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Abstract The relationship of turbulence quantities to mean flow quantities, such as the
Richardson number, degenerates substantially for strong stability, at least in those studies that
do not place restrictions on minimum turbulence or non-stationarity. This study examines
the large variability of the turbulence for very stable conditions by analyzing four months of
turbulence data from a site with short grass. Brief comparisons are made with three additional
sites, one over short grass on flat terrain and two with tall vegetation in complex terrain. For
very stable conditions, any dependence of the turbulence quantities on the mean wind speed
or bulk Richardson number becomes masked by large scatter, as found in some previous
studies. The large variability of the turbulence quantities is due to random variations and
other physical influences not represented by the bulk Richardson number. There is no critical
Richardson number above which the turbulence vanishes. For very stable conditions, the
record-averaged vertical velocity variance and the drag coefficient increase with the strength
of the submeso motions (wave motions, solitary waves, horizontal modes and numerous more
complex signatures). The submeso motions are on time scales of minutes and not normally
considered part of the mean flow. The generation of turbulence by such unpredictable motions
appears to preclude universal similarity theory for predicting the surface stress for very stable
conditions. Large variation of the stress direction with respect to the wind direction for the
very stable regime is also examined. Needed additional work is noted.

Keywords Intermittency · Nocturnal boundary layer · Richardson number · Stable
boundary layer · Submeso

1 Introduction

The turbulent flux at a given point in space and time in the stable boundary layer may deviate
substantially from that predicted from the mean flow. For example, for a given mean state,
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2 L. Mahrt

as often represented by the Richardson number, the surface drag coefficient is characterized
by a broad probability distribution of values. This variability increases with increasing sta-
bility. The variation of turbulence quantities for a given mean state has received much less
attention than the prediction of averaged turbulence conditions and is not included in param-
eterization schemes. However, this variation is of both theoretical and practical interest. For
example, in a weak mixing environment, an isolated event of stronger turbulent mixing may
have only a modest influence on time-averaged quantities, but may have a critical influence
on whether the instantaneous surface temperature decreases below a critical value (such as
freezing) or whether the concentration of a harmful contaminant exceeds a threshold value
where damage ensues. From a more general point of view, a random process has zero net
influence on a system only if that system is linear.

Turbulence quantities, such as dissipation, may vary locally by orders of magnitude
(Muschinski et al. 2004). The variability of the turbulence is sometimes posed in terms
of intermittency, although the definition of intermittency varies between studies, depending
on scale and depending on the method used to detect intermittency. The intermittency in the
stable atmospheric boundary layer is not an on–off process. The turbulence may be generated
by instability events, but the amplitudes of such bursts of activity vary and the turbulence
events at a fixed measurement point are observed in various stages of decay such that the
turbulence intensity takes on a continuous distribution of values. The simplest measure of
intermittency is kurtosis, often applied to velocity or temperature differences (Mahrt and
Howell 1994; Viana et al. 2008). Cava and Katul (2009) explored fine-scale intermittency in
terms of clustering properties of sign switches of scalar fluctuations and examined potential
scaling laws.

Many techniques define intermittency in terms of turbulence quantities exceeding certain
thresholds (Blackwelder and Kaplan 1976; Nappo 1991; Katul et al. 1994). Howell and Sun
(1999) define intermittency in terms of the fraction of the record required to account for a
certain fraction of the total flux, which emphasizes the larger transporting eddies. Following
Howell and Sun (1999), a number of studies, including Coulter and Doran (2002), Acevedo
et al. (2006), Basu et al. (2006), have documented the flux intermittency for a variety of
situations in the stable boundary layer. More complex event-finding procedures were applied
in Nakamura and Mahrt (2005), who showed that the horizontal scale of intermittent mixing
events was often on the order of 100 m or less. Salmond (2005) examined the intermittency
in terms of the Haar decomposition of the vertical velocity fluctuations, through partitioning
the signal into turbulent and non-turbulent components and separately analyzing the spectral
behaviour for both components. While the intermittency is generally observed to increase
with stability, the turbulence bursts may be rare for the most stable cases. In this “radiation”
regime (Van de Wiel et al. 2003), the vertical divergence of the very weak turbulence heat
flux may be less important than the radiative flux divergence. Intermittency of the dissipation
can be statistically related to fine-scale variations of vertical temperature gradients, providing
local similarity (Sorbjan and Balsley 2008).

The intermittency is driven both by random variations (Yaglom 1973), characteristic of
turbulence with a stationary mean flow, and by non-stationarity due to motions on time
scales just larger than the turbulence. These motions are sometimes referred to as submeso
motions (Mestayer and Anquetin 1995; Anquetin et al. 1998; Belušić and Mahrt 2008). Such
motions are always present and cause the flow to be significantly non-stationary when the
large-scale flow is weak. This non-stationarity is often visualized in terms of large variations
of the wind direction on time scales of tens of minutes (Hanna 1986; Etling 1990; Anfossi
et al. 2005) and large abrupt shifts of wind direction on time scales of a minute or less
(Mahrt 2008). In the stable boundary layer, non-stationary submeso motions on time scales
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Variability and Maintenance of Turbulence in the Very Stable Boundary Layer 3

of minutes or tens of minutes include wave-like phenomena (e.g., Nappo 2002; Fritts et al.
2003), two-dimensional modes, non-stationary drainage flows (Doran and Horst 1981), mi-
crofronts, propagating density currents and solitary waves (Sun et al. 2002, 2004; Anderson
2003; Terradellas et al. 2005) and a variety of other more complex modes (Mahrt 2007a).
The submeso energy is generally greater in complex terrain except for well-defined slope
flows (Vickers and Mahrt 2007). Universal spectra in the submeso range are not observed,
but rather the energy distribution varies substantially between sites (Vickers and Mahrt 2007;
Mahrt 2009).

