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Abstract A linearized analysis of the Reynolds-averaged Navier–Stokes (RANS) equations
is proposed where the k − ε turbulence model is used. The flow near the forest is obtained
as the superposition of the undisturbed incoming boundary layer plus a velocity perturbation
due to the forest presence, similar to the approach proposed by Belcher et al. (J Fluid Mech
488:369–398, 2003). The linearized model has been compared against several non-linear
RANS simulations with many leaf-area index values and large-eddy simulations using two
different values of leaf-area index. All the simulations have been performed for a homoge-
neous forest and for four different clearing configurations. Despite themodel approximations,
the mean velocity and the Reynolds stress u′w′ have been reasonably reproduced by the first-
order model, providing insight about how the clearing perturbs the boundary layer over
forested areas. However, significant departures from the linear predictions are observed in
the turbulent kinetic energy and velocity variances. A second-order correction, which partly
accounts for some non-linearities, is therefore proposed to improve the estimate of the turbu-
lent kinetic energy and velocity variances. The results suggest that only a region close to the
canopy top is significantly affected by the forest drag and dominated by the non-linearities,
while above three canopy heights from the ground only small effects are visible and both the
linearized model and the simulations have the same trends there.

Keywords Canopy flows · Forest clearings · Linearized Reynolds-averaged
Navier–Stokes equations

1 Introduction

The study of the atmospheric boundary layer over forested areas has numerous applications
in micrometeorology and wind energy but, despite much effort, there are still numerous

B Antonio Segalini
segalini@mech.kth.se

1 Linné FLOW Centre, KTH Mechanics, 100-44 Stockholm, Sweden

2 Department of Mechanical Engineering, Keio University, Yokohama, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10546-016-0190-5&domain=pdf


440 A. Segalini et al.

open questions, especially regarding complex terrain and how complex forest configurations
modify the flowfield above and in thewake of forests. Intensive research efforts have focussed
on describing the flow field over a homogeneous forest canopy (Stacey et al. 1994; Irvine
et al. 1997; Harman and Finnigan 2007; Segalini et al. 2013; Arnqvist et al. 2015), where it
is assumed that the streamwise extension of the canopy is at least one order of magnitude
larger than the local boundary-layer thickness, δ. Under this condition, it can be expected
that the canopy flow achieves an equilibrium state within the internal canopy boundary layer
(Garratt 1990) both above and below the canopy top, located at z = hc. Most numerical
simulations and analytical analyses have been performed within a homogeneous framework,
which allows significant simplification of the equations since the streamwise gradients vanish.
In typical forests, however, this condition is never fulfilled because forested areas are not
infinitely long and they have boundaries. Furthermore, forests can be inhomogeneous in
many parameters, such as the local tree height, foliage characteristics and leaf-area density.
If there is a significant area (of size comparable to the tree height) where trees are absent, it
is generally referred to as a clearing.

The first complication one encounters is due to the finite boundaries of the forest, where
most of the current idealized models are not valid due to the presence of a narrow transition
region (of the order of a few canopy heights) near the forest edges. Here the flow properties
tend to deviate between two different equilibrium states. Recently, large-eddy simulations
(LES) have become reliable and provide additional evidence (Yang et al. 2006; Dupont and
Brunet 2009; Silva Lopes et al. 2013) in the quest to understand the flow over complex
forest configurations. However, LES is computationally expensive while, on the other hand,
experiments require dedicated facilities and have limitations regarding the specification of
boundary conditions (such as initial conditions, leaf-area density, etc.) that prohibit a full
characterization. One alternative to LES is provided by Reynolds-averaged Navier–Stokes
(RANS) simulations that aim at the characterization of themean flowproperties andReynolds
stress, significantly reducing the computational cost with respect to LES. On the other hand,
the quality of RANS simulations heavily depends on the turbulence closure model employed,
and different hierarchies of models with different complexities exist (Mellor and Yamada
1982; Hanjalic 2005; Zilitinkevich et al. 2013). The problem is further complicated over
forests since the forest applies a significant drag to the incoming flow, providing a spectral
shortcut in the energy transfer between large and small scales of motion (Baldocchi and
Hutchison 1988; Finnigan 2000). Svensson and Häggkvist (1990) and Katul et al. (2004)
suggested modifying the standard k − ε model equations for k and ε (namely the turbulent
kinetic energy and the rate of turbulent kinetic energy dissipation, respectively) to account
for such mechanisms. Silva Lopes et al. (2013) provided expressions for the additional terms
in the k − ε equations, validating them for several flow cases with different complexities.

