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Abstract The study of the boundary layer can be most difficult when it is in transition and
forced by a complex surface, such as an urban area. Here, a novel combination of ground-
based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming
to capture the full evolution of the urban boundary layer (UBL) fromnight-time until the fully-
developed convective phase. In contrast with the night-time stable boundary layer observed
over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for
the detection of the morning-transition and rapid-growth phases is introduced, based on the
sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied
in duration between 0.5 and 4h and the growth rate of the mixing layer during the rapid-
growth phase had a strong positive relationship with the convective velocity scale, and a
weaker, negative relationship with wind speed. Wind shear was found to be higher during
the night-time and morning-transition phases than the rapid-growth phase and the shear
production of turbulent kinetic energy near the mixing-layer top was around six times larger
than surface shear production in summer, and around 1.5 times larger in winter. In summer
under low winds, low-level jets dominated the UBL, and shear production was greater than
buoyant production during the night-time and the morning-transition phase near the mixing-
layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but
shear production dominated in the upper half of the UBL. These results imply that regional
flows such as low-level jets play an important role alongside surface forcing in determining
UBL structure and growth.
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1 Introduction

The diurnal cycle of the atmospheric boundary layer (ABL) due to surface heating exerts
strong control on the surface climate and scalar concentrations. The typical diurnal evolu-
tion of the ABL over land has been described previously (e.g. Stull 1988; Garratt 1992)
as the succession of four basic phases: (1) Formation of a shallow convective boundary
layer (CBL) near the ground; (2) Rapid growth of the CBL, up to the level of the capping
inversion; (3) Consolidation of the well-mixed CBL where the mixing height increases only
slowly and is influenced by large-scale vertical motions at the CBL top, and (4) Decay of
thermally-driven turbulence and verticalmixing followed by the formation of a shallow stable
layer close to the ground. This typical evolution is most clearly evident during clear, sunny
days.

Examination of the urban boundary layer (UBL) during transition periods has impor-
tant implications for air quality, since the timing of high emissions occurs mainly during
morning and evening traffic rush hours. For example, in a recent study that reports on
more than three years of measurements of fluxes of methane (CH4), carbon monoxide
(CO) and carbon dioxide (CO2) from eddy-covariance measurements in central London,
UK (Helfter et al. 2016) it was found that emissions increased sharply from 0600 LST
when traffic rates increase, and reached a daytime maximum at around 1200 LST. A time
lag on the order of 1h was observed in the measured fluxes between a height of 190m
and a lower height of 50m, mainly in winter, and this was attributed to reduced turbu-
lent mixing. However, modelling the boundary layer can be most difficult when it is in
transition—passing from night to day, or day to night—and when forced by a complex
surface, such as an urban area. In particular, from a pollution perspective, the mixing
height (MH) is of great importance. Mixing height is defined as the height of the layer
adjacent to the ground over which pollutants or any constituents emitted within this layer
or entrained into it become vertically dispersed by convection or mechanical turbulence
within a time scale of about an hour (Seibert et al. 2000). Therefore it determines the
volume available for pollutant dispersion through the action of turbulence. In the present
study the mixing height is identified as the depth of the turbulence layer adjacent to the
ground.

The vast majority of studies tackling morning boundary-layer development have focused
on the rapid-growth phase. Since the late 1960s numerous observational (e.g. Kaimal et al.
1976; Batchvarova and Gryning 1991) and theoretical (e.g. Pino et al. 2003; Conzemius
and Fedorovich 2006; Sorbjan 2007) studies have focused on different aspects of morning
development and the physical processes that are involved in boundary-layer growth are well
established. Thus the boundary layer begins to grow due to increasing surface heat flux, and
also entrainment, when more buoyant air from the free atmosphere is engulfed by convective
thermals and becomes part of the boundary layer (Conzemius and Fedorovich 2006). These
processes can be significantly modified by the presence of wind shear at the surface and
across the entrainment layer (Fedorovich et al. 2001).

Until recently, little attention had been given to the first stage of boundary-layer morning
development that consists of a shallow CBL that grows slowly until the nocturnal inversion
has been completely eroded, possibly with no significant interfacial mixing (Carson 1973;
Sorbjan 2004). Stull (1988) identified a stable boundary layer (SBL) capping a shallow CBL
with a depth on the order of tens to hundreds ofmetres. In one of the first studies to specifically
focus on the so-calledmorning transition, Angevine et al. (2001) defined the beginning of this
phase as the time when the surface sensible heat fluxes change sign (“cross-over” in sensible
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heat flux). The end of this phase was defined as when the mixing height first reaches 200m:
this height was selected on practical grounds (i.e. the sensors on the meteorological tower
were 200m above ground level (a.g.l.)). It was also reported that the duration of the morning
transition was reduced under enhanced wind speeds before and during themorning-transition
phase. The role of wind shear was also investigated by Lapworth (2006), based on six years
of observations.

The evolution from a nocturnal SBL through the morning transition to a fully developed
CBLwas studied by Beare (2008) using large-eddy simulation (LES). Themorning transition
was found to have features of both the CBL and SBL, and therefore it was named the “mixed
CBL-SBL” phase. It was shown that interfacial mixing did occur at the top of the boundary
layer during the morning transition, but entrainment depended on surface friction velocity
as well as convection, and the ratio of entrainment to surface heat flux was much larger than
for a fully-developed CBL, as observed by Angevine et al. (2001).

CBL evolution has been studied for homogeneous, equilibrium and stationary flows over
relatively smooth, homogeneous surfaces. The large spatial heterogeneity in roughness, heat
and moisture of an urban surface determines surface energy budget and flow characteristics.
Hence, the whole boundary layer, its stability, thermodynamic properties, and the mixing
height are affected (Christen and Vogt 2004; Barlow 2014). In particular: large roughness
elements lead to more sheared, heterogeneous flows (Barlow 2014); greater partitioning into
sensible heat flux due to a lack of moisture may lead to a deeper boundary layer (Banta
and White 2003); urban heat islands induce urban convergence zones that may be related
to convective thunderstorm initiation on the lee-side of the city (Bornstein and Lin 2000);
the heat storage in urban surfaces leads to delayed warming/cooling (Kotthaus and Grim-
mond 2014), and therefore nocturnal stable conditions generally develop later (Barlow et al.
2015).

Roth (2000) reviewed urban turbulence observations, and noted a distinct lack of measure-
ments throughout the depth of theUBL, due to practical challenges andflowcomplexity. Thus,
most studies relating to boundary-layer development are either observational and conducted
in homogeneous rural environments (e.g. Angevine et al. 2001; Garcia et al. 2002; Lapworth
2006), or idealized modelling studies (e.g. Pino et al. 2003; Conzemius and Fedorovich
2006; Sorbjan 2007; Beare 2008). Some studies have examined the seasonal variation of
the rural CBL (Schween et al. 2014), but little is known about this variation over the urban
surface, e.g., Angevine et al. (2003) found that the urban mixing height could be up to 700m
higher than the rural mixing height during the summer. Barlow et al. (2015) observed “upside
down” turbulence characteristics in the morning UBL associated with shear due to persis-
tent nocturnal low-level jets (LLJs) above. Other studies of heterogeneous boundary layers
include Lenschow et al. (1979), who showed that complex orography can shorten the duration
of the temperature transition.Wildmann et al. (2015) used airborne turbulence measurements
to study themorning transition over heterogeneous terrain and found that mixed-layer scaling
is appropriate for some parameters.

The aim of the present study is thus to test whether the evolution of the UBL from night
time until its fully-developed convective state is distinctly different to the evolution of a
rural boundary layer, using a novel combination of ground-based remote sensing and in situ
instrumentation. Particular aims include:

1. Determining (a) the duration of the morning-transition phase, and (b) the growth rate of
the UBL, and testing their dependence on various. physical variables.