Weak-wind flows near the surface are typically a complex mixture of different modes.
As a result, the generation of turbulence by specific submeso modes has been difficult to
isolate. Detailed information is available in simpler numerical settings with well-defined
gravity waves (e.g. Fritts et al. 2009). The more general influence of non-stationary submeso
motions on the turbulence cannot be posed as a random process related to a single forcing and
population of data nor can equilibrium turbulence be assumed. Since weak-wind, very-stable
boundary layers are almost always significantly non-stationary, we must proceed without
the formal support of the concept of an ensemble average. The turbulence and the submeso
“mean flow” continuously interact, corresponding to a non-stationary flow (Derbyshire 1995;
Van de Wiel et al. 2002). Quantification of non-stationarity in the boundary layer is discussed
by Panofsky and Dutton (1984) and Andreas et al. (2008). Influences of the non-stationary
submeso motions (Mahrt 2007b) leads to turbulence in the weak-wind stable regime that is
more complex than in laboratory flows (e.g. Ohya et al. 2008).

As a partial result of the shear generation of turbulence by submeso motions, the turbu-
lence does not vanish at very large Richardson number. Maintenance of turbulence at large
Richardson numbers and the lack of a critical Richardson number has been discussed in
detail by Galperin et al. (2007) and Zilitinkevich et al. (2007) and has been noted in numer-
ous observational studies (for a recent example, see Luhar et al. 2009). While turbulence can
become extremely weak, it does not completely vanish near the surface (Mahrt and Vickers
2006).

The variability of scaled turbulence quantities, such as the non-dimensional gradients, is
not well predicted by the Richardson number in very stable conditions (e.g., Grachev et al.
2005; Luhar et al. 2009), even after averaging over 30 minute or one hour and discarding data
through conditions on maximum nonstationarity, maximum stability or minimum turbulence.
Yagüe et al. (2006, their Figures 10–11) explicitly show the near independence of φm and φh

from the gradient Richardson number for large Richardson number and quantify the increas-
ing scatter with increasing Richardson number. Their results suggest that other processes, not
represented by the Richardson number, might be controlling the variability of the momentum
flux, such as “internal wave bursts.” Since such waves and other submeso motions can gen-
erate turbulence through shear instability, the unpredictability of the submeso motions leads
to a certain degree of unpredictability of the turbulence in weak-wind very stable conditions.
The potential generation of turbulence by submeso shear is of considerable interest, since
boundary-layer submeso motions are generally not included in numerical models because of
the lack of resolution and/or lack of physics.

The impact of such non-stationary motions may be quite different for momentum as com-
pared to heat (Mahrt 2007b) resulting in a stability dependent eddy Prandtl number (Grachev
et al. 2007; Anderson 2009). The momentum flux may vary more than the heat flux (Basu
et al. 2006).

Partly motivated by the studies of Yagüe et al. (2006) and others, the present study examines
the variability of the turbulence for very stable conditions in more detail. Since the turbu-
lence energy is generally weak for very stable conditions and averaged quantities are often

123



4 L. Mahrt

dominated by a limited number of turbulence events, even if poorly defined, the skewness
of the turbulence becomes a simple useful indicator of variability, although other measures
of variability will be used. We do not eliminate any data by imposing conditions on non-sta-
tionarity, erratic wind profiles or minimum turbulence nor impose any other conditions to
reduce scatter. Instead, this study focuses on the behaviour of the scatter in the relationships
between the turbulence and the mean flow and attempts to determine the role of submeso
motions in maintaining turbulence at large Richardson number.

2 Data

As the primary dataset (Table 1), we analyze four months of nocturnal eddy-correlation data
from Fluxes Over Snow-covered Surfaces II (FLOSSII) carried out from 1 December 2002 to
31 March 2003 in the North Park Basin of north-west Colorado, U.S.A. (Mahrt and Vickers
2006). The 30-m tower provides seven levels of eddy-correlation data over a grass surface,
sometimes partially or completely snow covered. While the site is surrounded by complex
terrain, the surface within a few kilometres of the site is relatively flat. Although this site is
generally windy, the four months of data provide a significant number of weak-wind cases.

We briefly analyze one month of eddy-correlation data from a 60-m tower with seven lev-
els of eddy-correlation data over a grassland in south central Kansas, U.S.A. in CASES-99
(Cooperative Atmospheric Surface Exchange Study, Poulos et al. 2002; Sun et al. 2002). The
CASES-99 dataset includes a limited amount of very stable data, but has become the standard
stable boundary-layer dataset. One year of data from two eddy-correlation sites in central
Oregon, U.S.A. is also analyzed. One dataset was collected over a 15-m mature ponderosa
pine (Schwarz et al. 2004) and one over a largely burned ponderosa pine (Burn site, Mahrt
2006).

Fluxes are computed following the approach of Vickers and Mahrt (2006), which chooses
the averaging length for the definition of perturbations, τ , in terms of the cospectra, as in the
OGIVE technique (e.g., Friehe et al. 1991). In this regard, the turbulence is defined as the
small-scale part of the cospectra where the heat flux is systematically gradient. The weak-
wind very stable cases sometimes correspond to ambiguous cospectra, in which case the
method is of unknown accuracy. A detailed case study approach based on wavelet analysis
(Cuxart et al. 2002; Viana et al. 2008) provides more insight into this problem, although a
corresponding systematic method for calculation of fluxes from large datasets has not been
developed.

