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Abstract Dual-Doppler lidar has become a useful tool to investigate the wind-field structure
in two-dimensional planes. However, lidar pulse width and scan duration entail significant
and complex averaging in the resulting retrieved wind-field components. The effects of these
processes on the wind-field structure remain difficult to investigate with in situ measure-
ments. Based on high resolution large-eddy simulation (LES) data for the surface layer,
we performed virtual dual-Doppler lidar measurements and two-dimensional data retrievals.
Applying common techniques (integral length scale computation, wavelet analysis, two-
dimensional clustering of low-speed streaks) to detect and quantify the length scales of the
occurring coherent structures in both the LES and the virtual lidar wind fields, we found
that, (i) dual-Doppler lidar measurements overestimate the correlation length due to inherent
averaging processes, (ii) the wavelet analysis of lidar data produces reliable results, provided
the length scales exceed a lower threshold as a function of the lidar resolution, and (iii) the
low-speed streak clusters are too small to be detected directly by the dual-Doppler lidar.
Furthermore, we developed and tested a method to correct the integral scale overestimation
that, in addition to the dual-Doppler lidar, only requires high-resolution wind-speed variance
measurements, e.g. at a tower or energy balance station.

Keywords Coherent structures - Dual Doppler - Large-eddy simulation - Lidar

1 Introduction

It has long been known that turbulent fluid motion exhibits patterns of self-organization, so-
called coherent structures. Robinson (1991) listed various shapes of structures occurring in
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a flat-plate boundary layer (FPBL) at low Reynolds number: near-wall low-speed and high-
speed streaks, i.e. alternating regions in which the streamwise fluid velocity is increased or
decreased compared to its mean value and that are elongated in the direction of the mean
flow; ejections and sweeps, i.e. intermittent, rapid movements of the fluid outward from the
wall in the low-speed regions or towards the wall in high-speed regions, respectively; as
well as various vortical structures shaped like quasi-streamwise vortices, arches, hairpins or
horseshoes. Adrian et al. (2000) combined earlier findings in a hairpin vortex packet paradigm
in which they assume shear-induced spanwise vortex filaments close to the wall being lifted
and stretched into hairpin-shaped structures that can self-replicate, form packages and grow
throughout the boundary layer. According to this model, low-speed streaks form due to the
fluid motion between one or several successive hairpin legs, the vortical motion of which
causes the ejection, while sweeps occur due to the inverse process in between, and in front of,
the hairpin vortex packets. The model was substantiated with direct numerical simulations
(Zhou et al. 1999; Adrian and Liu 2002).

The atmospheric boundary layer, in contrast, is a high Reynolds number flow, in which
turbulence is created from both shear and buoyancy. Here, three kinds of structures have been
observed (Agee 1984; Young et al. 2002): surface-layer streaks comparable to FPBL streaks
in shear-dominated flows (Hommema and Adrian 2003; Newsom et al. 2008), horizontal
rolls reaching through the whole boundary layer in moderately convective situations (Etling
and Brown 1993; Hartmann et al. 1997), and cell-shaped updrafts in very unstable situations
(Feingold et al. 2010). These structures appear as well in turbulence-resolving large-eddy
simulations (LES, Moeng and Sullivan 1994; Khanna and Brasseur 1998; Kim and Park
2003; Hellsten and Zilitinkevich 2013).

Here, we focus on surface-layer streaks, which we also call ‘structures’ or ‘coherent
structures’ throughout the text since they occur in repetitive patterns, even though it should
be kept in mind that they might be just the footprints of larger-scale hairpin vortices.

Streaks are particularly important for subgrid-scale parametrizations in mesoscale models
due to their large contribution to the Reynolds stress tensor. Using the notation #’, v" and w’
for the streamwise, spanwise and vertical (i.e., wall-normal) turbulent velocity components,
it is known that usually #’w’ < 0 in the surface layer, thereby generating turbulence kinetic
energy due to shear (Stull 1988; Adrian 2007). This is the result of the prevalence of ejections
(@' < 0,w’ > 0)and sweeps (u’ > 0, w’ < 0), the latter of which occur more often but with
less intensity than the former (Lin et al. 1996; Kim and Park 2003).

Traditionally, these structures have been investigated with in situ measurements of wind
speed, temperature or humidity (Thomas and Foken 2007; Zhang et al. 2011), however, their
spanwise and wall-normal extent and statistical distribution cannot be measured in this way.
Arrays of in situ sensors were able to capture small-scale processes (Inagaki and Kanda 2010;
Thomas et al. 2012), but are difficult to extend over hundreds of metres. Dual-Doppler lidar
methods seem to provide a valuable supplement here, since they allow the measurement of
the complete two-dimensional wind field with a spatial resolution of a few tens of metres
and a time resolution of the order of 10s on planes of several km? in size. It has been shown
that surface-layer streaks can be detected with horizontal dual-Doppler lidar scans (Newsom
et al. 2008; Iwai et al. 2008) and a recent study by Traumner et al. (2014) derived their
length scales depending on stability and background wind speed. However, the limited time
and spatial resolutions due to scan duration and the extent of the lidar pulse lead to severe
inherent averaging in the resulting wind fields (Stawiarski et al. 2013). The influence of these
processes on the detected turbulence structures cannot be determined with independent in
situ measurements, and we can expect that small-scale structures in particular, which are on
the order of or smaller than the lidar averaging scale, are insufficiently detected.
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To assess the quality of surface-layer coherent structure detection in dual-Doppler lidar
data, we developed a lidar simulation tool that is able to perform virtual dual-lidar mea-
surements in turbulence-resolving boundary-layer simulation data from LES. We performed
virtual synchronized horizontal scans with parameters comparable to real Doppler lidars in
LES data with varying shear. On both the resulting dual-lidar and original LES wind fields
we applied three common structure detection techniques: a correlation length algorithm,
a wavelet analysis and a clustering method. We compared the distributions of the result-
ing streak length scales and thereby determine which techniques are applicable for reliable
results. Further theoretical investigations allowed us to explain the results and, in the case of
correlation lengths, to develop a technique for length scale correction.