2. Examining the importance of regional atmospheric flows (such as LLJs) versus surface-
driven forcing.
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3. Quantifying wind shear throughout the depth of the UBL during its evolution, and,
4. Testing whether shear or buoyant processes dominate at different heights throughout the

UBL evolution.

The seasonal dependence of the results is also examined.

2 Methods

2.1 Experimental Sites and Instrumentation

Remote and in situ instrumentation platforms were deployed in London for the ACTUAL
project (Advanced Climate Technology Urban Atmospheric Laboratory), which investi-
gated the UBL with applications to wind engineering (Barlow et al. 2011a, 2015; Lane
et al. 2013; Wood et al. 2013; Drew et al. 2013). Measurements were also used for the
ClearfLo (Clean Air for London) project (Bohnenstengel et al. 2015) with applications to
air quality. A heterodyne scanning Doppler lidar (Stream Line, Halo Photonics) was used
for observing the UBL structure (Wavelength: 1.5µm, Pulse repetition frequency: 10kHz,
Sampling Frequency: 50MHz). Integrated signals were output every 3.6 s (sampling rate of
0.286 Hz), and the return signal was resolved into 30-m range gates. Returns were spurious
in the first three range gates due to the geometry of the transmitter and receiver, there-
fore results are presented from the fourth range gate upwards (mid-point 105m above the
lidar).

The location of the instruments is shown in Fig. 1. For the period from 19May 2011 to 11
January 2012 the lidar was installed on the roof-top of Westminster City Council’s building
(WCC: 15m a.g.l., 3m above roof-top, latitude 51◦31′17′′N, longitude 0◦09′38′′W). Then
the instrument was moved to the Engineering Building at Imperial College (IC: 33m a.g.l.,
latitude 51◦29′55′′N, longitude 0◦10′29′′W) until 8 February 2012. For the period 23 July
2012 to 17 August 2012 an identical lidar was operating at North Kensington as part of
the ClearfLo project (NK: ground level, latitude 51◦31′15′′N, longitude 0◦12′49′′W) with a
gate resolution of 18m. Data used herein are drawn from all three sites, and thus intra-urban
differences are neglected: separation between sites is between 2.7 and 3.7km.

The lidars were operated in twomodes: vertical stare, and Doppler beam swinging (DBS).
In DBS mode the lidar beam was tilted in three orthogonal directions: zenith, and 15◦ off-
zenith to the north and east. The DBS scan lasted approximately 21s, and occurred at 120-s
intervals, with the lidar being in vertical stare mode for the intervening 99s, sampling every
3.6 s. In DBS mode, 30 wind-speed profiles were obtained every hour from which the mean
profile was calculated. The hourly mean attenuated backscatter and vertical profiles were
calculated from vertical stare mode data. Linear regression of hourly mean wind speeds
calculated from DBS scans against a sonic anemometer on the BT Tower gave a slope of
0.99 (Lane et al. 2013).

Two identical turbulent flux instrumentation platforms were placed at the WCC site (3m
above roof-top), and on the British Telecom (BT) Tower (191m a.g.l., latitude 51◦31′17′′W,
longitude 0◦08′20′′N). Each platform had an eddy-covariance system, a weather station
(Vaisala WXT520) and a net radiometer (Kipp and Zonen CNR4). The eddy-covariance
system consisted of an ultra-sonic anemometer (R3-50, Gill Instruments Ltd) and infra-red
gas analyzer (LI-COR 7500) and data were sampled at 20Hz. Data from the weather station
and net radiometer were sampled at 1 and 0.05Hz respectively. At the BT Tower, the sonic
anemometer was placed on a mast on the top of an open lattice scaffolding tower of height
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Fig. 1 Land cover map (based on OS MasterMap) of Central London with locations where instrumentation
was placed: North Kensington, Imperial College, British Telecom (BT) Tower and Westminster City Council
(WCC).Map of the Greater London Area is shown in the right inset. Rings are radii of 1km frommeasurement
locations. The grid is labelled as metres (easting, northing), UTM zone 31N

12.3m on top of the building to avoid flow distortion (Barlow et al. 2011). Hourly means of
turbulence variables were calculated and full processing details can be found in Wood et al.
(2010) and Barlow et al. (2015). Due to practical difficulties in releasing balloons or running
instruments such as RASS (Radio Acoustic Sounding System) added to sodar in London,
temperature profiles were not measured.

2.2 Site Characterisation

The scalar concentration source area for the WCC site was estimated from wind-tunnel
experiments to lie within a 250-m radius (Brocklehurst 2015). The mean building height
within a 250-m radius was h̄ = 21.4m with standard deviation σh = 11m (Barlow et al.
2009), meaning that the sensor height (zm) was low relative to the urban canopy, zm = 0.9h̄.
It was not permitted to raise the instrumentation to a higher height at this site, i.e. to 2–
3h̄, estimated to be within the inertial sub-layer. Around the WCC site, the buildings were
densely packed (plan area ratio of buildings λp = 0.50, frontal aspect ratio λ f = 0.19).
The vegetation fraction within the source area was λv ≈ 0.1, consisting mainly of deciduous
trees planted within streets or small park areas (Lane 2014). The scalar flux source area under
unstable conditions for the BT Tower was estimated to lie within a 2 and 22km radius of the
site (Helfter et al. 2011). The mean building height within 10km of the Tower was 8.8± 3m
(Wood et al. 2010), meaning that for the BT Tower measurement zm = 22h̄.

Given that the WCC observations are relatively low, they are likely to be in the roughness
sub-layer and therefore underestimate the inertial sub-layer fluxes: an attempt to quantify
this underestimation follows. Using experimental data from the BUBBLE campaign (Basel
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Urban Boundary Layer Experiment), Christen (2005) derived a relationship for sensible heat
flux H at height z within the roughness sub-layer as a function of heat flux in the inertial
sublayer HI S ,

H (z) = HI Se
−k for z ≤ ze. (1)

where

k = ch
(z − ze)

ze
, (2)

and ze is the effective building height, defined by the inflection point in the spatially-averaged
wind profile. For the non-uniform canopy found at the BUBBLE site, ze = 1.2h̄ and ch is
an empirically-derived coefficient (ch = 1.4). The BUBBLE site morphological parameters
are h̄ = 14.6m with standard deviation σh = 6.9m, λp = 0.54, λ f = 0.37, and λv = 0.16.

Given that the values of σh/h̄ and λp for the WCC and BUBBLE sites agree to within
10%, it is assumed that the BUBBLE coefficients can be used for the WCC site. Differences
in λ f and λv are larger, and differences in site material properties will also influence heat
exchange, but in the absence of a theoretical framework to understand height variations of heat
flux within urban canopies, Eq. 1 has been applied to the WCC and BT Tower observations.
If it is assumed that the BT Tower lies within the inertial sub-layer during the day when the
mixing height is large, such that HI S ≈ HBT , then Eq. 1 gives HWCC/HBT ≈ 0.67. During
the rapid-growth period when bothWCC and BT Tower observations lie within the CBL, the
observed median of HWCC/HBT is 0.78 for the dataset used. Differences in the source area
urban fraction for the BT Tower andWCCmight contribute further to the discrepancy but this
topic is beyond the scope of our study. This analysis suggests that HWCC does underestimate
the inertial sub-layer heat flux, but in an understandable way, and will be referred to in
Sect. 3.1.1 when interpreting sensible heat-flux behaviour.

In this paper the impact of intra-urban variability on UBL properties is not considered
and observations from all sites are combined. Two lidars were operated simultaneously at
the WCC and NK sites (Fig. 1) for the period 28 July to 17 August 2012. A good agreement
was found between the mixing height at the two sites (MHWCC = 0.87MHNK + 263m,
R = 0.87), justifying this approach, but intra-urban variability will be addressed in a future
study.