Currently, fewanalytical solutions are able to account for the presence of clearings.Belcher
et al. (2003), for instance, proposed a model based on linearized two-dimensional RANS
equations, where the boundary-layer approximation was enforced by neglecting the turbu-
lent streamwise momentum diffusion and a mixing-length model was used to represent the
shear stress as −u′w′ = l2m (dU/dz)2, in which lm(z) is the mixing length and dU/dz is
the streamwise velocity gradient in the vertical direction. By assuming that lm increases
linearly with height, the authors were able to analytically solve the first-order problem and
to estimate consequently the mean velocity field. However, as the authors noted, the mix-
ing length can be affected by the canopy presence (for instance through a vertical shift of
the lm profile, see Sogachev and Kelly 2015), so that the model suffered from ambiguity in
the choice of the mixing length and of the lack of an adjustment region for it. A complete
model, such as a two-equation model, overcomes this difficulty with the cost that additional
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equations must be solved. Linearized methods significantly reduce the complexity of the
equations and are amenable to the use of the Fourier transform in the horizontal plane, so
that high numerical accuracy is achieved but with a reduced computational effort (Shen et al.
2011). With the aim of performing a large number of simulations for an empirical char-
acterization of a generic forest, linearized methods are indeed very appealing. The present
paper is therefore aimed at the development of a linearized RANS solution with the modified
k − ε model proposed by Silva Lopes et al. (2013). In Sect. 2 the derivation of the model
equations is provided, together with a full account of the numerical solver used. In order
to validate the model, LES was performed with different clearing configurations and differ-
ent forest densities, as discussed in Sect. 3. The quantification of the linearization error is
reported in Sect. 4 where the comparison between linear and non-linear RANS is discussed.
The results of the validation efforts are shown in Sect. 5 while Sect. 6 offers concluding
remarks.

2 Mathematical Model

Let us consider a boundary layer,withmean streamwise velocity componentU0(z), approach-
ing a generic forest. The forest is characterized by a resistive body force

f = −cda f |U|U, (1)

where cd is the drag coefficient, a f is the leaf-area density and U = (U, V, W ) is the
velocity vector in the x, y, z reference frame, with x , y and z indicating the streamwise,
spanwise and vertical directions, respectively. For the sake of clarity, index notation will be
used when convenient, with 1, 2 and 3 indicating the x , y and z components, respectively.
All physical quantities are normalized by the density and a characteristic velocity and length
scale (here, the freestream velocity,U∞, and the canopy height, hc, respectively); the pressure
is consequently scaled by ρU 2∞, the turbulent kinetic energy (TKE), k, with U 2∞ and its rate
of dissipation, ε, with U 3∞/hc.

The incompressible steady RANS equations are

∂Ui

∂xi
= 0, (2)

U j
∂Ui

∂x j
= − ∂ P

∂xi
− ∂u′

i u
′
j

∂x j
+ ν

∂2Ui

∂x2j
+ fi , (3)

where the Reynolds stress term is modelled according to the Boussinesq hypothesis

u′
i u

′
j = 2

3
δi j k − νt

(
∂Ui

∂x j
+ ∂U j

∂xi

)
, (4)

with k = (u′2 + v′2 + w′2)/2 representing the TKE, while ν and νt indicate the normalized
kinematic viscosity and turbulent eddy viscosity, respectively. It is worth mentioning that the
eddy viscosity is postulated on dimensional grounds to be of the form νt = Cμk2/ε, where
Cμ = 0.09 (Silva Lopes et al. 2013). To complete the model, the equations for k and ε are
chosen to be

U j
∂k

∂x j
= ∂

∂x j

[(
ν+ νt

σk

)
∂k

∂x j

]
+ P − ε + Sk, (5)
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U j
∂ε

∂x j
= ∂

∂x j

[(
ν+ νt

σε

)
∂ε

∂x j

]
+ Cε1

ε

k
P − Cε2

ε2

k
+ Sε, (6)

with the constants σk = 1, σε = 1.22, Cε1 = 1.44, Cε2 = 1.92 (Silva Lopes et al. 2013). The
shear-production term is defined as P = −u′

i u
′
j (∂Ui/∂x j ) while the forest-related source

terms in the k − ε equations are modelled as

Sk = −βpcda f |U| k, (7a)

Sε = −βpCε5cda f |U| ε, (7b)

with βp = 4 and Cε5 = 0.9, according to Silva Lopes et al. (2013).
Let us consider now the incoming boundary layer, U0(z), with characteristic k0(z) and

ε0(z) profiles. The undisturbed flow is here assumed to be parallel to the surface and thereby a
function of z only. The terms f , and Sk and Sε represent perturbations to such an undisturbed
state, generating a deviation from it; we indicate such perturbations with the superscript
“(1)”, so that U (x, y, z) = U0(z) + U (1)(x, y, z). By assuming now that the undisturbed
flow satisfies Eqs. 2, 3, 5 and 6 and that U (1) � U0, it is possible to linearize Eqs. 2 and 3
to obtain

∂U (1)
i

∂xi
= 0, (8)

U0
∂U (1)

i

∂x
+ W (1) dU0

dz
δi1 = −∂ P(1)

∂xi
− ∂u′

i u
′
j
(1)

∂x j
+ ν

∂2U (1)
i

∂x2j
+ fi , (9)

where the perturbation Reynolds stress is given by

u′
i u

′
j
(1) = 2

3
δi j k

(1) − νt0

(
∂U (1)

i

∂x j
+ ∂U (1)

j

∂xi

)
− ν

(1)
t

dU0

dz

(
δi1δ j3 + δi3δ j1

)
. (10)