2 The Dataset

Horizontal dual-Doppler lidar measurements are made with two lidars synchronously scan-
ning an overlap area at low elevation. In the region where data from both lidars are present
the horizontal wind field can be deduced using a change of basis (Newsom et al. 2008). The
resulting fields have a spatial resolution on the order of the lidar pulse width and a time
resolution given by the lidar scan duration.

Although coherent structures are usually visible in the resulting streamwise wind-field
component, two aspects complicate an interpretation of the results: firstly, the lidar mea-
surements contain considerable smoothing due to the inherent spatial averaging resulting
from the lidar pulse width and the duration and uneven sampling of the scanning area, and
secondly, validation of measurement results is difficult because no other instrument provides
wind measurements with comparable frequency and range.

However, since the averaging processes involved in measurements with solid-state based
Doppler lidars are mathematically well described (Frehlich et al. 1998; Frehlich 2001), it is
possible to simulate Doppler lidar measurements in high-resolution boundary-layer wind-
field data, e.g. from LES. We employ this method for two virtual lidars with synchronized
scan patterns and retrieve the horizontal wind field from the resulting virtual dual-Doppler
measurement data. The data can be subsequently analyzed for coherent structures. On the
other hand, the same methods can be applied to the original LES data. The comparison yields
an insight into the applicability of the well-established methods of structure detection to
dual-Doppler lidar data and allows us to test methods of correction.

2.1 Simulation of Doppler Lidar Measurements

Stawiarski et al. (2013) developed a lidar simulation software tool that works as a Doppler
lidar forward operator and enables virtual Doppler-lidar measurements in a simulated bound-
ary layer. We make use of an upgraded version of the software, the computational principle
of which is summarized below.

In a given three-dimensional LES wind-vector data grid, the virtual lidar position, its
measurement characteristics (pulse width, range gate length etc.) and scan pattern are pre-
scribed as external parameters to the simulator, which in turn computes position, orientation
and scanned-through region for every range gate of the lidar beam at every timestep. From
the geometric information a weighted average is computed for each wind-field component
by interpolating the data grid on the range gate and taking the lidar-dependent weighting
functions into account (Frehlich et al. 1998; Frehlich 2001). The radial wind component is
subsequently obtained by projecting the averaged wind vector on the lidar beam.

@ Springer



374 C. Stawiarski et al.

Table 1 Atmospheric scaling parameters in the LES datasets: the geostrophic wind speed uc, the standard
L. . _ . —F2 2
deviation of the wind-field components at z = 15 m, the friction velocity usx = (u'w’ + v'w’ 0)1/ 4 the

convection velocity ws = (z; (g/0v)w’ 9{)0)1/ 3 the boundary-layer height z; as derived from the minimum
in the vertical heat flux, and the stability parameter —z; / L+, where Ly is the Obukhov length

ug ms™H oy o) msT) WO Kms™H  wems™H  wems™hH oz (m) —z/Ls
0 (1.1, 1.1) 0.23 0.04 2.09 1208 57,000
5 (0.6, 0.6) 0.03 0.32 0.84 602 7.2

10 (1.1,0.7) 0.03 0.51 0.85 613 1.9

15 (1.5,0.9) 0.03 0.68 0.87 665 0.8

For a dual-Doppler lidar simulation, the scan patterns of two virtual lidars are synchro-
nized. The horizontal wind field can be obtained from a retrieval algorithm, which reassembles
the data from both lidars and finds the most probable horizontal wind vector on a Cartesian
grid. Here, we use the retrieval method of minimizing a cost function from Stawiarski et al.
(2013) that is based on Newsom et al. (2008).

2.2 The LES Data

PALM is a parallelized LES model developed by Raasch and Etling (1991) and Raasch and
Schroter (2001), with governing equations that use the Navier—Stokes equations in a Boussi-
nesq approximation. The subgrid scales are parametrized according to Deardorff et al. (1980)
with a gradient transport approach and Monin—Obukhov similarity is prescribed below the
lowest computational grid level, including the calculation of the friction velocity u.. Coriolis
effects are included for a prescribed latitude of ¢ = 55° north. For this study, we simulated
four 30-min wind-field datasets with PALM version 3.9 with geostrophic background wind
ug =0,5,10,and 15m s~! (cf. Table 1). Although we cannot expect streaky structures in
the calm situation, the dataset was analyzed to depict the development of structure length
scales with the background flow, and to assess the detection methods in principle in a situ-
ation where time series analysis is unattainable. All datasets were computed on a grid with
5 km by 5 km horizontal area and a spatial grid constant of 10 m in all directions throughout
the boundary layer; the time resolution was 1 s. The simulations were performed for a dry
atmosphere over a flat terrain with a roughness length of zo = 0.15m. Since LES cannot
reliably reproduce turbulence on scales of 2-3 times the grid length, special care must be
taken in the interpretation of the smallest length scales, which may not necessarily give a
realistic representation of the surface layer.

At the horizontal borders, cyclic boundary conditions were assumed, which implies an
infinite, periodically repeating model domain. The simulated boundary layers were initialized
with a stable profile of the potential temperature, (d9/dz)initar = 0.08 K m~! below z =
1200 m, and driven by the prescribed geostrophic background flow and a fixed kinematic
surface heat flux of w'6’p = 0.03 Kms~! forug > 0and w6’y = 0.23 Km s~ ! in the calm
situation (cf. Table 1). In the vertical, Dirichlet boundary conditions were imposed on the
wind-field variables and for the pressure at the top boundary, whereas the other variables had
Neumann boundary conditions (cf. Table 2). The data output started after a spin-up time of
1h, at which time the simulation showed fully developed turbulence. During spin-up, random
perturbations with small amplitudes were initially imposed on the horizontal velocity field to
trigger turbulence until the TKE exceeds a threshold value. With fully developed turbulence,
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Table 2 Top and bottom