2.3 Data Categorisation and Composite Analysis

Given that wind speed and shear influence boundary-layer evolution, data were categorized
into low, medium and high wind speed classes for summer and winter. Only hours when
data from all sites and instruments were available were included. Days were categorized
according to BT Tower wind speed during a representative period. Since the sunrise time
changes significantly at this mid-latitude site (from 0443 UTC in June to 0806 UTC in
December), the averaging period 0300 to 1400 UTC was selected because it includes all
boundary-layer phases throughout the year. The values 4.5, 7.15 and 9.35ms−1 correspond
to the 25th, 50th and 75th percentiles of the distribution of the wind speed at the BT Tower
averaged between 0300 and 1400 UTC (ŪBT 0314) and were used to define low, medium and
high wind speed classes for summer and winter. For summer (June, July, August) the wind
speed classes were:

S1: ŪBT 0314 < 4.5ms−1,
S2: 4.5ms−1 < ŪBT 0314 < 7.15ms−1,
S3: 7.15ms−1 < ŪBT 0314 < 9.35ms−1.
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Table 1 Characteristics of low, medium and high wind-speed classes for each period of UBL evolution in
summer and winter

Class Days (Lidar location) Number of
observations (h)

Mean wind speed at BT (m s−1)

Night-time
UNT

Morning transition
UMT

Rapid growth
URG

Summer

S1 1 June 2011 WCC 191 4 2.7 2.6

10 June 2011 WCC 5.3 3.2 3.2

30 June 2011 WCC 3.3 4.8 2.6

3 July 2011 WCC 7.7 6.5 2.4

4 July 2011 WCC 3.8 1.7 1.7

5 July 2011 WCC 4.5 4.5 2.3

11 July 2011 WCC 3.9 3.6 2.5

15 July 2011 WCC 4.3 1.7 2.7

25 July 2011 WCC 5.9 –* 4.1

22 August 2011 WCC 4.5 4.1 2.8

S2 24 June 2011 WCC 147 6.3 6.5 4.3

27 June 2011 WCC 7.9 8.1 5.3

29 June 2011 WCC 6.9 5.5 5.5

1 July 2011 WCC 8 9.1 4.5

10 August 2011 WCC 1.1 2.2 7.5

15 August 2011 WCC 5 4.2 4.2

29 August 2011 WCC 7.6 6.5 6.3

11 August 2012 NK 5.6 –** –**

12 August 2012 NK 8.7 7.1 6.5

S3 3 June 2011 WCC 32 8.3 7.2

12 July 2011 WCC 7.2 7.6 8.3

Winter

W1 14 January 2012 IC 70 4.6 3.3 2.3

15 January 2012 IC 8.1 7.3 6.5

16 January 2012 IC 7.3 7.7 5.5

W2 13 January 2012 IC 70 9.8 7.5 5.0

23 January 2012 IC 9.3 9.1 6.6

27 January 2012 IC 9.7 8.4 6.1

W3 12 December 2011 WCC 48 11.4 10.4 9.9

22 December 2011 WCC 9.3 11.6 10

Sites are Westminster City Council (WCC), North Kensington (NK) and Imperial College (IC)
*No points fall within the morning-transition period determined with the method described in Sect. 3.2
**There were insufficient data to define the end of the morning-transition period

For winter (December, January, February), as the wind speed was generally higher, the wind-
speed classes were:

W1: ŪBT 0314 < 7.15ms−1,

W2: 7.15ms−1 < ŪBT 0314 < 9.35ms−1,

W3: ŪBT 0314 > 9.35ms−1.
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Further details of the wind-speed classes can be found in Table 1, including the mean wind-
speed in each boundary-layer phase.

Composite plots were constructed as follows: a new timeline with respect to sunrise was
defined for each day, and then data for each variable for all days within each wind speed class
were sorted and ranked based on the new timeline. A composite average was calculated by
block averaging available points for each hour (between 2 and 7) in the ranked time series.
Variability around the composite average is represented in the figures by the maximum and
minimum values during each hour.

2.4 Data Analysis

The lidar measurements of vertical velocity variance profiles, σ 2
w (z), in stare mode were

corrected to allow for the relatively low sampling rate (0.287Hz), according to the spectral
correction method presented in Barlow et al. (2015). Hourly mixing heights (MH) were
calculated from σ 2

w (z) as the height up to which σ 2
w > 0.1m2 s−2 (Barlow et al. 2015). For

hours when the mixing height was below the lowest observable height, MH was set to the
mid-point of the fourth lidar gate (123m a.g.l.) as a minimum value, similar to the method
of Bohnenstengel et al. (2015). For two days (11 and 12 August 2012) when the lidar gate
resolution was at 18m this value was set at 63m. Whilst this introduces a small amount of
bias into the composite averages, the number of hours affected is small (13.5%). Tucker et al.
(2009) found a good correlation (r = 0.87) during a comparison ofMH derived using σ 2

w (z)
with MH obtained from radiosonde mean temperature and relative humidity profiles.

Cloud-base height, CB, was estimated from attenuated aerosol backscatter profiles, β(z),
measured in vertical stare mode;CBwas defined as the height at which backscatter increased
sharply such that β > −2 dB, as used by Pearson et al. (2009). Since we focus on themorning
development of the UBL, relatively cloud-free conditions were required, and conditions with
stratocumulus cloud were avoided as this drives mixing from above (Hogan et al. 2009). The
hourly CB values during the period 0300 to 1400 UTC were calculated, and if CB < 1700m
for more than 4h during this time period, then this day was rejected as being too strongly
influenced by boundary-layer clouds.

The stability of the layer between the WCC and BT Tower platforms was estimated using
the bulkRichardson number, Rb, and categorized following theBlackadar planetary boundary
layer parametrization scheme (Zhang and Zheng 2004), where

Rb = (g/θv)�θv�z

�u2 + �v2
, (3)

where g is the acceleration due to gravity, θv is virtual potential temperature (calculated from
the mean of θv at both heights), �θv is the virtual potential temperature difference across a
layer of thickness �z, and �u and �v are the differences in horizontal wind components
across the layer. Four stability classes are defined as (Zhang and Zheng 2004),

Rb > 0.2—very stable layer, little turbulence exists,
0 < Rb < 0.2—damped mechanical turbulence dominates,
Rb < 0 and |MH/L| < 1.5—forced convection, where L is the Obukhov length,
Rb < 0 and |MH/L| > 1.5—free convection.

Temperature, humidity and pressure measurements from theWXT 520weather stations were
combined with wind velocities measured by the sonic anemometers.
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Fig. 2 Composite plots of incoming solar radiation measured at BT(Sin), sensible heat flux measured at BT
(HBT ) and WCC (HWCC ) for summertime (a–c) and wintertime (d–f) cases under low (a, d), moderate (b,
e) and high (c, f) wind speeds. Solid lines correspond to the composite mean values and shaded areas indicate
the range

3 Results

The following sections present analysis of the UBL evolution, and test the dependence of
morning-transition and rapid-growth phase characteristics on wind speed and shear in par-
ticular.

3.1 Composite Time Series

To test whether there are significant seasonal differences in UBL evolution, composite aver-
ages are presented. The definitions of “morning-transition” and “rapid-growth” phases are
discussed, and it is concluded that modified definitions are required for the UBL.

3.1.1 Heat Fluxes

Angevine et al. (2001) defined the start of themorning-transition phase as beingwhen the sur-
face sensible heat flux changed sign from negative to positive (“cross-over”). This definition
is evaluated here for urban flux observations.