As can be seen from Eq. 10, the perturbation terms generate a modification of the undis-
turbed turbulent eddy viscosity νt0 = Cμk20/ε0 into νt = νt0 + ν

(1)
t where the linearized

modification is given by

ν
(1)
t =

(
Cμ

2k0
ε0

)
k(1) +

(
−Cμ

k20
ε20

)
ε(1) = ψk(z)k

(1) + ψε(z)ε
(1), (11)

where the sensitivity coefficients ψk and ψε are given by the partial derivatives of νt with
respect to k and ε. By inserting Eq. 10 into Eq. 9, it is possible to obtain

U0
∂U (1)

i

∂x
+ W (1) dU0

dz
δi1 = −∂ P(1)

∂xi
− 2

3

∂k(1)

∂xi
+ (νt0 + ν)

∂2U (1)
i

∂x2j

+dνt0

dz

(
∂U (1)

i

∂z
+ ∂W (1)

∂xi

)
+ ∂

∂z

(
ν

(1)
t

dU0

dz

)
δi1 + ∂ν

(1)
t

∂x

dU0

dz
δi3 + fi . (12)

Both Eqs. 11 and 12 require knowledge of the perturbed TKE and dissipation. These can
be obtained by linearizing the respective equations to
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U0
∂k(1)

∂x
+ W (1) dk0

dz

= 1

σk

[
(νt0 + σkν)

∂2k(1)

∂x2j
+ dνt0

dz

∂k(1)

∂z
+ ∂

∂z

(
ν

(1)
t

∂k0
∂z

)]
+ P(1)

k + Sk, (13)

U0
∂ε(1)

∂x
+ W (1) dε0

dz

= 1

σε

[
(νt0 + σεν)

∂2ε(1)

∂x2j
+ dνt0

dz

∂ε(1)

∂z
+ ∂

∂z

(
ν

(1)
t

∂ε0

∂z

)]
+ P(1)

ε + Sε, (14)

where the terms P(1)
k and P(1)

ε are the production and dissipation terms for k and ε given by

P(1)
k = 2νt0

dU0

dz

(
∂U (1)

∂z
+ ∂W (1)

∂x

)
+ ψk

(
dU0

dz

)2

k(1) +
[
ψε

(
dU0

dz

)2

− 1

]
ε(1),

(15)

P(1)
ε = Cε1Cμ

dU0

dz

[
2k0

(
∂U (1)

∂z
+ ∂W (1)

∂x

)
+ dU0

dz
k(1)

]
+ Cε2

ε0

k0

(
ε0

k0
k(1) − 2ε(1)

)
.

(16)

Given the base flow U0, k0 and ε0, the solution of Eqs. 9, 12, 13 and 14 provides the
additive correction to the base state able to account for the body force, f , due to the canopy
(and for its corresponding effect in the k and ε equations). Being rigorous and self-consistent
in the derivation, the forcing terms should also be subjected to the linearization, so that
f1 = −cda f U 2

0 + O(cda f U0U (1)) and the first term only should be used to generate the
first-order perturbation field. However, in the limit of a forest of infinite horizontal extent,
the constant force −cda f U 2

0 leads to an unphysical back-flow. This can be avoided by
introducing higher-order corrections to the linearized problem. Alternatively, Belcher et al.
(2003) suggested an iterative approach where f1 = −cda f (U0 + U (1))2, whereby the order
relationship is lost in the perturbation term; however, it has the advantage that, as the velocity
magnitude is reduced by the drag of the forest, the same happens to the body force, which
vanishes in the limit of a very long forest. In the present work the same philosophy is adopted,
and the perturbation terms are therefore computed as

f = −cda f

∣∣∣U0 + U(1)
∣∣∣ (U0 + U(1)

)
, (17)

Sk = −βpcda f

∣∣∣U0 + U(1)
∣∣∣ (k0 + k(1)

)
, (18)

Sε = −βpCε5cda f

∣∣∣U0 + U(1)
∣∣∣ (ε0 + ε(1)

)
. (19)

2.1 Numerical Implementation and Base Flow

Equations 9, 12, 13 and 14 were here solved by applying a Fourier transform in the horizontal
plane, defined as

φ̂ (α, β; z) =
∫
R2

φ (x, y, z) exp [−i (xα + yβ)] dx dy, (20)

with α and β indicating the streamwise and spanwise wavenumber, respectively.
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Variations in the vertical direction were characterized by using Chebyshev polynomials
(discretized with a Gauss-Lobatto distribution and mapped into the physical space by an
exponential map of the form ξ = A + Be−Cz , with A, B, C determined by the domain
boundaries and the desired stretch of the grid near the surface), transforming the available
set of differential equations into an algebraic linear system (Schmid and Henningson 2001).
The use of the Fourier transform in the horizontal plane and of the Chebyshev polynomials
in the vertical direction ensured a higher numerical accuracy compared to finite-difference
schemes (Shen et al. 2011). Since the available LES data are statistically two-dimensional,

the model was solved assuming V (1) = u′v′(1) = v′w′(1) = 0 and for β = 0 only, reducing
significantly the computational cost.Nevertheless, the extension to the three-dimensional case
is straightforward. The grid in the streamwise direction was composed by 2048 grid points
equally spaced between −100hc and 500hc, while 101 Chebyshev polynomials were used
in the vertical direction. It is worth mentioning that the solution converged (within an error
of 1%) already for a streamwise discretization composed of 512 grid points, corresponding
to a total computational time of around 15 min on a standard desktop computer.