. Variable Bottom boundar; Top boundar;
boundary conditions of Y p Y
atmospheric variables in the ap
simulated boundary-layers Pressure 3z =0 p=0
Horizontal wind u=v=_0 U=ug,v="1uG
Vertical wind w=0 w=0
. 30 _ 20 _ 96
Potential temperature 9 = 0 92 = 92 initial
de _ de _
TKE 5: =0 3: =0
1200
1000
. 800
£
~ 600
400
200
0
0 5 10 15 293 294 295 296 -0.1 0 0.1 0.2
m s71 0[K] w'd [Km s71)

Fig.1 Time-averaged profiles of wind speed (left), potential temperature (centre) and kinematic vertical heat
flux (right) in the LES datasets. Darker line shades indicate higher wind speeds

Yo [km]
u’ [m/s]

2 s 45
xo [km] xo [km] zo [km]

Fig. 2 Snapshots of the turbulent wind-field component u” in the mean wind direction at 10 m height in the
four LES datasets. ug = {0, 5m s7! 10ms~!, 15ms~1} from left to right. The axes x( and y( are aligned
with the geostrophic wind vector

all simulated boundary layers became unstable, with stability decreasing as the background
wind speed decreased. The resulting scaling parameters are summarized in Table 1, and
Fig. 1 shows the mean profiles of wind speed, potential temperature and vertical heat flux. A
detailed description of the PALM-model is available online (http://palm.muk.uni-hannover.
de).

The resulting LES datasets were used for virtual dual-lidar measurements. To compare the
virtually measured wind fields with the original LES fields, the LES had to be interpolated to
the virtual lidar measurement height of 15 m. Figure 2 shows the emerging streaky coherent
structures in the shear-driven flows. The solely convective case, in contrast, exhibits open
cell structures in the w-component, which are however not visible in u# or v. In the following
analysis, structure detection results from this dataset will be indicated with the shorthand
‘LES’.
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Fig. 3 Position and scanned sectors of virtual lidars 1 and 2 in the LES horizontal plane and the resulting
overlap region, including contour lines of beam intersection angles A x[o]

Furthermore, to separate the influence of the lidar scan duration from other lidar error
sources such as spatial averaging and time undersampling, the LES wind fields at the mea-
surement height were averaged over the time of a scan duration. This dataset is denoted as
‘LESAVG’. In contrast, the dataset obtained from virtual dual-Doppler measurement and
retrieval is denoted ‘LIDAR’.

2.3 The Dual-Doppler Lidar Data

The parameters for the two virtual Doppler lidars were chosen to match those of the Doppler
lidars at the Institute for Meteorology and Climate Research at Karlsruhe Institute of Tech-
nology (Rohner and Traumner 2013). Their lasers with wavelengths 2023 and 1617 nm have
a pulse width (FWHM) of 370 and 300 ns in time domain, respectively, corresponding to
a spatial pulse width Ar of 55.5 and 45.0 m (Frehlich et al. 1998). With a pulse repetition
frequency of 500 and 750 Hz, a 10-Hz measurement frequency can be achieved with random
velocity estimation errors <0.2 ms~! (Stawiarski et al. 2013). Compared to the pulse widths,
the LES grid constant of 10 m is small, which is the necessary condition for the simulator to
produce realistic results.

The virtual lidars, as shown in Fig. 3, were positioned at (x = 2500m, y = Om) and
(x = 5000m, y = 2500 m) in the original LES axes to obtain a beam intersection angle close
to 90° in the overlap region, thereby reducing the propagated single lidar error (Stawiarski
etal. 2013). During the scan, their measurement height was z = 15m and their elevation was
kept at zero whereas the azimuth varied, scanning a 90° sector each. The scan time T (which
determines the angular velocity wp) and the range gate length Ap were chosen following
the optimization procedure described in Stawiarski et al. (2013), which allows maintaining
errors as small as possible, depending on the background wind speed. Here, the lower limit
of the range gate length was set to 55 m, corresponding to the higher of both Ar values. The
resulting scan parameters are summarized in Table 3.

Each virtual lidar performed continuous zero-elevation scans in each of the four LES
datasets for the full 30 min. Subsequently, the retrieval algorithm was applied, which yielded
the horizontal wind field on a Cartesian grid with a grid constant of Ap and a time resolution
of Tp. Figure 4 shows snapshots of the retrieval wind fields at the same times as in Fig. 2. The
lidar-measured fields exhibit the same qualitative structures, albeit considerably smoothed.

The horizontal wind fields of the three data types (LES, LESAVG and LIDAR) from
all four LES datasets were converted into their streamwise and spanwise components, and
rotated in the mean wind direction at measurement height derived from the original LES

@ Springer



Assessment of Surface-Layer Coherent Structure...

371

Table 3 Optimized lidar

—1
simulation parameters for the four “G (ms™7) 0 > 10 15
LES datasets: wind speed u and _ 1
advection velocity u, (computed u (ms™) 0 34 5.7 7.7
from the maximal wind-field Uy (ms~1) - 4.05 6.56 9.25
autocorrelation) at 15 m height, Ap (m) 55 550 67.0 773
range gate length Ap, scan
duration 7y and resulting angular To (s) 16.0 16 13.1 11.4
scan velocity wo g ) 5.6 5.6 6.9 7.9
°lef 33 2 . —
_ 4 K ! Y -~ T == 2z
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Fig. 4 Snapshots of the turbulent wind-field component «” in mean wind direction from the virtual dual-lidar
retrieval at the same time steps as in Fig. 2. ug = {0, 5m s71, 10ms™!, 15 m s~} from left to right. The
axes x( and yq are aligned with the geostrophic wind vector

dataset, therefore ‘x’ and ‘y’ indicate the streamwise and spanwise axis, and «# and v the
streamwise and spanwise component, respectively.

To check consistency, the LIDAR wind fields were compared with the LESAVG wind
fields for each retrieval timestep after spatial interpolation of the LESAVG fields to the dual-
lidar retrieval grid. The results are shown in Fig. 5: the differences are represented by an
approximately Gaussian distribution with a negligibly small bias. The standard deviation
increases with turbulence production from both buoyancy (ug = 0, high surface heat flux) or
shear (ug > 0), and assumes values between 0.47 and 0.79 times the standard deviation of
the respective LES velocity components (cf. Table 1). When comparing the LIDAR dataset
directly with the LES data, using a nearest-neighbour approach to interpolate the LIDAR
data to the LES time axis, o assumes values between 95 and 115 % of those from comparison
with the LESAVG data. For ug > 0, 0LIDAR,LES > OLIDAR,LESAVG and increasing with the
wind speed. For ug = 0, it is smaller, since the large-scale uniform « and v regions can be
well resolved with lidar.