Figure 2 shows that Sin peaks later relative to sunrise in summer than in winter as days are
longer at this latitude, and Sin is almost four times higher than in winter. In summer during the
day when the mixed layer is deep, HWCC is consistently lower than HBT , which is explained
by the WCC platform lying within the urban roughness sub-layer, as discussed in Sect. 2.2.
HWCC is positive at night during summertime (Fig. 2a–c), as also found by Kotthaus and
Grimmond (2014) for a different site in London. This result can be attributed to a combination
of anthropogenic heat fluxes and large heat storage of the urban canopy. It is clear that a “cross-
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Fig. 3 As in Fig. 2, but for mixing height (MH) and stability classes. Coloured markers indicate stability
categories: damped mechanical turbulence (0 < Rb < 0.2) forced convection (Rb < 0, |MH/L| < 1.5) and
free convection (Rb < 0, |MH/L| > 1.5). na indicates cases with no data available. The reference line shows
the BT Tower height

over” in sensible heat flux is hard to apply to urban flux measurements that have a highly
“urbanized” source area.

At night in the summer HBT is near zero or slightly negative and generally more negative
than HWCC in both seasons. Figure 3 later shows that at night the BT Tower is near or just
below the mixing-layer top in summer, and just above the mixing-layer top in winter in the
residual layer, which explains the heat flux behaviour. In winter, HBT lags behind HWCC in
becoming positive by 3, 2 and 1h in the W1, W2 and W3 classes respectively, as surface-
driven convection takes some time to reach 191m in height. Hence, cross-over for HBT is
also not meaningful in indicating the start of the morning transition. Analysis of the mixing
height follows to seek an alternative definition.

3.1.2 Mixing Heights

In Fig. 3 it can be seen that MH is significantly lower and peaks earlier in winter than
in summer, reflecting the annual cycle of thermal forcing. During the summer MH peaks
7 to 10h after sunrise and the maximum mixing height MHmax ≈ 2000m. For winter
MHmax < 1500m and is observed earlier (i.e. 5–7h after sunrise).

Figure 3a, b, and c show that in summer at night, MH is near to or above the BT Tower
height of 191m, and increases with wind speed, with the meanMH being 190, 230 and 300m
for the S1, S2, and S3 classes respectively. In winter, MH is often lower than 191m, (mean
MH is 150, 190, and 200m for W1, W2, and W3 respectively). Together with the heat flux
behaviour, this suggests that convection often persists at night as the urban surface cools more
slowly. As the urban mixing height at night is often greater than 200m, this height cannot be
used to define the time of convective onset (hereafter called the “fixed height method”), as
done by Angevine et al. (2001). This implies that the onset of the rapid-growth phase should
be defined differently for the UBL.
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Fig. 4 Composite plot ofMH time series during the summer time period under moderate winds: example of
the calculation of the main phases. Markers show MH values and lines the fits applied

During the night, the stability class ismostly damped turbulence (0 < Rb < 0.2, indicating
that the layer below the BT Tower is stably stratified but turbulence is present), which persists
for 1–2h after sunrise. In summer, as wind-speed increases, night-time stability shifts to
forced convection and MH increases. Night-time stability was never very stable (i.e. Rb >

0.2), in contrast to rural boundary layers. Angevine et al. (2001) found that the time for
Rb < 0.25 (damped turbulence) to be reached was a reasonable predictor of the timing of
convective onset, whereas here this stability class is already established at night. Despite
differences in MH and stability values, convective onset is the same qualitatively: there
is a significant increase in MH above night-time values between 1 and 3h after sunrise,
accompanied by a change in bulk stability.

3.2 Redefining UBL Phases

Following the observations in Sect. 3.1 that, (a) urban heat flux cross-over is hard to define
accurately as it is a strong function of height and source area, and (b) night-timeMH is often
greater than 200m, the morning-transition and rapid-growth phases will now be defined by
the timing of three daily events. The events are: (1) sunrise, taken here to mark the beginning
of the morning transition, (2) the onset of rapid mixing-layer growth, marking the end of
morning transition and the beginning of the rapid-growth phase, (3) reduced mixing-layer
growth, marking the end of the rapid-growth phase and the beginning of the mature phase.
Timings were calculated as follows and are illustrated in Fig. 4:

• A linear regression was applied to night-time MH values (i.e. all values from 0300 to
sunrise, event 1).

• The end of the rapid-growth phase (event 3) was defined as the time after which MH
varies by less than 20%. A second-order polynomial fit was applied to the mature phase
mixing layer and the timing ofMH = 0.8MHmax defined its onset. The number of points
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either side of the maximum included in the polynomial fit was minimised to exclude the
linear tendency in the rapid-growth period.

• Having defined the end of the rapid-growth phase, a linear fit was applied to the rapid-
growth phase data points, moving backwards in time towards sunrise. The number of
data points included in the fit was determined by the goodness-of-fit parameter r2 and
by examining the residuals, i.e., if points in the morning-transition phase were included
in the fit, they would introduce consistently positive residuals around the regression line,
and reduce r2. The slope of the linear regression gave the rapid-growth phase growth
rate, �MH .

• The intercept of the two lines (night-time and rapid growth) was considered as the end
of the morning-transition phase, or “convective onset” (ii).

Figure 4 shows the method applied to the mean MH time series for class S2. In order to
showMH values at higher time resolution than the hourly means presented in Fig. 3b, block
averages of four pointswere calculated.Applying a second-order polynomial fit toMH around
its maximum gaveMHmax = 1900m, and the end of the rapid-growth phase occurred at 6h
when MH = 0.8MHmax = 1592m. The intercept of the linear fit to night-time values with
the linear fit to rapid-growth phase values was found at 1.65h and marks the beginning of the
rapid-growth period. Thus, in this example the morning-transition duration TMT = 1.65h
and the rapid-growth phase duration TRG = 4.35h. The rapid-growth phase growth rate,
�MH = 310mh−1.

The sensitivity of the calculations to the 20% cut-off value (the percentage ofMH variation
after the rapid-growth phase) was tested by varying the value between 10 and 30%. The end
of both morning-transition and rapid-growth phases and �MH were calculated using a 10%
cut-off value and they differed by 10, 17, and 10% from values calculated using a 20% value
(mean differences of 0.5, 0.8 and 48mh−1). Similar differences (10, 15, 12%) were found
between 20 and 30% cut-off values. Differences greater than 100% were found for two days
(25 July 2011 and 13 January 2012), which were excluded from further analysis. For two
more days (22 August 2011 and 22 December 2011) with uncertainties > 50% the timings
were determined based on visual inspection of theMH and H time series.

Convective onset times and�MH were calculated for each day.Onset times varied between
0.7 and 4h after sunrise, the average being 2.1h. For winter the range was smaller than
summer: minimum and maximum values were respectively 0.2 and 2.9h during winter,
compared to 0.7 and 4.3h during summer. These results are in general agreement with the
values found by Angevine et al. (2001). �MH varied significantly between summer and
winter: minimum, maximum and mean values were 143, 885 and 400mh−1 during summer
and 51, 420 and 160mh−1 during winter, respectively.

A comparison between the convective onset time calculated with the new “slope intersec-
tion method” and the “fixed height method” used in Angevine et al. (2001) was performed for
all days when night-time MH values were lower than 200m. This gave a robust correlation
(Spearman correlation coefficient r = 0.73, p = 0.0002), which was equally strong during
summer and winter periods (r = 0.72, p = 0.004, and r = 0.79, p = 0.04, respectively),
showing that on average, earlier onset times are calculated with the new method (summer
slope=0.77, offset=0.49h; winter slope=0.73, offset=−0.17h).

3.3 Characteristic Parameters for the Morning-Transition and Rapid-Growth
Phases

In Sect. 3.2 the morning-transition duration, TMT , and rapid-growth phase growth rate �MH

were introduced. For rural surfaces it was found that TMT and�MH depend strongly on basic
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Table 2 Spearman correlation coefficients (r ) and p values between morning-transition duration (TMT ),
rapid-growth rate (�MH ) and basic meteorological parameters: bulk Richardson number averaged over 2h
before sunrise (Ri NT ), mean wind speeds during morning-transition and night-time (UMT andUNT respec-
tively) and convective velocity scale (w∗) during the rapid growth period

TMT �MH

All data Summertime Wintertime All data Summertime Wintertime

RI NT 0.38 (0.06) 0.49 (0.03) 0.29 (0.56) – – –

UMT −0.77 (0.00) −0.73 (0.00) −0.68 (0.11) – – –

URG – – – −0.39 (0.04) −0.73 (0.00) −0.68 (0.11)

w∗ – – – 0.79 (0.05) 0.75 (0.00) 0.57 (0.01)

�MH 0.72 (0.00) 0.79 (0.00) 0.43 (0.35) – – –

The last row presents r and p values between TMT and �MH

meteorological parameters such as wind speed and stability (e.g., Angevine et al. 2001). In
the following, the dependence of these parameters on basic meteorological variables will be
examined for the urban dataset.