The use of the Fourier transform in the streamwise direction implied a periodicity of the
inlet-outlet. If some streamwise momentum is extracted inside the domain (for instance by
the canopy), then the flow momentum monotonically decreases and a steady state can thus
be achieved only through the emergence of an artificial pressure gradient in the streamwise
direction. In order to avoid this unphysical feature, a buffer zone was introduced between
400hc and 490hc where an artificial body force f1 = −λ(x)U (1) was introduced (with
λ(x) proportional to the form proposed by Chevalier et al. (2007), which is zero outside the
fringe domain) to force the velocity perturbation to vanish at the end of the domain. Similar
considerations apply for the k(1) and ε(1) source terms, leading to the expressions

f = −cda f

∣∣∣U0 + U(1)
∣∣∣ (U0 + U(1)

)
− λ(x)U(1), (21)

Sk = −βpcda f

∣∣∣U0 + U(1)
∣∣∣ (k0 + k(1)

)
− λ(x)k(1), (22)

Sε = −βpCε5cda f

∣∣∣U0 + U(1)
∣∣∣ (ε0 + ε(1)

)
− λ(x)ε(1). (23)

The boundary conditions imposed on the perturbations were

U (1) = V (1) = W (1) = ∂W (1)

∂z
= ∂k(1)

∂z
= ∂ε(1)

∂z
= 0 at z = z0, (24)

U (1) = V (1) = ∂W (1)

∂z
= P(1) = k(1) = ε(1) = 0 as z → ∞. (25)

Due to the choice of the logarithmic velocity profile, the no-slip condition must be applied at
z = z0 rather than at the ground. However, as the roughness length, z0, is usually very small,
this approximation is not expected to play a significant role, unless the region very near the
ground is of interest. On the other hand, since the domain size is finite, the infinity condition
is imposed at z = 100hc.

The adopted base flow should be a solution of the RANS equations with the k − ε closure
in order to be consistent with the fully non-linear solution in the limit of small perturbations
(although this is not a stringent requirement). The base flow is here assumed to be described
by

U0(z) = u∗
κ

ln

(
z

z0

)
, (26a)
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k0 = u2∗√
Cμ

, (26b)

ε0 = u3∗
κz

, (26c)

where u∗ and κ are the friction velocity (normalized by the chosen characteristic velocity and
length scale) and von Kármán constant, respectively. The base state (26a–26c) is a solution
of the RANS equations with the k − ε closure if κ2 = σε (Cε2 − Cε1)

√
Cμ, a requirement

that would imply κ = 0.419 with the adopted set of constants. However, the value of κ = 0.4
was adopted in the present work, so that the ε equation is slightly violated by the choice
of the basic state, although the discrepancies are expected to be negligible away from the
ground. With this choice of base state, the expressions of the turbulent eddy viscosity and its
sensitivity to k and ε variation are given by

νt0 = κu∗z, (27a)

ψk = 2
√

Cμ

κz

u∗
, (27b)

ψε = −
(

κz

u∗

)2

. (27c)

3 LES Set-Up

Several LES have been performed so as to validate themodel for with different forest configu-
rations. The governing equations are obtained by applying a spatial filter to theNavier–Stokes
equations as

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − ∂ p̃

∂xi
+ 1

Re

∂2ũi

∂x2j
+ ∂τ SGS

i j

∂x j
− cda f |ũ| ũi , (28)

where the tilde denotes filtered quantities. The Reynolds number is defined as Re = U∞δ/ν,
where U∞ is the freestream velocity, δ is the 99 % boundary-layer thickness and here ν is
the kinematic viscosity of the air. In the present simulations Re = 3.8× 104, which was the
highest possible value achievable with the available computational resources.

The eddy-viscosity model was used to close the subgrid-stress (SGS) tensor τ SGS
i j as

τ SGS
i j = νSGS

T

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
, (29)

where, νSGS
T indicates the SGS eddy viscosity.

The Non-Rotating Coherent-structure Smagorinsky Model (NRCSM, Kobayashi 2005)
was used in the present simulations: here the eddy viscosity in the NRCSM is calculated as

νSGS
T = Cs‖FC S‖3/2Δ2

√
2Si j Si j , (30)

where Si j is the strain-rate tensor, the constant Cs in the NRCSM is 0.05 and FC S is the
coherent-structure function. The coherent-structure function is calculated as FC S = Q/E ,
where Q is the second invariant of the velocity-gradient tensor. The denominator of the
coherent-structure function, E , is calculated as

E = 1

2
(Wi j Wi j + Si j Si j ), (31)

where Wi j is the rotation tensor.
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3.1 Numerical Set-Up

