) On the mean flow behaviour in the presence of regional-scale surface roughness heterogene-

ity. Boundary-Layer Meteorol 161(1):127–143
Yang XIA, Meneveau C (2015) Recycling inflow method for simulations of spatially evolving turbulent

boundary layers over rough surfaces. J Turbul 17(1):75–93
Yang XIA, Sadique J, Mittal R, Meneveau C (2016) Exponential roughness layer and analytical model for

turbulent boundary layer flow over rectangular-prism roughness elements. J Fluid Mech 789:127–165
Yuan J, Piomelli U (2014) Estimation and prediction of the roughness function on realistic surfaces. J Turbul

15(6):350–365
Zhu X, Lungo VG, Leonardi S, Anderson W (2016) Parametric study of urban-like topographic statistical

moments relevant to a priori modelling of bulk aerodynamic parameters. Boundary-Layer Meteorol
162:231–253

123


	Turbulent Flow Over Large Roughness Elements: Effect of Frontal and Plan Solidity on Turbulence Statistics and Structure
	Abstract
	1 Introduction and Background
	2 Experimental Details
	2.1 Experimental Facility
	2.2 Surface Roughness Morphology
	2.3 Determination of Skin Friction and Aerodynamic Parameters
	2.4 Particle Image Velocimetry
	2.5 Smooth-Wall Dataset

	3 Results and Discussion
	3.1 Assessing the Flow Homogeneity
	3.2 Assessing the Flow Regime
	3.3 Outer-Layer Similarity: Mean and Turbulence Statistics
	3.4 Outer-Layer Similarity: Diagnostic Plot
	3.5 Reconciling the Lack of Outer-Layer Similarity
	3.6 Similarity of Proper Orthogonal Decomposition Modes
	3.7 Reduced-Model Similarity
	3.8 Two-Point Velocity Correlations Similarity

	4 Conclusions
	Acknowledgements
	Appendix: Effect of Spatial Resolution on the Proper Orthogonal Decomposition Analysis
	References