Spearman correlation coefficients between TMT and �MH and basic meteorological
parameters are presented in Table 2. The dependence of TMT on bulk Richardson number
averaged over 2h before sunrise for each day (RiNT ) shows a moderate positive correla-
tion (r = 0.38 for all data), indicating that the duration of the morning transition is weakly
dependent on stability beforehand. In summer it is notable that slightly unstable night-time
conditions (negative RiNT ) still lead to TMT ≈ 1−2h. The correlation is stronger in sum-
mer; in winter it is not statistically significant (r = 0.49, p = 0.3 for summer and r = 0.29,
p = 0.56 in winter respectively). Angevine et al. (2001) found a relatively weak relationship
with stability (determined by several parameters), and noted differences between sites—a
stronger relationship was seen for a site with a wider range of values. Neither of the rural
sites studied had as small a range of stability as presented here, and therefore it is noteworthy
that there is any relationship with stability at this urban site.

A stronger relationship (r = −0.77) is found between TMT and the wind speed averaged
over the morning transition, UMT, for all data. Similar correlations are evident for both
summer and winter periods (−0.73 and −0.68 respectively; statistically significant only in
summer), meaning that the morning transition is shorter for higher wind speeds. As discussed
in Sect. 1, similar results were also found in Angevine et al. (2001) and Beare (2008) for
the time between heat flux crossover and convective onset. Given the small range of stability
exhibited in these urban data, wind speed is a better explanatory variable for the length of
the morning-transition period.

Table 2 also shows that meanwind speeds in successive time periods are highly correlated,
i.e. a positive correlation (r = 0.89) between morning-transition and night-time mean wind
speeds (UMT and UNT ) was found (r = 0.85 and 0.83 for summer and winter respectively)
in agreement with the findings of others (e.g., Angevine et al. 2001). Also,UMT is negatively
correlated with RiNT (r = −0.62 and −0.84 for summer and winter respectively). Thus it
can be deduced that these three parameters (RiNT ,UMT ,URG), are associated with a more
rapid transition to convective onset.

A statistically significant, positive dependence of �MH on the convective velocity scale
w∗ was found (r = 0.79; see Sect. 3.5.2, Eq. 6 for w∗ calculation), as might be expected. A
weaker negative relationship between�MH andURG can be seen for all data (r = −0.39) that
is stronger in summer (r = −0.73). One mechanism whereby wind can inhibit convective
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Fig. 5 Composite vertical profiles of hourly-averaged wind speeds for summertime (a–c) and wintertime
(d–f) cases under low (a, d), moderate (b, e) and high (c, f) wind speeds obtained from lidar. Points (bullets,
squares, triangles) show mean values; shaded areas the range (minimum–maximum)

growth is “shear sheltering” (Hunt and Durbin 1999; Conzemius and Fedorovich 2006),
where convective thermals are prevented from penetrating the capping inversion due to the
deforming effect of shear across it.

A positive correlation was found between �MH and TMT (r = 0.72); the correlation is
stronger in summer (r = 0.79, p = 0.00) than in winter (r = 0.43, p = 0.35). This can be
understood from the previous results: higher wind speeds have seemingly opposite effects
in either period, being associated with earlier convective onset (smaller TMT ) but weaker
convective growth (smaller �MH ). Given the demonstrated dependence of the characteristic
parameters on wind speed, the next Sections explore the role of wind in UBL development.

3.4 Composite Vertical Profiles

In this Section the variation of vertical wind-speed and turbulence profiles across the night-
time, morning-transition and rapid-growth phases are examined. Discussion of boundary-
layer structure in terms of vertical profiles is important to demonstrate the relationship
between regional atmospheric flows and the UBL.

3.4.1 Wind-Speed Profiles and Shear

Figure 5 shows composite-averaged vertical profiles of the hourly-averaged wind speed from
lidar measurements. Close to the surface, wind speeds are reduced due to surface drag, and
the amount of wind shear within the UBL varies across all classes. Aloft, the profiles show
that background regional flows are characterized by higher wind speeds and weaker shear.
In summer and under low and moderate winds (Fig. 5a, b), a local wind-speed maximum
with the form of a low-level jet (Banta et al. 2002) is observed in night-time profiles at
heights of 200m (low) or 400m (moderate) a.g.l. with a mean wind speed at the core of the
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Table 3 Mean values and range of the absolute wind shear below z = MH for each wind speed class and
season

Class Mean absolute shear below z = MH (minimum–maximum) × 10−3 s−1

Night-time Morning transition Rapid growth

Summer

S1 31 (12–149) 22 (2–60) 9 (3–19)

S2 28 (9–149) 24 (3–60) 15 (4–19)

S3 22 (13–29) 23 (23–23) 17 (8–29)

Winter

W1 22 (13–36) 28 (28–28) 19 (14–40)

W2 32 (13–61) 32 (28–47) 17 (6–38)

W3 33 (23–47) 42 (38–46) 26 (14–40)

jet ŪLL J ≈ 7m s−1 (low) and 10ms−1 (moderate). The LLJ is weaker but still observable
during the morning-transition phase (ŪLL J ≈ 5 or 8ms−1) while in the rapid-growth phase,
wind shear is weaker due to convection. In wintertime, and under low winds, LLJs are
also observed. The LLJ core is situated ≈ 400m a.g.l. and ŪLL J ≈ 9.1 and 8.7m s−1 for
the night-time and morning-transition phases respectively. Under moderate winds the LLJ is
observed only during themorning transition,while under higherwind speeds, thewind speeds
collapse into a more neutral profile during the morning-transition and rapid-growth phases.
Less emphasis is put here on S3 profiles (Fig. 5c) due to the small number of observations
(two days).

For every hour of each day, the wind shear beneath the mixing-layer top was calculated
using a second order central scheme. Wind shear at the i th lidar gate is calculated as,

dŪ

dzi
= Ūi+1 − Ūi−1

2�z
, (4)

where Ū is the hourly averaged wind speed and �z the gate length. Wind-shear data for all
days in a class were transformed onto the timeline with respect to sunrise, and composite
averages for each hour were calculated, weighted by the number of observations below
z = MH for each day. From time series of the composite-averaged wind shear below z = MH
(not shown) it was evident that high values of wind shear prevail throughout the night and
persist throughout the morning transition, albeit reducing with time. During the rapid-growth
phase when the UBL is well-mixed wind shear is smaller.