As illustrated in Fig. 1, the computational domain is composed of two parts, similar to Lund
et al. (1998): one is a driver part, where the neutral boundary-layer inflow is generated by
recycling the properly rescaled velocity profiles at the recycling station, and the other is the
main part, where the canopy and the clearings are located. The velocity rescaling at the driver
part is calculated as

uinlt = γ
[
Uinn

recy + u′ inn
recy

][
1 − W (ηinlt)

]
γ
[
U out

recy + u′ out
recy

]
W (ηinlt), (32)

where capital letters indicate quantities averaged in time,while the primesmark thefluctuation
from the time-mean value. The subscripts ·inlt and ·recy denote the value at the inlet and at
the recycle plane, respectively, and the superscripts ·inn and ·out indicate with which scale
the velocity is non-dimensionalized, the inner scale or the outer scale η. Here, γ is the ratio
of the friction velocity between the inlet and the recycling station and W (η) is a weighting
function; this is a hyperbolic tangent-type function that is used to blend the rescaled quantities.
With respect to the original recycle method proposed by Lund et al. (1998), two of the
modifications suggested by Jewkes et al. (2011) are applied. The first modification is the use
of the displacement thickness, i.e., δ∗ = ∫ ∞

0 (1− U/U∞)dz, as an outer length scale instead
of the 99% boundary-layer thickness, δ, so that the inlet mass flux is more stable. The second
modification applies mirroring to the rescaled profile in order to avoid spurious structure.

The size of each domain (Lx × L y × Lz) is (3πδ×πδ×5δ ≈ 90hc ×15hc ×50hc), where
L represents the length in each direction, and the number of grid points (Nx × Ny × Nz)
is (256 × 256 × 98) for both the main and driver parts. The grid size in wall units (Δx+ ×
Δy+ × Δz+

min) is (55.6 × 18.5 × 0.8); a hyperbolic tangent-type stretching is used in the
wall-normal direction below z/δ = 1.

The second-order accurate finite differencemethod is used in the LES code, which is based
on the direct numerical simulation (DNS) code of Kametani and Fukagata (2011). A stag-
gered grid system, where the velocities are defined on the cell surface, while the pressure and
the eddy viscosity are located at the cell centre, is used in the present model. Equation 28 is
temporally integrated using a low-storage third-order accurateRunge–Kutta/Crank–Nicolson
scheme,while a divergence-free condition for the velocity is imposed by coupling the pressure
field with the velocity. The coupling is done by solving the Poisson equation of the pressure.

Driver part

Main part

z /

Rescaling Recycle station

z /

x /

x /
0

1

2

0

1

2
0 3 9

0 3 96

Inflow velocity

Fig. 1 The driver part and the main part used for LES. The colours denote the instantaneous streamwise
velocity component in a cross-section (red high; blue low). The dash-dotted line in the main part represents
the canopy. Note that here x , z and δ are non-dimensional and scaled by h
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u
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s
v
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w
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s

(a) (b)

u +
rms

v +
rms

w +
rms

Fig. 2 Statistics computed by the present LES at Re ≈ 4× 104 (Reθ ≈ 4000) in the case without a canopy:
a mean velocity profile; b r.m.s. of the velocity fluctuations. (Solid line) present LES; (dashed line) DNS of
Schlatter and Örlü (2010)

In both the driver and the main domains, the upper boundary conditions for the streamwise
velocity component u, the vertical velocity component w, and the spanwise velocity compo-
nent v are imposed as ∂u/∂z = ∂v/∂z = w = 0, while the no-slip condition is imposed at
the ground surface boundary. A constant mass flux is applied at the inflow boundaries. The
advective boundary condition of Miyauchi et al. (1994) is applied at the downstream end of
each computational domain, while periodic boundary conditions are imposed at the spanwise
boundaries.

The flow field of a turbulent boundary layer at a low Reynolds number (with friction
Reynolds number of Reτ = uτ δ/ν ≈ 180, which corresponds to Re = U∞δ/ν ≈ 3000),
originally used in the DNS code of Kametani and Fukagata (2011), was used as the initial
field. The non-dimensional timestep�tU∞/δ was set to be 1×10−3. Pre-computations were
continued until T ≈ 100U∞/δ, at which the flow is assumed to have reached the statistically
steady regime. After this pre-computation, the first- and the second-order statistics were
computed every 50 timesteps, and iterations were done until 50,000 time-steps.

Figure 2 shows the statistics computed by the present LES at Re ≈ 4×104 (corresponding
to a momentum-thickness-based Reynolds number of Reθ ≈ 4000) in the case without a
canopy. It can be noted that both the mean velocity profile and the root-mean-square velocity
fluctuations are fairly well reproduced as compared to the DNS data (Schlatter and Örlü
2010), although a small amount of insufficient redistribution among velocity components
can be found in Fig. 2b. Note that in Fig. 2 (and only there) the + superscript indicates
viscous scaling, namely z scaled by ν/u∗ and the velocities scaled by u∗.