The distributions of u# show a slight positive skewness, which is caused by the negative
skewness of u1 gsavg due to the uneven spatial coverage of narrow low-speed streaks embed-
ded in large high-speed regions, which is averaged out in urpar (cf. Figs. 2, 4). The effect
occurs less pronouncedly in the v distributions as well.

3 Identification of Coherent Structures

To quantify the accuracy of coherent structure detection in dual-lidar data, we applied three
common structure length scale detection techniques to the LIDAR, LES and LESAVG
datasets.

Additionally, we recorded virtual time series at 2601 virtual towers of 15 m height in the
LES data, which were evenly distributed over the horizontal LES area, by linearly interpolat-
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Fig. 5 Difference between dual-lidar retrieval and time-averaged LES wind-field components, fipAR —
JLESAvG for f = u, v after interpolation of the LIDAR dataset on the LES grid. 1 and o are the mean and
standard deviation of the distributions, computed directly from the dataset, r is their correlation coefficient

ing the u and v wind-field components to their position. For comparative results from tower
data, those time series were evaluated with the same methods as the spatial data, and the
time scales converted to length scales by multiplication with u at the measurement height,
(cf. Table 3) for all datasets with ug > 0, since here 0, < 0.2 u and therefore Taylor’s
hypothesis can be applied (Willis and Deardorff 1976; Stull 1988).

3.1 Correlation Length Approach

The integral length scale or correlation length L, is a measure of the distance in the x-
direction over which a field f can be considered correlated with itself. In the x- and y-
directions, it is defined as

o0
Liy= / re(x - ex)dx (la)
0
and
o0
Liv= [ rstenay, (1b)
0
where e is the unit vector in a given direction, and r  the autocorrelation function,
1
rrx) = —(f'x+x) f'&))y, 2
o
f
where
fx) = fx) = (f&))x 3)
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is the turbulent deviation of f from its mean and o2 is the variance of f. Here, (-)y indicates
the average over the variable x in the argument. Integral scales can, under ergodic conditions,
be computed from spatial data or time series, where Taylor’s hypothesis must be applied
in the latter case (Stull (1988)). The size of the dataset determines the statistical accuracy
(Wyngaard 2010, Chap. 2.4).

The integral length scale is a common tool used to characterize the structure of boundary-
layer wind fields (Lenschow and Stankov 1986) and has been applied to surface-layer wind
fields obtained with dual-Doppler lidar, e.g. by Newsom et al. (2008).

We computed the integral length scales for the LES, LESAVG and LIDAR dataset
wind-field components # and v in both streamwise (x) and spanwise (y) directions. The
discretization of the data on the grids required a conversion of the integrals into sums,
J dx — > Ax, where Ax is the respective grid spacing given by Ap (cf. Table 3) for
the LIDAR data and Ax = 10 m for the LES and LESAVG data. Furthermore, we used the
approximation of Lenschow and Stankov (1986) to accommodate the finite data,

oo r=0
/ ry(x-e)dx ~ / ry(x-e)dx, 4)
0 0

where the integral is only executed up to the first zero crossing of r¢. Here, the ensemble
averages used in Eqs. 2 and 3 and the variance were computed from the spatial averages in
the 2D data of the respective timestep.

The resulting lengths from the virtual towers, after conversion to spatial scales, are cor-
relation lengths in the streamwise direction, while the spanwise component is inaccessible
with this method. The results for all four datasets are shown in Fig. 6.

The different datasets show a similar length scale development with increasing wind speed.
The integral scales measured by the lidar are quantitatively similar to those measured under
unstable conditions (Traumner et al. 2014). The LES scales seem to be noticeably limited
to values about 2-3 times the LES grid resolution, which could be expected (cf. Sect. 2.2),
but this effect only influences the spanwise analysis. Whereas the lidars severely overesti-
mate the integral length scales, the tower measurements exhibit the opposite behaviour and
underestimate the integral scales. In contrast, the LESAVG dataset length scales do not differ
considerably from the LES dataset length scales, which indicates that the time averaging
inherent in the lidar data has only a minor contribution to the full lidar error. The dual-lidar
deviation is therefore the sole result from spatial averaging and temporal undersampling in
the dual-lidar data. This behaviour can be understood with the help of the following consid-
erations.

3.1.1 Time Series Results

If the dataset was perfectly ergodic, the time average of the wind-field components at every
virtual tower would be identical to the average over the full dataset. However, the standard

deviation of the temporal means o (?T) of the virtual towers reaches values between 0.14
and 0.3 times the variance of the original fields oy in the LES datasets for ug > 0 and an

even higher percentage for ug = 0 (cf. Table 4).
Lenschow et al. (1994) showed that
—T T
o* (F') ~ 20} &)
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Fig. 6 Distribution of the integral scales L of the u (streamwise) and v (spanwise) wind-field components in
streamwise (x) and spanwise () direction as a function of ug for the four datasets LIDAR (white box, solid
outline), LESAVG (grey box), LES (black box) and the virtual tower time series (white box, dashed outline).
The boxes range from the 25th percentile (Q1) to the 75th percentile (Q3), the centre lines mark the median

(Q2)

Table 4 Standard deviation

T . ug (m s*') o (ET) Jou o (ET) /oy
o (" ) of virtual tower means for
the u and v fields in relation to 0.65 0.66
the full standard deviation of the
respective fields 025 031
10 0.21 0.21
15 0.18 0.14

for T > t where T is the time duration of the measurement, 7 is the temporal integral length
scale and o2 is the variance of the full signal f.