Table 1 For very stable conditions (Rb > 1), the datasets (first column), the number of hourly records (no.),
the site-averaged σw (m s−1), u∗ based on site-averaged values of the momentum flux (m s−1), the site-aver-
aged submeso velocity scale (vsmeso, m s−1), the velocity aspect ratio for the submeso flow (V ARsmeso),
the velocity aspect ratio for the turbulence (V ARturb) and the correlation between σw and vsmeso (corr.)

Data No. σw u∗ vsmeso VARsmeso VARturb Corr.

FLOSSII 176 0.052 0.028 0.77 0.0006 0.09 0.67

CASES-99 12 0.048 0.036 0.68 0.0010 0.05 0.76

Pine 565 0.087 0.039 0.61 0.0052 0.40 0.42

Burn 522 0.087 0.041 0.42 0.0076 0.23 0.38

For the Pine and Burn sites, the data correspond to z/L > 1 for qualitative comparison
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Variability and Maintenance of Turbulence in the Very Stable Boundary Layer 5

3 Averaging and Intermittency

A given variable, φ, is initially partitioned as

φ′ = φ − [φ]τ (1)

where the operator [ ]τ averages over time interval τ to separate the turbulence from the
larger-scale flow. τ must be a large enough scale to remove the largest turbulent eddies. The
value of τ (Sect. 2) generally decreases with increasing stability and may become smaller
than ten seconds for individual records.

The covariances are computed from the product of perturbation quantities from Eq. 1. The
covariances are then averaged over a short averaging time, τs , to define a local value of the
covariance

w′φ′ (2)

where the overbar corresponds to averaging over the short averaging time τs . The short aver-
aging time will be nominally chosen as one minute, which is usually comparable to, or larger
than, the variable averaging time for defining the perturbations. Averages over τs will be used
to study the short-term variability of the flux. We do not choose τs to be the record-dependent
τ since a variable averaging time complicates the interpretation of subsequent analyses.

To reduce sampling problems, turbulence covariances are normally averaged over a longer
time scale (“record length”), sometimes referred to as the flux-averaging time scale, τF . In
the present study, τF is arbitrarily chosen as one hour. As an example, the vertical turbulent
flux of φ is then written as

F = [w′φ′] = [w′φ′] (3)

where the brackets correspond to averaging over the long time scale, τF , and the turbulent
quantities are defined as in Eq. 1. Since all averages are simple unweighted averages, the
overbar becomes redundant after averaging over τF , provided that τF is an integer multiple
of τs . Our study also uses the standard deviation of the vertical velocity for the record

σw = [w′w′]0.5 (4)

as a general measure of the turbulence strength. The strength of the horizontal velocity fluctu-
ations is more sensitive to the choice of averaging time scale compared to the vertical velocity
fluctuations.

To represent the restriction of vertical motions by the stratification and presence of the
ground surface, we evaluate the velocity aspect ratio for turbulence, defined for each 1-hour
record as

V ARturb ≡
√

2[w′w′]
([u′u′]2 + [v′v′]2)0.5

. (5)

The factor
√

2 in the numerator leads to V ARturb = 1 when all three variances are equal.
The decrease of this ratio below unity represents the restraint of vertical motions by the
stratification and ground surface.

3.1 Within-Record Variability

Our study examines both the variability of w′φ′ within records as well as the variability of
[w′φ′] between records. We forego intermittency algorithms (Introduction) to represent the
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6 L. Mahrt

variability and instead compute the maximum 1- min value of w′φ′ scaled by the hourly value

Rmax ≡ max(w′φ′)
[w′φ′] . (6)

As a second simple measure, the skewness of the vertical velocity variance is chosen to rep-
resent the occasional mixing events embedded within the weak turbulence. The frequency
distribution of positive definite quantities, such as the velocity variance or drag coefficient,
is often characterized by positive skewness. We will also compute the scaled within-record
standard deviation of the vertical velocity variance

σ
w′w′/[w′w′]. (7)

3.2 Submeso Velocity Scale

Submeso quantities are defined as the deviation of the short sub-record (1- min) averages
from the record average

φ∗ = φ − [φ] (8)

where the overbar again refers to short time averages, here 1 minute, and the square bracket
refers to averages over the record, here 1 hour. We use the submeso velocity scale (Eq. 6,
Mahrt 2009) to represent the general strength of the submeso horizontal motions, defined as

Vsmeso ≡ [(u∗2 + v∗2)0.5]. (9)

Vsmeso also serves as a measure of non-stationarity within the record, since Vsmeso vanishes
in the hypothetical limit of stationary flow. A velocity aspect ratio for submeso motions,
V ARsmeso, is computed as

V ARsmeso ≡
√

2[w∗w∗]
([u∗u∗]2 + [v∗v∗]2)0.5

. (10)

3.3 Stability

The bulk Richardson number is used as a measure of overall stability that is less vulnera-
ble to errors compared to the calculation of the gradient Richardson number for weak-wind
conditions, where the vertical wind profiles can be complex. Use of z/L relates turbulence
quantities to other turbulence quantities, often with strong self correlation due to shared vari-
ables between scaled turbulence quantities and z/L . Anderson (2009) has recently developed
a new technique for reducing the influence of self correlation, which allows better assess-
ment of the validity of Monin–Obukhov similarity. However, the purpose of our study is to
relate the turbulence to the stability of the mean flow defined independently of turbulence
quantities. Use of z/L automatically classifies significant turbulence as weak stability, even
with strong stratification.