Table 3 shows the average absolute wind shear dŪ
dz below z = MH for all wind speed

classes in summer and winter for each phase. Absolute wind shear values were calculated
to account for changes of wind shear sign within the UBL. For this calculation, hourly-
mean values of wind shear were averaged over all heights below z = MH within each
phase, weighted by the number of observations for each phase. In general, wind shear is
higher during the night-time and morning-transition phases than the rapid-growth phase for
all classes. During the rapid-growth phases the wind shear is smallest as convective mixing
prevails. This is consistent with the simulations of Beare (2008), where the importance of
wind shear during the night-time and morning-transition phases was highlighted, in contrast
to the well-developed mixed-layer where buoyancy is dominant. The contribution of shear
in the development of turbulence will be explored in Sect. 3.6.
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Fig. 6 As in Fig. 5 but for profiles of the vertical velocity variance

3.4.2 Vertical Velocity Variance Profiles

Figure 6 shows that σ 2
w is largest in the rapid-growth phase for all wind-speed classes:

maximum composite averaged σ 2
w values range from ≈ 0.67m2 s−2 (S1) to ≈ 0.34m2 s−2

(W1). It can be seen that σ 2
w decreases across wind speed classes as SI N decreases (See

Fig. 2). A marked difference is evident in σ 2
w profiles for different phases: during night-time

and morning-transition phases σ 2
w decreases monotonically with height, whilst rapid-growth

phase profiles resemble classical CBL profiles with an elevated maximum. This is evident
during the summertime, under low or moderate winds, and can be seen more clearly from
the maximum values. As wind speed increases, profiles resemble neutral-condition profiles
(S3, W2 andW3 classes, Fig 6c, e, f). The σ 2

w profiles and their dependence on flow structure
and surface forcing will now be explored in more detail.

3.5 Scaling Wind-speed and σ 2
w Profiles: Regional Flows Versus Surface Forcing

Identifying appropriate scaling for meteorological profiles is important because it helps to
improve model parametrizations and basic understanding of atmospheric processes (Barlow
2014). Banta et al. (2006) explored scaling of night-time wind speed and turbulence profiles
to test whether turbulencewas generated at the surface and transported upwards (“traditional”
boundary layer), or generated by a primary source aloft and transported downwards (“upside
down” boundary layer). For daytime unstable conditions,Wood et al. (2010) andBarlow et al.
(2011a) found that mixed-layer scaling was appropriate for σ 2

w data measured over London.
In this section, the significance of regional flows (i.e. LLJs) versus surface processes in
generating turbulence and shear is tested by scaling the wind speed and turbulence profiles
in all phases. The low wind-speed, summertime class (S1) was selected since substantial
radiative forcing, large surface heat fluxes, large mixing height (Figs. 2a, 3a) and LLJs
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Fig. 7 Hourly-averaged vertical profiles of normalized wind speedsU/ULL J—a–c (ULL J is the wind speed
at the core of the jet) and vertical velocity variance σ 2

w/U2
LL J − d, e, f versus normalized heights h/dLL J

(dLL J is the jet’s half width) for summertime cases and under low wind speeds during the night-time phase.
a, d: cases with a distinct maximum in the wind-speed profile and σ 2

w profiles monotonically decreasing; b,
e: cases with logarithmic-like wind-speed profile and σ 2

w profiles monotonically decreasing, and c, f: cases
with σ 2

w profiles having a maximum aloft, and wind-speed profiles with either LLJ like or logarithmic-like
profiles. Bold black lines are composited mean values. Legends show the time stamp of every line in the format
day/month/year hour before sunrise

(Fig. 5a) are all present. Also, this class has the most hourly observations (191 h) across the
largest number of days (11days).

3.5.1 Night-Time and Morning-Transition Profiles: LLJ Scaling

LLJs over the urban surface have been often reported (e.g.Wang et al. 2007; Kallistratova and
Kouznetsov 2012; Barlow et al. 2015), but their interaction with the boundary-layer structure
is not yet fully understood (Klein et al. 2016). Banta et al. (2006) studied night-time LLJs
and found that wind-speed and turbulence profiles scale better with the wind speed at the
core of the jet (ULL J ). A similar approach was proposed in Smedman et al. (1993), with the
addition that heights were scaled with a length scale characteristic of the jet’s dimension.

Here, following Banta et al. (2006), wind speed and σ 2
w profiles are scaled by usingULL J

(andU 2
LL J ), defined as the first wind-speed maximum above the surface. After several length

scales were tested, it was decided to scale heights by the length scale dLL J , which is the
jet’s half width, i.e. the distance below the jet where U = 1/2ULL J , a scale used in the self-
similarity approach for round jets (Pope 2000). For every wind-speed profile, a second-order
polynomial curve fit was applied to the wind speeds measured in the four lidar gates closest
in height toULL J . With the normalization used here, the jet maximum is located at the points
(1,0) (Fig. 7).

Three categories were created based on the shape of the wind-speed and variance profiles,
similar to Banta et al. (2006):
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Fig. 8 As in Fig. 7 but for the morning-transition phase

(1) the wind-speed profile has a distinct maximum (LLJ) and the σ 2
w profile decreases mono-

tonically,
(2) the wind-speed profile is logarithmic and the σ 2

w profile decreases monotonically,
(3) σ 2

w profiles have a maximum aloft, and the wind-speed profile is either LLJ-like or
logarithmic-like.

It should be recalled that the lidar cannot observe close to the ground (z < 124m), which
introduces some uncertainty, as the σ 2

w profiles are hard to categorise due to the maximum
not always being fully resolved. For the wind speed profile on 30 June 2011 at 0.1h before
sunrise, multiple maxima of similar strength were located close to each other, and the height
of the LLJ was defined by visual inspection to be 394m. One σ 2

w profile (5 July 2011 at 3.2h
before sunrise) was too noisy and was excluded from the analysis.

Figure 7 shows the scaled U and σ 2
w profiles for the night-time phase for class S1. For

each category, the scaling causes U profiles to collapse nicely, especially below the jet
height (z/dLL J = 0). σ 2

w profiles show more spread around the mean. The peak of the ratio
σ 2

w/U 2
LL J is of the same magnitude for the first two categories (0.003) and slightly higher

for category 3 (0.004). Both results were also found in Banta et al. (2006), where success-
ful collapse using LLJ scaling below jet height was interpreted to mean that the boundary
layer was “upside-down” and turbulence was dominated by downward transport from the
jet.

LLJ scaling is moderately successful for morning-transition profiles (Fig. 8), even though
some discrepancies do occur. For example, the profile observed at 1.8h after sunrise on 4 July
2011,which deviates significantly from themeanσ 2

w profile, occurs under unstable conditions
(Rb = −0.009, free convection category). It was hypothesized that discrepancies from mean
σ 2

w profiles could be attributed to the active role of surface-generated turbulence. For both
night-time and morning-transition profiles, mixed-layer scaling was also examined, testing
several combinations of friction and convective velocity scales (u∗ and w∗ respectively, see
Sect. 3.5.2 for details). The collapse of the resulting profiles was significantly poorer than
that obtained with LLJ scaling, demonstrating the importance of turbulence generated aloft
in the early phases of UBL evolution. These results are consistent with Barlow et al. (2015),
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who found “upside-down” turbulence characteristics in the morning phase of the UBL for a
5-day case study.

3.5.2 Rapid-Growth Profiles: Mixed-Layer Scaling

As can be seen in Figs. 5 and 6, the rapid-growth phase wind speed and turbulence profiles
are similar to classical CBL profiles and therefore mixed-layer scaling was used. Heights
were normalized using the mixing height MH, and the mixed velocity scale wm proposed
in Moeng and Sullivan (1994) was used. In order to take into account both mechanical and
thermal forcing at the surface, wm is a function of the surface friction (u∗0) and convective
velocity scales,

w3
m = w3∗ + 5u3∗o. (5)

The convective velocity scale is defined as

w∗ =
(

g

To
w′T ′

ozi

)1/3

(6)

where zi is the inversion height (taken here to equal MH), the absolute surface temperature
To has been estimated as the mean of BT and WCC temperatures, and surface heat flux
(w′T ′

o) is extrapolated from the BT Tower measured heat flux w′T ′
H ) to the ground, using

the relationship (Wood et al. 2010),

w′T ′
H = w′T ′

o

(
1 − 1.2

z

zi

)
. (7)

The surface friction velocity u∗o was also extrapolated from BT Tower u∗ as,

u∗ = u∗o
(
1 − z

zi

)
. (8)

Thewind-speed profiles were normalizedwith the wind speedmeasured at the lowest observ-
able height (Ulower measured at z = 124m) and the σ 2

w profiles by w2
m .