The variation of the time series has to be taken into account in the integral length scale
computation: we have to distinguish between the full temporal autocovariance pg,j (At) with
a time shift Az from averaging over the complete dataset, and the time series covariance
Prower (X, At) computed from the subset of data at point x,

pran (A1) = (frn &X', 1+ A1) - frn X 1)y,
Prower (X, At) = <ft/ower(X’ t+ At) - ft/ower(xy t/)>l’7
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with the respective turbulent field components

fran . 0) = f& 1) = (£ D)xr. (7a)
fower®, 1) = f(X, 1) = (f (%, ));. (7b)
Careful computation shows that
Pl (A1) = (prower (X, AD)x + (Af'(X))?)x, (®)
where
Af'(X) = (D) = (fFX, D)y s )

This means that the autocovariance, averaged over different towers, will usually be under-
estimated. The variance between time-series averages at the towers is a measure for the
magnitude of the underestimation. Equation 8 holds as long as we can assume that

(fx 14+ AD) = (f (X, D)), (10)

which can be assumed for long time series. From Eq. 8, it follows that, for the autocorrelation
function
rall (A1) > (Fower (X, Af))x, (11)

since 5
Prower (X, At) + (Af/(X)) Prower (X, At)

Prower (X, 0) + (Af’(X))Z ~ Prower (X, 0)

for all At with power (X, At) < prower (X, 0), as can be shown by a Taylor series expansion of
the left hand term in Eq. 12 in the parameter (A f’ (x))2. This means that the tower underes-
timates the autocorrelation function for almost all Az, and consequently the integral length
scale is underestimated as well.

To correct the results it would be necessary to replace fi... with ff, and to average
over the full dataset in the computation of the integral scale, however, in field campaigns, the
full spatial and temporal average is usually inaccessible. Alternatively, using time series of
longer duration will decrease Af’ and improve the results when ergodicity can be assumed
(Tennekes and Lumley 1972).

(12)

3.1.2 Dual-Lidar Results

The overestimation of scales by the dual-lidar system can be explained by the inherent
spatial and temporal averaging. Frehlich (1997) showed that the structure function of the
lidar-measured radial velocity underestimates that of the real radial velocity up to large
displacements along the lidar beam due to the moving average induced by the lidar pulse. A
similar argument is proposed here: assume that the dual-lidar spatial averaging in the lidar
plane can be described by a convolution of the real wind-field components with a smoothing
function s,

Siidar (%) = / f&Ds(x —x)dx’. 13)

The function s is normalized, so that Eq. 13 also holds for f{;;,. and f’. When inserted into
the definition for the autocorrelation, Eq. 2, we find that

Plidar =7 % § (14)
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where
o2

5(X) = zf /s(x’)s(x—i—x/)dx’ (15)

flidur

and ‘x’ indicates the convolution.
In contrast to Frehlich (1997), the averaging process is not only defined by the mathemat-
ically well-described lidar-beam averaging (Frehlich et al. 1998; Frehlich 2001), but is rather
a result of the beam averaging, the data aggregation and weighting in the retrieval process
and the time averaging and undersampling. A precise relation is therefore unattainable, how-
ever, we can assume that the smoothing function s is approximately constant around the
grid-cell centre up to a distance of the retrieval data radius and subsequently drops to zero. It
should be noted that the assumptions of horizontal homogeneity and isotropy for s are only
approximations.
To model the averaging effects, we use a one-dimensional window function approach
for s,
Qo) —lh<x <l

s1(lo, x) = 0, otherwise (16)
and
sx(x) = 8(y)s1(lo, x), (17a)
sy(x) = 8(x)s1(lo, y), (17b)
with X = (x, y) and the Dirac distribution §. The functions sy and s, are used for the

computation of the length scales L 7, and L ¢, respectively. As a consequence, the averaging
perpendicular to the direction of the autocorrelation lag is neglected. The length scale /g is half
the diameter of the window function and works as a fit parameter to estimate the averaging
scale of the dual-lidar results, 2/ will therefore hereafter be called the effective lidar averaging
scale. The model Egs. 16 and 17 allow an analytical computation of the overestimation,

2
2 L (2
Lytidae — %f 2 (Lf) (18)
== ,
Ly O f lidar % +exp (—i—]‘;) —1

where aj% denotes the spatial variance of the field component f. The overestimation becomes
a function of the parameter § = 210LJ71, i.e. the ration of effective lidar averaging scale to

the actual integral length scale, with L f,lidarL;l — 1 for & — 0and LfylidarL;l — oo for
& — o0.

Figure 7 shows the overestimation factors of Fig. 6 as a function of the LES integral scale
together with the theoretical results from Eq. 18. We find that, regardless of the background
wind speed, £ and thereby the effective averaging scale 2y is approximately constant in
the spanwise direction (black symbols), whereas a slight increase with the wind speed can
be observed in the streamwise direction (white symbols) which is due to advection during
the scan time. For the spanwise scales, 2lyp &~ 3Ap, whereas for the streamwise scales the
value of 2/ goes up to 10 Ap. Furthermore, for all datasets with ug > O the effective lidar
averaging scale is identical for the ¥ and v components.

Despite the strong overestimation, Eq. 18 suggests that the scales can be corrected if the
full spatial variance o2 of the wind-field component is known. Notably, the first equality of
Eq. 18 is a result of the convolution model, Eq. 13, and holds for any normalized smoothing
function s.
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factor of integral length scales as 1

a function of the high-resolution 35
integral scales, normalized with
the lidar grid resolution. The data
points are located at
02(LLipAR)/ Q2 (LLES) and
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symbols for Ly scales and white
symbols for Ly scales. The error
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Fig. 7 Lidar overestimation J
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In field measurements, the spatial variance o2 can be approximately obtained from time
series measurements, €.g., a sonic anemometer placed at the measurement height. For a
comparable result, we take 03 and 03 to be the median variance computed from the virtual
tower measurements, and thereby derive the corrected dual-lidar integral length scales for
f = u, v in the four datasets,

2
O 7 lide

L f lidar,corr = j;lz = L flidar- (19)
f

The results are shown in Fig. 8. The correction method on average removes the overestimation
bias and notably reduces the spread of the length-scale distribution for all datasets with
ug > 0, even if the length scales approach the lidar resolution. The remaining bias for
ug > 0 is in most cases approximately 0.5Ap and therefore could be an artefact of the
length-scale computation algorithm. The correction fails for calm situations, when tower
measurements are inadequate for spatial variance measurements. In an alternative correction
method one would have to measure the spatial variance with high resolution, e.g. using a
large anemometer array. Figure 8 furthermore shows a correction of the LESAVG length
scales, using Eq. 18 with the averaging scale 2/p = Tou and L s taken from the LES data.
The method removes the overestimation, but over-corrects when the LES scales are very
small. This can possibly be explained with the insufficient representation of turbulence by
the LES for scales approaching the grid resolution.