We compute the bulk Richardson number as

Rb = (g/�o)
(θ(z2) − θ(z1)) z2

U (z2)2 (11)

where �o is the record-averaged potential temperature, U is the 1-hour vector average wind
speed at an upper level z2, and z1 is the lower level chosen to be close enough to the ground
that the height difference between the two levels is approximately z2. The levels z1 and z2

straddle the level of the flux computation. For FLOSSII and CASES-99, the upper level is
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Variability and Maintenance of Turbulence in the Very Stable Boundary Layer 7

chosen to be 30 m while the lower level is selected as 1 m for FLOSSII and 1.5 m for CASES-
99. Fluxes are evaluated at 2 m for the FLOSSII data but at 5 m for CASES-99. For CASES-99
and FLOSSII, most nights are clear, in which case the wind speed, the vertical temperature
difference and bulk Richardson number, are all strongly correlated. Strong (weak) wind
conditions correspond to small (large) vertical temperature differences and small (large) Rb.

Estimating the vertical temperature gradient over the tall vegetation in this study is prob-
lematic. The lowest temperature measurement level above the canopy is within the roughness
sublayer and is presumably influenced by the proximity of the nearest underlying trees. For
these sites, we use (z − d)/L to represent stability instead of the bulk Richardson number,
where d is the displacement height. Even then, (z − d)/L can be used only qualitatively
since the displacement height is difficult to estimate. The tall vegetation sites are used only
for qualitative comparisons with the short vegetation sites. In the ensuing relationships, we
do not include the variance explained as a measure of statistical significance, since the rela-
tionships are often strongly non-linear, the distribution of variables is sometimes strongly
non-Gaussian, and we do not offer empirical relationships for future application.

4 Influence of Submeso Motions on Turbulence

The following analyses concentrate on the nocturnal FLOSSII dataset; additional datasets are
briefly considered in (Sect. 7). We first examine a simple relationship between the turbulence
and mean flow, expressed here as the dependence of σw on the wind speed. This investigation
considers separately the stronger wind regime where the submeso velocity scale is less than
the mean flow Vsmeso < V and the weaker wind regime where the submeso velocity scale is
greater than the mean flow Vsmeso > V . σw depends systematically on V for the more windy
regime (Fig. 1, upper left, black points), but this dependence breaks down for the weaker
wind regime (red points). For the weaker wind regime, σw increases with increasing submeso
velocity scale with an average rate of increase of about 0.1Vsmeso (Fig. 1, lower panel).

Fig. 1 The dependence of σw on
the speed of the large-scale flow,
V , (upper-left panel) and the
generalized velocity scale Vgen
(upper-right panel) where red
dots correspond to Vsmeso > V
and black dots correspond to
Vsmeso < V . The lower panel
shows the dependence of σw on
Vsmeso for Vsmeso > V
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8 L. Mahrt

As a result of the dual influence of the mean and submeso velocity scales, simple similar-
ity theory is not possible. However, σw can be formulated in terms of a generalized velocity
scale (Fig. 1, upper right), defined as

Vgen = (V 2 + V 2
smeso)

0.5. (12)

The scatter can be reduced further by including a coefficient in front of Vsmeso that is greater
than unity, but optimization of empirical relationships is not the purpose of the present inves-
tigation. The generation of turbulence by the submeso flow is a non-stationary process and
presumably quite different from the generation of the turbulence by the mean flow.

The submeso motions lead to a net increase of the record average turbulence, even though
the submeso flow vector averages to zero over the record, by definition. An increase of total
shear for parts of the record has a bigger influence than the decrease of shear for other parts of
the record through triggering instabilities. In addition, the crosswind submeso shear increases
the magnitude of the total vector shear, whether the crosswind shear is positive or negative.

4.1 Friction Velocities

While u∗ is often used as a scaling variable for σw, in this section we examine the relationship
between σw and u∗ as two co-varying turbulence quantities. The friction velocity is computed
as

u∗ = ([w′u′]2 + [w′v′]2)0.25 (13)

where the x-axis has been rotated into the direction of the mean flow and the covariances are
defined by Eq. 3. The relationship between σw (Eq. 4) and u∗ for significant turbulence is
similar to previous studies (here, σw ≈ 1.2 u∗). For weak turbulence, the relationship suffers
more scatter and becomes sensitive to the inclusion of the crosswind momentum flux (Fig. 2,
upper panel). Without the inclusion of the crosswind stress in Eq. 13, u∗ tends to vanish at
a significantly faster rate than σw (green plusses compared to red plusses in Fig. 2, upper
panel). In the remainder of this paper, we include the crosswind stress in the calculation of
u∗.

Fig. 2 Upper panel the
relationship between σw and u∗
for weak turbulence with (red)
and without (green) the
crosswind momentum flux
[w′v′]. Lower panel the
relationship between σw and u∗
based on the usual
hourly-averaged fluxes (red
plusses) and the hourly average
of 1-minute values of the friction
velocity [(u∗)1min ] (black
plusses), where the crosswind
stress is included in both cases
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To include the variation of the turbulent momentum flux on submeso time scales, we also
compute (u∗)1min based on 1- min fluxes

(u∗)1min = ((w′u′)2 + (w′v′)2)0.25 (14)

where the overbar again corresponds to 1- min averages. These 1- min values of u∗ are subse-
quently averaged over 1 hour to provide a modified version of the friction velocity, [(u∗)1min].
The values of [(u∗)1min] (black plusses, lower panel Fig. 2) can be significantly larger than
u∗ because the record-averaged magnitude of the 1- min crosswind stress is larger than
the magnitude of the hourly-averaged crosswind stress. The hourly average of the cross-
wind momentum flux is reduced because of sign switches of the crosswind stress within the
1-hour record. The increased value of u∗, due to inclusion of the submeso (1-minute) variation
of the turbulent momentum flux, leads to closer asymptotic behaviours between u∗ and σw

with vanishing turbulence. Evidently, submeso shear generation of turbulence increases the
momentum flux; this effect is omitted based on the hourly-averaged momentum fluxes. This
influence leads to the conflict between focussing on smaller averaging times to find a more
suitable value of u∗ for comparison with σw , and using larger averaging times to increase the
sample size.