Each rapid-growth hourly profile falls into one of two categories based on the shape of
σ 2

w:

(1) monotonically decreasing σ 2
w profile,

(2) σ 2
w profile has a maximum aloft.

Results of the mixed-layer scaling for σ 2
w are shown in Fig. 9c, d. Three profiles obtained

fromLES runs (Moeng andSullivan 1994) are superimposed for buoyancy-dominated (B) and
shear-dominated (S) flows, and an intermediate flow with strong shear and moderate convec-
tion (SB1). Profiles in category 1 collapse reasonably well onto a monotonically decreasing
profile (Fig. 9c). The shape is similar to the S profile, but at considerably lower values. On
the other hand, profiles of category 2 collapse to a mean profile that closely resembles the
SB1 profile. The mean u∗/w∗ ratio is significantly higher for category 1 (u∗/w∗ ≈ 0.58 and
0.35 for categories 1 and 2 respectively), confirming the predominance of shear processes.

As can be seen from the legends in Fig. 9, profiles in category 2 occur later in the rapid-
growth phase,whilst category 1 profiles occur earlier. It should be noted that usingLLJ scaling
for the rapid-growth profiles (not shown) gives poor results. Even though there is significant
spread across the hourly wind-speed profiles, it is apparent that under both categories, mean
wind speed (U/Ulower ) profiles are similar (Fig. 9a, b) with increased shear in the upper part
of the UBL.
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Fig. 9 Hourly-averaged vertical profiles of normalized wind speeds U/Ulower—a, b (Ulower is the wind
speed at ≈ 124m a.g.l.) and vertical velocity variance σ 2

w/w2
m—c, d (wm is the convective velocity scale)

for summertime cases under low wind speeds during the rapid-growth phase. a, c: cases with monotonically
decreasing σ 2

w profile; b, d: cases where σ 2
w profiles have a maximum aloft. Bold black lines are compos-

ited mean values. Also shown are three theoretical profiles obtained from LES runs (Moeng and Sullivan
1994): a simulation with shear—dominated flow with no surface flux—S (c blue squares), a simulation with
a buoyancy—dominated flow with a small shear effect—B (d blue squares), and an intermediate flow with
strong shear and moderate convection—SB1 (c, d red circles). Legends show the time stamp of every line in
the format day/month/year hour after sunrise

3.6 Analysis of Turbulent Kinetic Energy Production in the UBL

It has been established thus far that aside from surface sensible heat flux, wind speed also
plays a role in determining (a) the duration of themorning transition, and (b) the rapid-growth
rate of the UBL. Additionally, there is a significant level of wind shear present during most
phases of the UBL, therefore its evolution is not governed by buoyant processes alone. In
this section, an attempt is made to quantify both shear and buoyant production of turbulent
kinetic energy (TKE) within the UBL, using previously established theoretical frameworks.

3.6.1 Shear Production of TKE Within the Rapid-Growth Phase

It is well known that in the CBL, growth is driven by the surface buoyancy flux, and that
entrainment by overshooting thermals enhances the growth rate (e.g. Carson 1973). In some
theoretical studies of the CBL with shear (e.g. Pino et al. 2003; Conzemius and Fedorovich
2006; Fedorovich and Conzemius 2008), it has been argued that TKE production by shear
across the entrainment zone contributes to entrainment; and that shear production at the
surface is dissipated locally and is not transported upwards to contribute to entrainment.Given
that the measurements were made over an urban surface with large roughness length, it is
hypothesized that surface shear production may be comparable to elevated shear production.
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Table 4 Median values of the
surface (S0) and ABL top (SMH )

shear contributions to the integral
TKE budget for the rapid-growth
phase with low shear, calculated
with a zero-order model
representation

SMH (m3 s−3) S0 (m3 s−3)

Summer S1 2.2 (17.0) 0.2 (1.7)

Summer S2 3.5 (6.7) 1.3 (1.0)

Summer S3 9.8 (45.6) 2.6 (2.8)

Winter W1 5.1 (2.7) 4.4 (12.9)

Winter W2 2.1 (42.6) 2.7 (1.2)

Winter W3 12.3 (0.8) 5.1 (0.2)Values in parenthesis are standard
deviations

To address this issue, calculationsweremade based on the zero-ordermodel representation
of surface (S0) and boundary-layer top (SZi ) shear contributions to the integral TKE budget,
as defined by Fedorovich (1995) (see Appendix),

S0 = umτxs + vmτys, (9)

Szi = 1

2

(
�u2 + �v2

) dzi
dt

, (10)

where um and vm are the vertically-averaged horizontal velocity components, τxs and τys are
the components of the surface stress, �u and �v are the jumps across the inversion of the

horizontal velocity components, and dzi
dt is the rate of change of the inversion height. In the

present study, where a streamwise rotation has been applied to wind-speed data, the surface
and boundary-layer top shear generation terms have been approximated to become S0 = uτxs

and SMH = 1
2�u2 dMH

dt where �u is the jump of the streamwise wind speed measured with
the lidar for gates immediately above and below z = MH, τxs is the surface streamwise
momentum flux and u the streamwise component of the wind speed. The values used were
the wind speed and the streamwise stress at the BT Tower, the latter being extrapolated to
the ground according to the method given in Brost et al. (1982). dMH

dt was estimated by
applying a fourth-order polynomial fit to theMH time series. As discussed in Conzemius and
Fedorovich (2006), different authors interpret jumps differently and hence the values here
may not be directly comparable with other studies—here the emphasis is on the relative size
of the terms.

In Table 4 the median values of S0 and SMH are presented for the rapid-growth phase in
all wind speed classes. Because the method is valid only under the assumption of a uniform
wind speed profile within the boundary layer, night-time and morning-transition phases were
excluded from this analysis, as it was shown in Table 3 that large shear exists below z =
MH for these phases. For the same reason, only hours with relatively low wind shear (i.e.
S < 0.016 s−1) were used. Table 4 shows that median SMH > S0 for all wind speed
classes except W2. The relative magnitude of boundary-layer top to surface shear production
(calculated as SMH/S0) varies between 11 (S1) and 0.8 (W2), the average in each season
being 5.8 in summer and 1.5 in winter. These results show that shear production near the top
of the UBL is larger than surface shear production, despite large surface roughness, and that
this is more pronounced in summer rather than winter.

3.6.2 Shear and Buoyancy Terms of the Local TKE Budget

In Sect. 3.4 it was shown that shear can be relatively large in the night-time and morning-
transition phases. To examine the contribution of shear to mixing, relative to buoyancy, in this
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Fig. 10 Composite plot of wind shear and buoyant production local TKE budget terms estimated at the height
of the BT Tower. Points show composited mean values and shaded areas the range. Coloured markers indicate
stability categories: green for damped (0 < Rb < 0.2) and red for free convection (Rb < 0, |MH/L| > 1.5)

section the shear and buoyancy production terms of the local TKE budget will be estimated
for the BT Tower during different phases of UBL development. Only the low wind-speed
class in summer (S1) will be analysed, for the reasons given in Sect. 3.5.

The buoyancy and shear production terms of the TKE budget are defined as g/θvw′θ ′
v

and u′w′ϑŪ/ϑz respectively, where w′θv
′ is the turbulent heat flux, u′w′ is the streamwise

momentum flux andϑŪ/ϑz is the shear in a steamwise coordinate system (Stull (1988)). The
buoyancy term and momentum fluxes at the height of the BT Tower were directly estimated
from the sonic anemometer measurements; the shear term ϑŪ/ϑz was estimated from the
difference in velocity magnitude between lidar gates that were just below and above the BT
Tower, i.e. ϑŪ/ϑz ≈ �Ū/�z. A steamwise rotation was applied to the lidar u, v and w

wind-speed components obtained from the DBS method, using the double-rotation method
(Wilczak et al. 2001), so that the mean rotated vertical and spanwise wind-speed equal zero
for each hourly averaging period.