3.2 Wavelet Analysis

Wavelet analyses have been widely used to extract coherent structures from temperature,
wind field and humidity fluctuation time series (Collineau and Brunet 1993a,b; Thomas
and Foken 2007; Zhang et al. 2011; Zeeman et al. 2013). A wavelet is a localized function
@((t — b)a~") in time (or space) ¢t which is scaled with a factor a and shifted to the position
b. When certain mathematical criteria are fulfilled, the set of all wavelets created by varying
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Fig. 8 Corrected distribution (Eq. 19) of the integral scales L of the u (streamwise) and v (spanwise) wind-
field components in streamwise (x) and spanwise (y) direction as a function of ug for the four datasets. The
corrections were applied for the LIDAR and LESAVG datasets. Colours and ranges are as in Fig. 6

a and b is a basis in the vector space of square integrable functions (Louis et al. 1998), i.e.,
the original time series g(¢) can be written as a linear combination of the wavelets in the set.
The associated coefficients

~ i Lft—0D
fw(a,b)=mé @ (T) Sf@)dt (20)

are the projections of the time series on the wavelet ¢ ((f — byab, ie. they are a measure of
the agreement between g and ¢ around the point » when ¢ is scaled with the factor a.

For coherent structure extraction, such wavelets are useful when they resemble the shape of
the desired structure, e.g. an ejection-sweep pattern. Alternatively, transitions from ejections
to sweeps, which are odd sections of g(¢), are detected at the zero-crossings of the wavelet
coefficients of an even wavelet.

To apply the wavelet analysis to the datasets, one-dimensional subsets were taken from
the two-dimensional wind-field components for each timestep. In the LES datasets, one
streamwise and one spanwise subset were chosen randomly for each 1-s timestep for both u
and v. Since the LESAVG and LIDAR datasets comprise fewer time step, five spanwise and
five streamwise subsets were selected. Additionally, the virtual tower time series of «# and v
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Fig. 9 The WAVE (a) and F T Faa '
MHAT (b) wavelets (Eqgs. 21, 23) (a) (b)
with arbitrary normalization 0
T ! ! ! T ! ! !
-5 0 5 -5 0 5

in the original LES dataset for 15-m height, which were already used in the integral scale
analysis, were included in the evaluation.

On all series in space and time, a wavelet analysis was performed following the methods
described in Barthlott et al. (2007) and Segalini and Alfredsson (2012). First, the signal
was appropriately detrended and zero-padded (Thomas and Foken 2005), then the wavelet
coefficients (Eq. 20) with the WAVE wavelet,

) 1
PWAVE(xX) = (;) (—2x) e, @1)

were computed (cf. Fig. 9). The WAVE wavelet function closely resembles the ejection-
sweep cycle that can be expected in the streamwise wind field # (Zhang et al. 2011; Segalini
and Alfredsson 2012).

Subsequently, the wavelet spectrum or scalogram was determined,

~ 1 - 2
Ef(a):;/ ‘f(p(a,b)’ db, (22)

and by integrating over all event positions b, the scalogram is a measure for the energy per
wavelet. The scale ag in which the scalogram becomes maximal determines the wavelet scale
for which the series f contains the highest energy (Collineau and Brunet 1993a).

The positions of the structures were now determined at the zero-crossings of the MHAT
wavelet coefficients on the dominant scale ag with the correct slope sign. The even MHAT
wavelet function (cf. Fig. 9) is the second derivative of a Gaussian function and given by

_1,2 2
e (1= x2). (23)

2

X) =
PMHAT (X) N
Collineau and Brunet (1993a; 1993b) showed that the MHAT is particularly suited to detect
odd events like an ejection-sweep cycle. Evaluating the MHAT coefficient only on the dom-
inant scale implies a smoothing of the original signal g, which is useful to eliminate noise.
Some authors have proposed excluding structures in which the wavelet coefficient does not
exceed a certain threshold value, but we found that the choice of threshold does not signif-
icantly influence the results. Having determined the structure positions, the length of each
structure was computed following Barthlott et al. (2007) as the distance from the respective
zero-crossing to the following maximum in the MHAT wavelet coefficient. The resulting
ramp length will be denoted by A?’ y; as in the case of integral scales, where f once again
stands for the field component u (streamwise) or v (spanwise) and x; is the direction of
evaluation, either x (streamwise) or y (spanwise).

It should be noted that the series subjected to the wavelet analysis are either functions
of time (in the virtual tower case) or of space (in the case of LIDAR, LESAVG, and LES
datasets), and that therefore ag, b and A" are given in units of time or space as well, which
are obtained by multiplying the results in pixel units with the time resolution At or the spatial
resolution Ax of the respective series. For the virtual tower time series, the streamwise spatial
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Fig. 10 Distribution of the wavelet ramp lengths A" of the u (streamwise) and v (spanwise) wind-field
components in streamwise (x) and spanwise () direction as a function of ug for the four datasets. Colours
and ranges are as in Fig. 6

length scales were derived from the computed temporal length scales by multiplying with
the mean wind speed of the respective time series.

Since the algorithm only works with an accuracy of one data point, a possible bias of one
pixel will have a much larger effect on the LIDAR dataset (1 pixel = Ap) than on the LES
and LESAVG datasets (1 pixel = 10 m). We therefore refine the algorithm by removing the
bias in pixel units. Since the size of ¢ is proportional to a, we can assume that the average
length scales detected at the dominant scale ag will also be proportional to ay,

A" (ag) = mpap, (24)

and consequently lim,,—0 A" (ag) = 0. For the correction, all length scales (in pixel units,
here denoted by px) were reduced by the ordinate intercept of 3.28 px of the linear fit of
ap — A" (ap) before converting both ag and A" into units of m. For the slope we obtained
a fit result of mp = 2.68.