5 The Drag Coefficient

5.1 Dependence on the Bulk Richardson

Scaling the momentum flux by the square of the wind speed provides the usual drag coefficient

Cd ≡ u2∗
V 2 = f (Rb) (15)

where u∗ is computed from 2-m record-averaged momentum fluxes using Eq. 13. Here, we
choose V = U where U is the wind speed at the top of the layer used for evaluation of the
bulk Richardson number, 30 m for FLOSSII. This leads to less scatter compared to the use
of 2-m winds. The 2-m wind is more erratic than the 30-m wind, while the 30-m wind may
be more representative of bulk shear instability.

Since both Cd and the bulk Richardson number are inversely proportional to the mean
wind speed squared, the above relationship is characterized by positive self correlation. This
is opposite to the physically expected negative correlation; therefore, the observed negative
correlation cannot be due to self correlation. Inclusion of the crosswind momentum flux for-
mally makes the drag law incomplete since independent information on the stress direction
is required (Sect. 8).

The drag coefficient decreases systematically with increasing bulk Richardson number
up to a bulk Richardson number of order unity (Fig. 3). For bulk Richardson number >1,
the drag coefficient appears to be independent of Rb (Fig. 3), with large scatter, including
a dozen large offscale values. For example, occasional values of the drag coefficient occur
that are much larger than any of the values for weak stability. These values occur because
the speed of the mean wind is no longer an important velocity scale for Rb > 1; that is,
extremely weak winds do not necessarily lead to extremely weak turbulence. The origin of
the lack of importance of the mean wind speed is the poor relationship between the friction
velocity and mean wind speed for Rb > 1 (Fig. 4, upper panel) in sharp contrast to the good
relationship between the friction velocity and wind speed for Rb < 1 (Fig. 4, lower panel).
For weak winds, the turbulence strength is more related to the submeso activity.
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10 L. Mahrt

Fig. 3 Hourly values of Cd as a
function of the bulk Richardson
number. Twelve large values of
Cd are offscale

10
−2

10
0

10
2

0

0.02

0.04

0.06

0.08

0.1

 Rb 

 C
d

Fig. 4 The dependence of u∗ on
the mean wind speed for Rb > 1
(upper panel) and for Rb < 1
(lower panel)
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We casually refer to the regime of near independence of the bulk Richardson number
(Fig. 3) as the very stable regime. We use Rb > 1 as a pragmatic identifier of this regime,
although Fig. 3 suggests that this cut-off value could be smaller. The near independence from
the bulk Richardson number indicates the absence of a critical value above which the tur-
bulence decays. For reference, values of the bulk Richardson number are smaller than those
of the gradient Richardson number so that Rb = 1 corresponds to a gradient Richardson
number larger than 1, averaging about four times greater for weak winds. The large scatter in
Fig. 3 has been reduced in some previous studies by imposing conditions on non-stationarity
or minimum allowed turbulence quantities, or applying other techniques to eliminate outli-
ers. Note that a few large values of the drag coefficient occur for smaller bulk Richardson
numbers. These cases tend to occur with weak winds, weak stratification and significant
submeso activity.

5.2 Dependence on the Submeso Velocity Scale

The large scatter in Fig. 3, particularly for Rb > 1, corresponds to a large range of turbulence
intensities for a given interval of Rb. For Rb > 1, the within-record variation of the bulk
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Fig. 5 The drag coefficient for
Rb > 1 as a function of the
within-record variability of the
turbulence, (σ
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Richardson number is dominated by a variation of the wind speed with a smaller influence of
the variation of the temperature stratification. Since the turbulence intensity increases with
the submeso velocity scale for Rb > 1 and does not depend significantly on the wind speed,
the drag coefficient also increases with increasing submeso velocity scale (not shown), as
was observed for σw (Fig. 1).

For Rb > 1, the drag coefficient also increases with the within-record variability of the

turbulence as represented by
(
σ

w′w′
)0.5 (Fig. 5) in that the drag coefficient is generally

very small for
(
σ

w′w′
)0.5

< 5 × 10−4m s−1 and then increases with increasing
(
σ

w′w′
)0.5

with large scatter. Records with strong stability can be characterized by significant averaged
momentum flux due to intermittent bursts of mixing.

The above influence of the submeso velocity scale on the drag coefficient might be anal-
ogous to the decrease of φm (greater momentum flux for a given value of wind shear) with
an increasing sub-record variation of the Richardson number (Mahrt 2007b). The submeso
velocity scale and the sub-record variation of the Richardson number are related (not shown)
because the variations of the Richardson number are dominated by variations of the shear.
Greater submeso activity leads to a greater within-record variability of the Richardson num-
ber, and therefore a greater probability of small Richardson numbers and shear instability
somewhere within the record. The dependence of the turbulence on the Richardson number
depends on the depth scale and time scale of the calculation. The failure to resolve the local
decrease of the Richardson number over thin layers embedded in high Richardson number
flow (Balsley et al. 2008) may also contribute to the significant turbulence observed at large
values of the Richardson number.