3.2 Forest Set-Up

The boundary-layer profile at the inlet of the LES was characterized asU = (u∗/κ) ln (z/z0)
with z0/hc = 0.00075 and u∗/U∞ = 0.0384, providing the parameters for the base flow
in the mathematical model. On the other hand, the canopy body force was characterized
by the product of the drag coefficient and the leaf-area density. The former was assumed
to be constant (cd = 0.2) while the latter was assumed to have the shape shown in Fig. 3
(similarly to Dupont and Brunet 2009) normalized by the leaf-area index (L AI ), defined as
L AI = hc

∫ 1
0 a f dz. The L AI values were changed from 0.05 to 5 in the RANS simulations
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Fig. 3 Leaf-area density (a f )
normalized by the leaf-area index
(LAI)
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(both linear and non-linear), while only two L AI values were used in the LES, namely
L AI = 2 and L AI = 5.

The full-forest configuration was two-dimensional and rectangular starting from x = 0
and terminating at x = 40hc. Four different clearing configurations were considered, where
a clearcut was added between 20 ≤ x/hc ≤ 25, 20 ≤ x/hc ≤ 30, 20 ≤ x/hc ≤ 35 and for
x/hc ≥ 20 (the latter representing just a shorter full forest).

4 Non-linear RANS Simulations

The model developed in Sect. 2 is based on a linearized solution of the RANS equations with
a linearized k −ε model for the turbulence closure, mimicking the non-linear code, but faster.
In the best-case scenario, the model provides a solution of the non-linear RANS equations.
Therefore, any discrepancy observed when comparing with LES might be due to both the
linearization and the k − ε model error. In order to distinguish between the two error sources
or (at least) to qualitatively assess their importance, additional non-linear RANS simulations
were performed bymeans of OpenFOAM, a code based on a finite-volume approach. The 2D
computational domainwas 600hc long and 50hc high discretized into 1000 and 200 segments,
respectively. The same inlet boundary layer of the linearized simulation was imposed as an
inlet condition, while the lower boundary was described by wall functions. The scheme
proposed by Silva Lopes et al. (2013) for the source terms in the k and ε equations was also
adopted. The same homogeneous forest used in the linearized RANS and LES was studied,
but with a wider range of L AI to characterize the departure from the linear behaviour.

Figure 4 shows the comparison of the main characteristic variables U , k and ε in the
middle of the canopy and just above it (x = 20hc, z = 1.5hc). From now on, the statistics
are normalized with U∞ and hc, although the scaling is removed from the figure labels
and caption for the sake of clarity. The comparison shows that the linear model is able to
replicate qualitatively only the mean velocity, while the turbulence quantities are severely
underestimated. The error in k is distributed amongst the three velocity variances (shown in
Fig. 5), although the shear stress is surprisingly well estimated. By comparing the present
model with the mixing-length-based model proposed by Belcher et al. (2003), it is quite clear
that the linearization is still valid for the momentum equation, but cannot be extended with
confidence to the k and ε equations. A possible reason for the different agreements is due to
the fact that theU (1) correction is smaller thanU0(z), while k(1) and ε(1) can be several times
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Fig. 4 Comparison of U , k and ε at x = 20hc and z = 1.5hc between the linearized model (solid black line)
against non-linear RANS data (circles) for different L AI . The grey lines indicate the linear model corrected
with the second-order correction, while the dashed lines indicate the undisturbed values. The black squares
are the corresponding LES data

larger than their undisturbed counterparts. Nevertheless, an expansion in terms of turbulent
viscosity seems to be still appropriate as most of the diffusive processes are still dominated
by the unperturbed turbulent eddy viscosity (justifying the agreement seen by Belcher et al.
2003).

A possible alternative to improving the estimated TKE is to develop a second-order correc-
tion that accounts for the non-linearities. The developed second-order correction is described
in Appendix 1 and its effects can be seen in Figs. 4, 5 and 6 (for L AI = 1) marked by the grey
lines. The second-order correction, however, overestimates k because of the non-linearity, so
that an arbitrary factor of 2 is introduced to reduce the intensity of the second-order correction
only: therefore, its use should be limited to the correction of k and to the determination of
the velocity variances, when needed.

5 Results

The velocity statistics obtained for the full-forest configuration are shown in Fig. 7 where
the proposed model is compared with the LES data for L AI values of 2 and 5 that, from
now on, are studied in the present section (it is worth noting that all physical quantities are
normalized by the density, the freestream velocity,U∞, and the canopy height, hc, consistent
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Fig. 5 Comparison of −u′w′, u′2, w′2 and v′2 at x = 20hc and z = 1.5hc between the linearized model
(solid black line) against non-linear RANS data (circles) for different L AI values. The grey lines indicate
the linear model corrected with the second-order correction, while the dashed lines indicate the undisturbed
values. The black squares are the corresponding LES data