The results are shown in Fig. 10. As in the case of correlation lengths, LESAVG and LES
results agree well. For the streamwise direction, the time series are in good agreement with
the LES results as well, whereas a slight overestimation and broadening of the distributions
is detected for the LIDAR datasets, particularly for the length scales shorter than 200 m.

The bias occurring for the short ramp lengths can be explained by the spatial filtering
effect of the lidar data: the scalogram part corresponding to scales a shorter than the lidar
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Fig. 11 Relative frequency of dominant wavelet scales ag detected in the streamwise subsets (x) of the
spanwise wind-field component v of the LES and LIDAR datasets with ug = 15 m s

resolution is considerably damped, which leads to a shift of the maximum to higher scales
(Fig. 11). However, Fig. 10 does not show a simple monotonous increase in overestimation
with decreasing LES scales, which suggests that other factors influence the lidar wavelet
analysis.

Using the one-dimensional averaging model of Sect. 3.1.2, Egs. 16 and 17, the wavelet
coefficients for the lidar wavelet analysis are given by

- 1 7 «fXx—D
fo.LIDAR(a, D) = mé @ (T) SLIDAR (¥) dx

«/LTI/ / ¢ (xa;b) s(lo, x" — x) f(x")dx"dx. (25)

—00 —0

Eq. 25 implies that the wavelet and smoothing functions can be summarized in an effective
lidar wavelet function ®,

Fola.b) = — / ¢*(ﬂ,l—°) ) dx 26)

a a

<1>(x_b,l—°) - / w(x _b) 5o, x — x) dx'. 27)
a a a

with

The function @ is not only a function of (x — b)a~!, but has the additional parameter loa= L ie.
the relation between the effective lidar averaging scale and the wavelet scale. The influence of
this parameter can be observed in Fig. 12, where the WAVE and MHAT wavelets are shown
fora = 1 and b = 0 with varying loa—Y. We find that, so long as [y < a the effective wavelet
® is practically identical to the original wavelet ¢. However, when [ becomes larger than a,
the wavelet begins to split in the centre and two localized parts develop that drift apart, their
distance 2A increasing proportionally to loa~!. Consequently, the desired localization of the
wavelet is lost—the wavelet transform with » = 0 no longer contains information about the
agreement of f with the wavelet around x = 0, but rather about the agreement of f with
the split wavelet around the points x = +A. Therefore, the dual-lidar wavelet analysis is
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Fig. 12 Effective wavelets (Eq. 27) ®(x, lg - a*]) for the WAVE (a) and MHAT (b) wavelets around x = 0
for varying values of lpa™ I normalized to identical maximum values

only meaningful when the phenomenon studied exhibits dominant scales larger than the lidar
averaging scales. This has to be ascertained with independent, high-resolution measurements.
When the condition is fulfilled, the inherent lidar smoothing is of no significance and the
lidar results can be considered correct. Otherwise, the wavelet analysis fails and produces
random results that are not related to the phenomenon studied. With the cut-off lpa~! ~ 1
and the linear relation between A" and ag (Eq. 24) we can determine a threshold value for
A" under which the lidar results become unreliable,

AfAhreSh _ Madiresh _ malo @q, 28)

p Ap Ap 2

which again depends on the factor ¢ = 2lgAp~! shown in Fig. 7. Using the values for
q determined in Sect. 3.1, we find that Af ., Ap~! =~ 4 for the spanwise data and 4 <
A{hreshAp*l < 14 for the streamwise data, increasing with ug. In most cases the results in
Fig. 10 do not fulfill these requirements, the wavelet method is therefore useful for either
larger-scale structures or higher-resolution lidars.

It should be noted that the condition [pa~' ~ 1 can also be derived from the Nyquist-
Shannon sampling theorem (Shannon 1949): Since the MHAT wavelet has its spectral
maximum at wavenumber kpyax = ﬂ/a (Collineau and Brunet 1993a), the required res-
olution to resolve this wavenumber is Ax < 27w /(2kmax)- Using Ax = 2ly, we find that
loa ' <m/v/8~1.1.

3.3 A Clustering Method

The most immediate approach for the characterization of surface-layer streaks is given by the
clustering method. Here, a coherent structure is defined as the two-dimensional connected
subset C of the plane in which the streamwise or spanwise turbulent wind-field component
is smaller than a threshold value. The lengths A and A of such a structure are initially
defined as the distance between the outermost points in the connected region in streamwise
and spanwise direction, respectively. An additional scale correction is explained below.
The algorithm was applied to all timesteps of the LES, LESAVG and LIDAR datasets for
both the streamwise and spanwise components. For each timestep and each field component,
the spatial standard deviation o was computed and the threshold was setto K = —1.50. All
clusters with length and width of more than one data pixel were included in the evaluation.
The comparative results shown below were nearly insensitive to a variation of K.
Additionally, the virtual tower time series of # and v in the area at lidar measurement height
were evaluated. Here, the temporal standard deviation was used for the threshold. Naturally,
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Fig. 13 Cluster area means as a function of the mean length-scale products in the # and v components of
the four datasets for LIDAR (white), LESAVG (grey) and LES (black). Left Before correction. Right After
correction using a fit to Eq. 29 (m = 0.57, § = —0.34). Missing points are due to overlaps

the time series only yielded the structure length in streamwise direction, which were again
determined from the temporal lengths by multiplication with the mean wind speed.

As in the wavelet analysis, we corrected the length scales to remove single pixel errors
and to ensure that the asymptotic behaviour is correct, i.e., that the area of the cluster A — 0
for AT, A — 0. Therefore, we assumed that, on average, A} A§ is proportional to A, which
is true for elliptical shapes. To remove a possible bias § we performed a fit,

A = (A = 8)(AS — &)m, (29)

with parameters m and § on all data in pixel units and removed the resulting § = —0.34 pixels
before converting the length scales into units of m (Fig. 13).