6 Variability of the Turbulence

The variability or intermittency of the turbulence within individual records is examined in
terms of the within-record scaled standard deviation of the vertical velocity variance (Eq. 7),
the skewness of the vertical velocity variance and Rmax (Eq. 6). All three measures are
strongly correlated. All three measures of within-record variability increase with decreas-
ing wind speed and increase with increasing bulk Richardson number (not shown). This
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Fig. 6 Upper panel the
dependence of the square root of
the within-record standard
deviation of the vertical velocity
variance on the large-scale wind
speed, V . Lower panel the
dependence of the square root of
the within-record standard
deviation of the vertical velocity
variance on the submeso velocity
scale, Vsmeso. Red dots identify
cases where the submeso velocity
exceeds the large-scale (1-hour)
speed (Vsmeso > V ) while black
dots correspond to (Vsmeso < V )
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variability of the turbulence is presumably due to, (a) random variability that would occur
even in stationary conditions (vanishing submeso motions), and (b) non-stationary submeso
motions.

6.1 Dependence of Variability on Submeso Flow

We employ the square root of the standard deviation of the vertical velocity variance
(
σ

w′w′
)0.5 (16)

as a velocity scale that represents the within-record variability of the turbulence. We will relate
this variability velocity scale to Vsmeso and the magnitude of the record vector-averaged wind
speed at the 2-m level, V . Within the large scatter, Vsmeso appears to be independent of the
wind speed, V , except for a possible weak increase for strong winds. Therefore, Vsubmeso > V
occurs primarily for weak winds, less than 2 m s−1, consistent with Anfossi et al. (2005). In
these cases, the flow is strongly non-stationary with frequent abrupt changes of wind direction
(Mahrt 2008).

First, consider the “significant wind regime” where V > Vsmeso (black dots, Fig. 6). For
this regime, extrapolation of the black dots in the upper panel of Fig. 1 towards vanishing

V suggests that the variability of the turbulence,
(
σ

w′w′
)0.5, vanishes as the large-scale wind

speed (V ) vanishes. For significant winds, the variability of the turbulence is proportional to
the intensity of the turbulence itself, which in turn is proportional to the mean wind speed.

In contrast, the within-record variability of the turbulence, for a given mean wind speed, is
significantly larger when the submeso velocity scale becomes important such that Vsmeso > V
(red dots, Fig. 6, upper panel). For this weak-wind regime, the within-record variability of
the turbulence appears to vanish with the vanishing submeso velocity scale (red dots, Fig. 6,
lower panel). This behaviour indicates that the within-record variation of the turbulence is
more related to submeso motions than “random” variations.

6.2 Sensitivity to Choice of Variables

Even though the within-record variability is proportional to the submeso velocity scale,
especially for weak large-scale flow (Fig. 6, lower panel), the minute-to-minute variations
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of the turbulence are poorly related to minute-to-minute variations of the submeso motions.
Intermittent turbulence observed at a fixed tower is probably generated upwind where the
submeso motions are different or in different phase. In theory, the turbulence should be more
related to the submeso shear than the submeso velocity. The statistical relationship of σw to
submeso variations of the shear is similar to the statistical relationship to the submeso veloc-
ity scale. Although the turbulence should be more closely related to the shear than the wind
speed, calculation of the shear is more vulnerable to computational errors, particularly for
weak winds. Computing submeso variances for the along-wind and crosswind components
separately did not improve the prediction of turbulence quantities. Decomposing the flow
into different time scales between 1 minute and 1 hour did not reveal a preferred submeso
time scale that more effectively generates turbulence. Use of information on the variation of
the stratification did not improve the prediction of σw.

These analyses are based on only one level near the surface. Based on the seven levels of
sonic anemometer data, the velocity aspect ratio increases with height and the intermittency
measures decrease with height. The strength of the submeso motions increases slightly with
height, but the correlation between the turbulence and submeso activity decreases with height.
However, these decreases with height are sufficiently slow that the difference in measurement
height between sites is not expected to change the qualitative conclusions of this section.

7 Between-Site Differences and Intermittency

The turbulence for very stable conditions is expected to vary significantly between sites,
because the surface roughness and the behaviour of the submeso motions vary substantially
between sites. The between-site comparisons are only qualitative in that the evaluation of the
stability, and selection for the very stable class, are different for each site (Sect. 3.3) due to
the different availability of variables and observational levels.

For the very stable regime (Table 1), the average value of σw above the canopy is larger for
the Pine and Burn sites (Sect. 2) compared to the sites with short vegetation (CASES-99 and
FLOSSII). The ratio of the friction velocity to σw is significantly less than one for three of the
four sites, but is approximately one for the CASES-99 site. The other three sites all include
cases with reversed shear and upward momentum flux. This sign reversal of the momentum
flux reduces the value of the friction velocity, which is based on momentum fluxes that are first
averaged over all of the very stable records. The cases with shear reversal and an unexpected
sign of the momentum flux must be retained to avoid the creation of a bias; the reversed
momentum flux is part of the total distribution of values for very stable conditions. Directly
averaging u∗ or eliminating cases with reversed shear would have increased the overall value
of u∗ and made it closer to the averaged value of σw. For the FLOSSII data, about 15% of the
records have negative shear due to a weak wind maximum at the ground surface, associated
with shallow transient flows (Mahrt 2007b). At the Pine site, the momentum flux above the
canopy is upward 22% of the time, due primarily to a significant sub-canopy drainage flow
(Lee and Mahrt 2006) and negative shear above the drainage flow. The Burn site also expe-
riences reversed shear due to a shallow downvalley flow. The negative shear corresponds to
severe violation of similarity theory and implies an inflection point in the profile.