with Sect. 2). The incoming logarithmic velocity profile is gradually modified downwind of
the forest edge, with the characteristic flow deceleration inside the forest and the inflection
point of the wind-speed profile occurring at the canopy top. The model adjusts to the forest
condition less rapidly than does the LES (as visible, for instance, at x = 10hc and x = 50hc),
but both tend to the same nearly-parallel state. After the forest trailing edge, the wake of the
forest provides velocity recovery near the ground, a dynamic that is accounted for by the
first-order model as well. The same kind of agreement was reported by Belcher et al. (2003)
when comparing the mean velocity profile estimated with the mixing-length-based linearized
model with available RANS and experimental data. The Reynolds shear stress u′w′ is then
shown and it can be noted that it is slightly overestimated by the model over the canopy but
nevertheless there is a qualitative agreement. For both the reported L AI values, the peak stress
is located at the canopy top, vanishing both inside the canopy and away from it, as suggested
by observations (Harman and Finnigan 2007; Segalini et al. 2013). The comparison of the
u′w′ profile upstream of the canopy and over it clearly shows the significant enhancement
in the turbulence activity typically observed over forested areas, while the wake of the forest
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Fig. 8 U (scaled by a factor 5) for the four different forest configurations (the presence of the forest is
indicated by a shaded area). See Fig. 7 for the used list of symbols

is quite persistent and the u′w′ Reynolds stress component does not decay as rapidly as it
increased upstream of the forest edge.

Some discrepancy is instead observed in the TKE, which is significantly underestimated
by the first-order model by almost a factor of two over the canopy, while the disagreement
decreases in the wake of the forest. Interestingly, by computing the normal Reynolds stresses,

it is evident that most of the discrepancy is due to the underestimation of u′2, while w′2 is

reasonably well characterized and v′2 is less severely underestimated over the forested area).
The use of the second-order correction, discussed in Sect. 4 and Appendix 1, is beneficial
and improves the estimation of the TKE and velocity variances significantly.

The L AI range used in Fig. 7 has a negligible effect on all the available statistics: actually
this could have been anticipated from Figs. 4 and 5 where the statistics scale logarithmically
with the leaf-area index for L AI � 0.5 (it should be, however, kept inmind that the threshold
for the onset of the logarithmic behaviour depends on the length of the canopy as well), so
forest-density effects will not be discussed further for the available LES, although data for
both L AI values will be shown for the sake of completeness. Furthermore, this will allow
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Fig. 9 −u′w′ (scaled by a factor 400) for the four different forest configurations (the presence of the forest
is indicated by a shaded area). See Fig. 7 for the used list of symbols

us to see whether or not the flow over clearings is as insensitive to the forest density as in the
homogeneous forest case.

The velocity statistics for the various clearing configurations are now shown in Figs.
8, 9, 10, 11, 12 and 13. Similar to the homogeneous case, the mean velocity profile is
properly estimated by the first-order model, showing the right recovery from the rough-to-
smooth region and vice versa. For a short clearing the velocity is practically unchanged,
while the deviation (or flow recovery) increases nearly linearly with the streamwise extent
of the clearing. It was thought that a linear additive correction (able to estimate the clearing
perturbation superposed to the full-forest condition) was possible, but the deviations were not
self-similar between different clearing lengths and L AI . This is consistent with the analytic
theory where the mean flow is obtained through the convolution of the roughness height with
an opportune kernel, leaving out possible self-similar effects for short clearings, while long
clearings are mostly dominated by the wake decay and by the rapid flow distortion near the
trailing edge of the clearing.
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Fig. 10 k (scaled by a factor 200) for the four different forest configurations (the presence of the forest is
indicated by a shaded area). See Fig. 7 for the used list of symbols

Figure 9 shows the modification of the shear stress u′w′ with various clearing configu-
rations, with a reasonable agreement between LES and the linearized model. The sudden
interruption of the forest is perceived by the linearized method and the shear-stress profile
changes concavity significantly, especially below the canopy top. When the forest restarts,
the model is slower to recover than the LES, as noted before for the streamwise veloc-
ity component. It is of interest to point out that the linearized model overestimates the
shear stress near the canopy top, while the LES data have a plateau in u′w′ above the
forest.

Figure 10 shows the TKE profiles from both LES and the linearized model, while all
normal Reynolds stresses are shown in Figs. 11, 12 and 13. Consistent with the full-canopy

analysis, both k and u′2 are underestimated by the first-order model by almost a factor of 2,

while w′2 and v′2 are reasonably well estimated, although v′2 is still underestimated over
the forested area and in the clearing area. Again the second-order correction improves the

predictions of the first-order linearized model, although u′2 remains underestimated: this
latter discrepancy is however due to a limitation of the non-linear k − ε model since the
non-linear RANS simulations show a similar discrepancy (see Fig. 5).
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Fig. 11 u′2 (scaled by a factor 200) for the four different forest configurations (the presence of the forest is
indicated by a shaded area). See Fig. 7 for the used list of symbols

6 Conclusions

A new simplified model has been proposed here to estimate the flow around forested areas
based on a linearization of the RANS equations with a k−ε closure scheme. The linearization
is performed around the incoming boundary layer (here characterized by the aerodynamic
roughness length and friction velocity) perturbed by a body-force distribution to mimic the
forest effects. Themain advantage of the proposed linearization is the possibility of solving the
RANS equations much more rapidly than non-linear simulations and much more accurately
than finite-difference based schemes (Shen et al. 2011) with the drawback that a linearization
error must be accounted for. As discussed earlier, in the limit of infinitely weak forest,
the linearized RANS solution converges to a full non-linear RANS solution, while some
deviations are observed for forests with large enough LAI (here the deviations are observed
from LAI > 0.5, although that strongly depends on the length of the forest). It is expected
that a complete analytical solution of the linearized RANS equations might be possible by
enforcing the boundary-layer approximation (namely by accounting only for the turbulent
momentum transfer in the vertical direction), but this possibility was not investigated in the
present work.
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Fig. 12 w′2 (scaled by a factor 200) for the four different forest configurations (the presence of the forest is
indicated by a shaded area). See Fig. 7 for the used list of symbols