The results are shown in Fig. 14, where it is clear that the lidar smoothing entails a
significant overestimation of scales. The structure lengths in the high-resolution LES data are
on average of the order of or smaller than the lidar averaging scales which makes it impossible
for the lidar to detect them correctly. However, despite the small scales of the structures,
the LESAVG dataset matches the high-resolution LES results well, only a displacement at
higher background wind speed is apparent. This underlines the persistence of the structures,
particularly in spanwise direction.

The cluster scales are measured directly and are not a statistical measure for the whole field
(as the integral scales), or further smoothed (as in the wavelet case). Therefore, although they
provide the most direct insight into the wind-field structure, the results cannot be corrected
mathematically unless we have prior knowledge of, (i) the cluster length scale distribution
in the original wind field and (ii) the original wind field’s spatial variation statistics on the
effective lidar averaging scale surrounding the clusters. We must conclude that, for cluster
length scales shorter than [, the clustering algorithm is unable to provide reliable results on
dual-lidar data.

3.4 Comparative Results

All three methods, the correlation length, wavelet and clustering algorithm, provide informa-
tion on the scales of streaky coherent structures in the wind field. However, the approaches
focus on different aspects, which leads to large differences between the structure length
scales, the width of their distribution and their variation with the background wind u ¢, as can
be seen in Figs. 8, 10 and 14. This underlines the fact that quantitative findings about coherent
structures very much depend on the respective detection technique, rather than an underly-
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Fig. 14 Distribution of the cluster lengths A€ of the u (streamwise) and v (spanwise) wind-field components
in streamwise (x) and spanwise (y) directions as a function of ug for the four datasets. Colours and ranges
are as in Fig. 6

ing fundamental definition. The correlation lengths decrease for higher ug in the spanwise
direction of u and v, and increase with ug for the streamwise analysis of u. The correlation
length is a statistical measure for the whole two-dimensional wind field and thereby unable
to produce information on single structures.

The wavelet analysis detects each structure, but only after smoothing the wind field to the
energetically dominant scale. The qualitative behaviour of the wavelet scales resembles the
correlation length results but leads, on average, to higher length scales. Its validity is limited
to structures with energetically dominant length scales larger than the lidar averaging scale.

The clustering algorithm uses no averaging or scaling, but rather directly detects ejections
using a threshold approach. While giving the most direct information on each coherent
structure, the small-scale structures investigated here cannot be reliably detected with this
method in dual-Doppler lidar data, because the lidar averages out the small scales. This
method is also limited to structures larger than the averaging scale, but here ‘structure’
means the geometrical extent of the clustered region.

The comparative overestimation of length scales in the lidar data is shown in Fig. 15. The
corrected retrieval results perform best with the exception of the (uncorrectable) ug = 0
datasets. The wavelet analysis shows, as expected, rather noisy results for scales smaller
than the threshold length scale values, but a good agreement for larger scales. The clustering
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Fig.15 Lidar overestimation factor of corrected integral length scales (a), wavelet ramp lengths (b) and cluster
lengths (c¢) as a function of the high-resolution integral scales, normalized with the lidar grid resolution. Data
points, colours and error bars are as in Fig. 7. For better visibility the axes were truncated, the original error
bars reach up to Af ;pap/Afgg =22 in (¢) and up to Af po/Ap = 18 in (b)

algorithm performs insufficiently for the surface-layer data, but can still be a promising
approach for structures on much larger scales.

The time series results agree well with the LES results, apart from a small bias, for the
wavelet and cluster analysis. The strong underestimation of length scales can be explained by
the insufficient length of the time series to uphold the assumption of ergodicity. For canopy
flows it has been suggested to use the advection velocity u,, or convection velocity, derived
from the time-maximum of the autocorrelation for a given shift in mean wind direction, as
the conversion factor from time to spatial scales in Taylor’s hypothesis (Shaw et al. 1995,
cf. Table 3). However, this would only increase the integral length scales by a factor u, /u ~
1.2 (cf. Table 3), which is insufficient to compensate the underestimation, and it would lead
to an overestimation in most other cases.

4 Summary

Our goal was to determine whether dual-Doppler lidar measurements can be used to detect
and quantify coherent structures in the atmospheric surface layer. To this effect we performed
virtual dual-Doppler lidar measurements and retrieval in high-resolution LES surface-layer
data and applied three different structure detection techniques to both the virtual lidar and
original LES horizontal wind-field data and compared the resulting coherent structure length-
scale distributions.

We found that the integral length scales of the lidar data agree particularly well with those
of the LES data, provided that the original dual-lidar scales are corrected using additional
high-frequency variance measurements. To detect single structures, the wavelet analysis is
suitable for large-scale structures. The method fails however as soon as the energetically
dominant wavelet scale becomes smaller than the lidar averaging scale, leading to random
results and a strong overestimation. The clustering algorithm is unsuitable for surface-layer
structures, since here the connected regions of low-speed fluid are much smaller than the
lidar averaging scale, the inherent lidar smoothing therefore leads to an uncorrectable over-
estimation of scales. To summarize, wavelet analysis and especially the clustering algorithm
should be reserved for the analysis of structures much larger than the lidar averaging scale
when investigating dual-lidar data, the integral length scale can however be successfully
determined even for structures on the order of the lidar scale.
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The effective dual-lidar averaging scale is not only determined by the pulse width and
retrieval grid size, but also due to the scan time duration by the wind-field displacement
during the scan intervals. It can therefore assume different values for differing background
wind speeds and must be assessed on a case-by-case basis.

While the dual-lidar spatial scale analysis generally tends to overestimate structure length
scales, tower measurements show a tendency for underestimation of the integral scales,
but only a small bias for the wavelet and cluster techniques. The correlation lengths are
underestimated mainly due to the time series not fulfilling the ergodic hypothesis, and further
conceivable error sources for all three techniques are a breakdown of Taylor’s hypothesis with
time and non-optimal positions of the tower with respect to the structures.
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