In Fig. 10 the interplay between the thermal and mechanical production of turbulence
can be seen: during the night-time and morning-transition periods, high shear production
values are observed (average ≈ 0.0027 and 0.0025m2 s−3 respectively). The buoyancy term
is slightly negative or near-zero during these periods (≈ −5 × 10−5 m2 s−3), when the BT
Tower is near the top of the mixed layer. During the rapid-growth period (onset is identified
at ≈ 2h after sunrise for this wind-speed class) shear production gradually reduces, and
eventually levels off to values close to zero (average ≈ 0.0003m3 s−3). At the onset point,
the buoyancy production term increases and by 4h after sunrise it dominates over shear
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Fig. 11 Vertical profiles of the hourly values of the a buoyancy and b shear production terms of the local
TKE budget at the height of the BT Tower during night-time, morning-transition and rapid-growth phases
for summertime cases under low wind speeds (S1). The vertical axis is the BT Tower observation height
normalized by MH

production. Shear production of TKE is always positive. Negative values are not physically
interpretable.

As the height of the BT Tower observation relative to the mixing-layer top is changing
throughout these periods, Fig. 11 shows the hourly values of the local shear and buoyancy
TKE budget terms using zBT /MH for the vertical axis normalization.

For the rapid-growth phase, the vertical profile of the buoyancy term (Fig. 11a) broadly
agrees with the classical mixed-layer buoyancy profile: high values are observed near the
surface, decreasing with height. Near-zero values of the buoyancy term can be observed
during the night-time and morning-transition phases, when the BT Tower is just below or
above z = MH, which leads to wide scatter between negative and positive values.

Figure 11b shows that small shear term values are observed within the UBL during the
rapid-growth phase: some larger values occur towards the bottom and the top, which is
consistentwith the TKEprofiles ofConzemius and Fedorovich (2006) for a shearedCBL. The
height of minimum shear production (zBT /MH ≈ 0.3) is similar. During the night-time and
morning-transition phases shear production is mostly positive and sometimes significantly
enhanced near z = MH, and thus much larger than the buoyancy term. Clearly there is a lot
of scatter in the data, but they suggest that even under low wind speeds, shear production of
TKE cannot be neglected.

4 Conclusions

This study presents an analysis of the evolution of the UBL using a novel combination of
ground-based remote sensing and in situ instrumentation. For a site in central London, UK,
the full evolution of the UBL was captured from night-time, through the morning-transition
and rapid-growth phases, until the fully-developed phase. From a long database, only cases
with small amounts of boundary-layer cloud were selected. Days were classified according
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to wind speed (low, moderate or high), and taken from either summer or winter months, given
the latitude of the site.

The night-time UBL was occasionally weakly convective, in contrast to the rural ABL,
which is typically stable. Its mean depth across the wind speed classes varied between 190–
300m in summer, and 150–200m in winter. This contrasts with the study of Angevine et al.
(2001) who found night-time rural mixing heights to be less than 200m in summer. In the
present study 13.5% of the hourlyMH values were lower than 124m.

Due to the differing night-time conditions, in order to study the evolution of the UBL two
phase redefinitions were required: (1) the start of the morning-transition phase was taken as
sunrise rather than sensible heat flux cross-over from negative to positive. This was done
as the urban night-time sensible heat flux was sometimes already positive, dependent on
the height of the observation. (2) The end of the morning-transition phase was defined by a
sharp, quasi-linear increase in MH. This definition resulted in morning-transition durations
that were on average slightly shorter than when calculated using the Angevine et al. (2001)
constant threshold of 200m, but of a similar magnitude.

The urban morning-transition phase varied in length between 0.5 and 4h. It had a weak,
positive relationship with night-time stability (defined by the bulk Richardson number across
the lowest 191m), and a stronger negative relationship with wind speed. This held for both
seasons, and is consistent with previous work (Angevine et al. 2001; Beare 2008).

The growth rate of the mixing layer during the rapid-growth phase had a strong positive
relationship with the convective velocity scale, and a weaker, negative relationship with wind
speed. The growth rate also had a positive correlation with the morning-transition phase
duration, particularly in summer. This result highlighted the opposite effects of wind-speed,
namely that increased wind speed shortens the morning-transition phase, yet reduces growth
rate in the rapid-growth phase.

Given the complex dependence of UBL evolution on wind shear, vertical profiles of wind
speed were more closely examined. Night-time and morning-transition wind-speed profiles
were dominated by LLJs, resulting in monotonically decreasing σ 2

w profiles, whilst during
the rapid-growth phase intense turbulent mixing resulted in well-mixed wind-speed profiles.
Absolute values of wind shear were highest in the night-time and morning-transition phases
and lowest in the rapid-growth phase—these differences reduced with increased wind speed,
and were less distinct in winter. These results are consistent with previous simulations (Beare
2008), highlighting that the morning-transition phase can be highly sheared, and its evolution
sensitive to the magnitude of wind shear.

Wind speed and turbulence profiles during the night-time and morning-transition phases
for the low wind speed class in summer were analysed using LLJ scaling. The resulting good
collapse of profiles below the local wind-speed maximum indicated that in these phases the
UBL is mostly dominated by downward transport of LLJ-generated turbulence aloft. Mixed-
layer scaling during the rapid-growth phase was successful using a combination of friction
and convective velocities, suggesting dominance by surface forcing.

Shear production was greater than buoyant production at night-time and in the morning-
transition phase near the top of the UBL for the lowwind speed class in summer. In the rapid-
growth phase, buoyant production dominated at the surface, but shear production dominated
in the upper half of the UBL. This is consistent with previous simulations of the sheared
CBL (Conzemius and Fedorovich 2006). The results suggest that shear processes cannot be
neglected in the UBL, even in cases with low wind speed.

In terms of the production of TKE by shear, even in the rapid-growth phase when mean
wind shear values within the UBLwere small, there was significant shear production near the
boundary-layer top and at the surface. Shear production near z = MH was around six times
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larger than surface shear production in summer, and around 1.5 times larger in winter. Despite
the large, urban surface roughness, these results suggest that elevated shear is important in
governing mixing within the UBL, and that the effect can be more pronounced in summer. In
general, these results imply that regional flows such as LLJs play an important role alongside
surface forcing in determining UBL structure and growth.
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Appendix

TheCBLgrows due to amixture of processes, including surface-driven buoyancy, shear, hori-
zontal convergence and heat advection. Entrainment of heat fromabove the growing boundary
layer is a key process that has been often parametrized (see Conzemius and Fedorovich 2006
for a nice review and test of parametrizations). Given that vertical gradients of wind speed
and potential temperature are negligible throughout most of the depth of the CBL, simple
bulk models have been developed to describe the growth of the horizontally-homogeneous
CBL by vertically integrating the Reynolds-averaged Navier Stokes equations over the depth
of the CBL.

In this context, Fedorovich (1995) derived a so-called slab, or zero-order model, of the
CBL. Entrainment processes, and thus the growth of the CBL, were evaluated by deriving
the integral TKE budget equation,

d

dt

zi∫
0

edz = umτxs +vmτys + 1

2

(
�u2 + �v2

) dzi
dt

+ zi
2

(
Bs − �b

dzi
dt

)
−Φi −

zi∫
0

εdz

(11)
where um and vm are the vertically-averaged horizontal velocity components, τxs and τys are
the components of the surface stress, �u and �v are the jumps across the inversion of the
horizontal velocity components, zi is the inversion height, and dzi/dt is the rate of change
of the inversion height. �b is the jump across the inversion of the horizontally averaged
buoyancy, and Bs is the surface buoyancy flux, and e is the averaged TKE, �i is the flux
due to upward radiation of energy from the top of the CBL and ε is the dissipation rate of
TKE. Terms 1 and 2 on the right-hand side represent surface shear production, and term 3
represents shear production at the top of the boundary layer, across the entrainment zone.
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