The k − ε closure was preferred compared to a traditional mixing-length model since
it does not need an estimation of the mixing length as with, for instance, the analytical
model of Belcher et al. (2003), although the results are qualitatively similar in terms of
the mean velocity profile and Reynolds stress u′w′. Another advantage of the higher-order
closure scheme is the possibility of estimating the Reynolds stress tensor beyond the shear
stress u′w′ (which is already provided by the mixing-length closures). The k and ε trans-
port equations were here modified to account for the turbulence destruction caused by the
forest, according to the suggestions of Silva Lopes et al. (2013). The values of the closure
coefficients were the same as those used by Silva Lopes et al. (2013) in their comparison
between RANS simulations and LES. Several non-linear RANS simulations were conducted
for a full-forest configuration to assess the error due to the linearization of the RANS
equations. The results demonstrated that the discrepancy increases as the LAI increases,
although several quantities were less affected than others: for instance, the mean velocity
and shear stress u′w′ were reasonably well estimated, while the turbulent kinetic energy
and velocity variances were severely underestimated. A second-order correction to the linear
approach was then developed to remedy the poor agreement in the TKE, but its magni-
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Fig. 13 v′2 (scaled by a factor 200) for the four different forest configurations (the presence of the forest is
indicated by a shaded area). See Fig. 7 for the used list of symbols

tude was then too high and an empirical factor of two had to be introduced to attenuate
the correction magnitude. Consequently, the use of the second-order correction is suggested
only when the access to the velocity variances is desired, while the first-order approach (or
the traditional mixing-length-based method) should be used if the mean velocity only is of
interest.

Several large-eddy simulations were performed for different clearing configurations by
introducing a body force in the momentum transport equations to simulate the forest, without
directly changing the subgrid-stress model (similar to Dupont and Brunet 2009). A compari-
son between the LES results and the proposed first-order linearized model for realistic forest
configurations has shown that the latter was able to estimate the mean streamwise velocity

component, U , the shear stress, u′w′ and the lateral normal stresses, v′2 and w′2, while it

significantly overestimated the streamwise velocity variance, u′2, and consequently the TKE.
The proposed second-order correction improved the agreement between the modelled and

simulated TKE and u′2, although the introduction of the empirical factor of two makes the
correction less trustworthy. Nevertheless, even the first-order approach improved existing
simplified methodologies to assess forest effects with and without clearings, providing a

123



458 A. Segalini et al.

leading-order analysis of the canopy flow. It is unclear if the inclusion of higher-order terms
in the expansion could improve the comparison, although it is expected to be beneficial
since the fully non-linear RANS results showed a better agreement with the TKE calcu-
lated from LES. Since U and u′w′ agree reasonably well, the role of the different closure
methods (between RANS and LES) is marginal as most of the discrepancies arise from the
linearization. The factor of two introduced for the second-order correction suggests that a
higher-order correction should probably be pursued to properly account for the non-linearity,
but this might not be worthwhile. Nevertheless, the first-order model remains a useful tool
for weak and dense canopies (the latter necessitates the use of the second-order correction),
but it could also be a feasible approach to simulate wind farms as the equivalent LAI is much
smaller there.
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Appendix 1: Second-order correction

To improve the agreement between the first-order model, the non-linear RANS and LES
results, a second-order correction has been developed by assuming an asymptotic expansions
of the form

U = U0(z) + U(1) + U(2), (33)

for the momentum and similarly for the pressure, TKE and TKE dissipation. The second-
order correction should be small compared to the first, so that O(U (2)) � O(U (1)) �
O(U0). Consistently with the linearization, the products O(U (1)U (1)) and O(U0U (2)) will
be considered to be of the same order ofmagnitude,while the other productswill be neglected.
The resulting second-order problem is still linear in the corrective term and it is the same one
as stated in Eqs. 8 and 12–14 namely

∂U (2)
i

∂xi
= 0 (34)

U0
∂U (2)

i
∂x + W (2) dU0

dz δi1 = − ∂ P(2)

∂xi
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(35)

νt2 = ψkk(2) + ψεε
(2), (36)
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U0
∂ε(2)
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The only difference existing between the first- and second-order correction lies in the
forcing terms that are
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The S terms represent indeed the body forces applied to the flow by both the forest and the
fringe region. As evident fromEqs. 41–43, they compensate for the different drag between the
first- and the second-order corrections, while the fringe force acts linearly. This methodology
is the fastest since it necessities only of an additional linear simulation, rather than an iterative
scheme where the first-order correction is allowed to vary as a consequence of the second-
order one. On the other hand, the additional body forces 44–46 are due to the non-linear
interaction of the first-order field, and they should indeed compensate for the non-linear
departure from the first-order correction.
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