The submeso velocity scale averages between 0.6 and 0.8 m s−1, except it is only
0.42 m s−1 at the Burn site, possibly due to channelling by a narrow valley. σw for very
stable conditions is significantly correlated with the submeso velocity scale for the grass-
covered CASES-99 and FLOSSII sites, but is less correlated for the two sites with taller
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Table 2 Turbulence variation for Rb > 1

Data Speed Rmax S (1 min σw) S (1 h σw) r. bet. σ x/along

FLOSSII 0.7 6.2 (1.9 ) 2.3 (0.5) 2.6 1.2 −0.8

CASES-99 1.7 5.9 (1.9) 2.2 (0.1) 1.5 0.8 −3.8

Pine 1.5 4.7 (2.4) 1.7 (1.3) 4.4 1.7 −0.2

Burn 1.6 4.7 (4.5) 2.2 (1.9) 10.3 1.6 0.3

The mean wind speed (m s−1) at the flux level (second column), the average within-record relative maximum
of the vertical velocity variance (Rmax , Eq. 6 with φ = w, values for weak stability are in parentheses), the
average within-record skewness of the vertical velocity variance (fourth column), the between-record skewness
(fifth column), where S is the skewness, the between-record standard deviation of the vertical velocity variance
scaled by the mean vertical velocity variance (rel. σ , sixth column) and the ratio of the averaged crosswind
to along-wind momentum flux (x /along, last column). For the Pine and Burn sites, the data correspond to
z/L > 1 for qualitative comparison

vegetation in complex terrain, perhaps because of the more complex vertical flow structure
and interaction with flow within the canopy.

For FLOSSII and CASES-99, the velocity aspect ratio of the turbulence is less than 0.1
while the velocity aspect ratio for the submeso motions is only 10−3 (Table 1), reflecting the
greater restraining influence of the strong stratification and ground surface on the larger-scale
submeso vertical motions, which are more two-dimensional near the surface. Above the tall
canopies, the velocity aspect ratios are five to ten times larger, presumably because of the lack
of a solid boundary at the canopy top; significant vertical velocities are permitted between
the tall roughness elements. In conclusion, submeso motions and their impact on turbulence
depend on the vegetation and topography of the site.

7.1 Intermittency Over Short Vegetation

The maximum 1- min value of the vertical velocity variance, scaled by the record-average
value of the vertical velocity variance (third column of Table 2), is large for very stable con-
ditions, about 6 above the short vegetation for Rb > 1. That is, the maximum value of the
turbulence within the record is six times larger than the record average. This simple statistic
is consistent with the observation that a small fraction of the record accounts for most of
the flux in stable intermittent turbulence. This ratio averages only about 2 for weak stabil-
ity (0.01 < Rb < 0.1). The within-record skewness of the vertical velocity variance (fourth
column) is little more than 2 for very stable conditions and an order of magnitude smaller
for weak stability, again reflecting the greater intermittency of the turbulence for more stable
conditions.

The between-record variability for Rb > 1 is as large as the within-record variation, pre-
sumably due to influences not included in the Richardson number. In addition, the chance
occurrence of one or two stronger turbulence events within a given hour may lead to apprecia-
ble between-record variability. The between-record skewness of the vertical velocity variance
is about 2, implying some records with much stronger average turbulence. The between-
record relative standard deviation is about 1, such that the between-record variability of the
turbulence is as large as the turbulence itself for very stable conditions.

7.2 Intermittency Over Tall Vegetation

Thermodynamic interaction of the stable boundary layer with the low heat capacity vege-
tation can contribute to the turbulence intermittency (Van de Wiel et al. 2002). For the tall
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vegetation data, the within-record intermittency is larger than for the short vegetation, but
these differences depend on stability. For the strong stability class, the within-record inter-
mittency is a little less for the tall vegetation compared to short vegetation (columns 3–4,
Table 2). However, the intermittency is not reduced as much for the weak stability class com-
pared to that over short vegetation. The weak stability class is defined as 0.01 < z/L < 0.1.
Decreasing these stability limits by an order of magnitude to capture even less stable condi-
tions did not qualitatively change the result. Consequently, the intermittency is not as strongly
influenced by the stability over the taller vegetation as compared to short vegetation. The two
tall vegetation sites are characterized by sparse vegetation and large aerodynamic roughness
lengths of more than 1 m with strongest stratification located within the canopy. Presumably,
the intermittency is a function of canopy characteristics as well as stability.

The between-record variation is larger for the tall vegetation. The influences of tall veg-
etation and complex terrain cannot be clearly separated with the present datasets and they
may work in concert. For these two sites, the local drainage flows are confined to the sub-
canopy, which influences the turbulence above the canopy through directional shear above
the drainage flow.

8 Stress and Wind Directions for Rb > 1

For weak stability with significant wind, the stress direction is generally opposite to the wind
direction. For very stable conditions, the stress direction shows substantial variation relative
to the direction of the 1-hr mean wind. For Rb > 1, the crosswind stress averaged over all
of the data is positive and averages 75% of the along-wind stress for FLOSSII (Table 2), as
compared to less than 2% for Rb < 1. Similarly, the shear perpendicular to the mean flow
averages 54% of the along-wind shear and is negative. This clockwise rotation of the stress
vector and shear vector at a given level agrees with the rotation of the shear vector resulting
from Ekman rotation with height. Similar observations are reported in Grachev et al. (2005).
For the present datasets, the influence of baroclinity/drainage flows on the crosswind stress
is not known. Average positive crosswind shear and negative crosswind stress also occur for
the CASES-99 dataset. The averaged crosswind stress is almost four times as large as the
along-wind stress because of a single 2-hr period of particularly large crosswind stress. This
result underscores the large variability of the turbulence for the very stable case and the need
for larger datasets. The average crosswind momentum flux is smaller for the Pine and Burn
sites and of opposite sign to the Ekman prediction for the Burn site where drainage flows and
the narrow valley control the wind direction.

Inclusion of the crosswind momentum flux in the drag law requires parameterization of
the stress direction. For simple flow over short vegetation, the above analysis suggests formu-
lation of non-alignment of the stress vector with the wind vector that increases with stability.
We reserve such a possible formulation for a future study.

9 Conclusions

For very stable conditions, nominally bulk Richardson number Rb > 1, the turbulence is
generally weak, with occasional turbulence events. Here, turbulence was defined in terms of
the small-scale part of the heat cospectra where the heat transport is systematically gradient
(OGIVE method, Sect. 2). Short periods of enhanced turbulent activity can lead to trans-
port that is much greater than the typical transport for strong stability, which even causes
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significant variability of the 1-hr averages. This behaviour corresponds to a large skewness
of variations both within records and variations between records for similar mean conditions.
Extended periods of extremely weak turbulence of at least one hour may occur, although the
turbulence never completely vanishes.

For the very stable regime, the turbulence quantities appear to be independent of the Rich-
ardson number and the speed of the large-scale flow, within the large scatter, with no hint of
a critical Richardson number. Here, the Richardson number is computed from the large-scale
flow (1-hr averages). Some turbulence is generated by the submeso shear, no matter how
weak the large-scale flow. As a result, the turbulence intensity and drag coefficient increase
with increasing submeso energy. These results suggest that the turbulence never vanishes at
large Richardson number partly because of shear generation by the submeso motions.

The important generation of turbulence by the submeso shear for weak-wind conditions
leads to unpredictability of the turbulence, since the dynamics of the submeso motions are
poorly understood and the submeso motions vary significantly between sites, depending
on topography and vegetation, and vary between nights at a given site. As a result, simple
universal similarity theory for the turbulence in this regime is unlikely. While the submeso
velocity scale explains much of the variation of the turbulence between records for the very
stable regime, the remaining variation could be due to other unknown influences, observa-
tional errors and the failure of the submeso velocity scale to completely represent the submeso
shear generation of turbulence. For weak large-scale wind and significant submeso activity,
the within-record variation of the turbulence also increases systematically with increasing
strength of the submeso flow.

For the very stable regime, the crosswind stress becomes much more variable and some-
times larger than the along-wind stress. Averaged stress components for the simple sites
correspond to a clockwise rotation of the stress vector away from the mean wind. This rota-
tion at a given level is consistent with vertical shear associated with the Ekman rotation of the
wind direction with height. For more complex terrain with tall vegetation, the wind-direction
change with height can be controlled by directional shear associated with thin drainage flows.

Future progress requires a better understanding of the common melange of submeso
motions using time-space information. Formulations of the probability distribution of turbu-
lence quantities would provide practical information, although the probability distribution
will be a function of averaging time as well as stability, height above ground and submeso
activity.

Acknowledgements The author gratefully acknowledges important comments from Dean Vickers, Carlos
Yagüe, Samuel Viana and also valuable comments on the manuscript and future work by the reviewers. The
FLOSSII and CASES-99 data were provided by the Integrated Surface Flux Facility of the National Center for
Atmospheric Research. Part of this work was carried out as a visiting scientist in the Grup de Meteorologia,
Dept. Física, Univ. de les Illes Balears, Palma de Mallorca, Spain under Project CGL2006-12474-CO1 from
the Spanish Ministry of Research. This material is based upon work supported by NSF Grant ATM-0607842
and ARO Contract W911FN05C0067.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.

References

Acevedo OC, Moraes OLL, Degrazia GA, Medeiros LE (2006) Intermittency and the exchange of scalars in
the nocturnal surface layer. Boundary-Layer Meteorol 119:41–55

123



Variability and Maintenance of Turbulence in the Very Stable Boundary Layer 17

Anderson PS (2003) Fine-scale structure observed in a stable atmospheric boundary layer by Sodar and
kite-borne tethersonde. Boundary-Layer Meteorol 107:323–351

Anderson PS (2009) Measurement of Prandtl number as a function of Richardson number avoiding self-
correlation. Boundary-Layer Meteorol 131:345–362

Andreas E, Geiger C, Treviño G, Claffey K (2008) Identifying nonstationarity in turbulence series. Bound-
ary-Layer Meteorol 127:37–56

Anfossi D, Oettl D, Degrazia G, Goulart A (2005) An analysis of sonic anemometer observations in low wind
speed conditions. Boundary-Layer Meteorol 114:179–203

Anquetin A, Guilbaud C, Chollet J-P (1998) The formation and destruction of inversion layers within a deep
valley. J Appl Meteorol 37:1547–1560

Balsley B, Svensson G, Tjernström M (2008) On the scale-dependence of the gradient Richardson number in
the residual layer. Boundary-Layer Meteorol 127:57–72

Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa J-F, Pahlow M (2006) Revisiting the local scaling hypoth-
esis in stably stratified atmospheric boundary-layer turbulence: an integration of field and laboratory
measurements with large-eddy simulations. Boundary-Layer Meteorol 119:473–500
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