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Abstract Scintillometers are becoming increasingly popular for the validation of satellite
remote sensing sensible heat-flux estimates due to the comparable spatial resolutions. How-
ever, it is important to gain confidence in the accuracy of the sensible heat-flux measurements
obtained by the scintillometer. Large aperture scintillometer (LAS) and eddy-covariance (EC)
measurements were collected over a homogeneous, dry and semi-arid region near Las Cruces,
New Mexico, USA, where the homogeneity allowed direct comparison of the two instruments
despite their differences in footprint sizes. The differences between the sensible heat-flux
measured by both LAS and EC systems fall within the differences between two EC systems.
We conclude that the large aperture scintillometer is a reliable system for measuring sensible
heat flux in a dry semiarid region.
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1 Introduction

Accurate estimates of sensible heat (H) and latent heat (LvE) fluxes are critically important
for water resource management, particularly in regions of water scarcity and a semi-arid
climate. Remote sensing by satellite has long been identified as a technology capable of
monitoring these surface fluxes. Surface fluxes cannot be measured directly from satellites,
but can be estimated based on surface radiation fields through semi-empirical remote sensing
algorithms. A typical approach identifies spectral bands particularly sensitive to surface heat
fluxes, then empirical algorithms are developed to relate them to the radiances. The empirical
approximation to the physical process may introduce errors in the remote sensing surface-
flux estimates, and so the quantification of these errors is essential to providing quantitative
confidence to users, and feedback to algorithm developers so as to improve the accuracy of
the algorithms.

Accurate estimation of the errors in satellite remote sensing surface-flux estimates requires
a comparison against independent, high-quality, surface-flux data at the same horizontal res-
olution. It is generally agreed that the eddy-covariance (EC) technique is the most accurate
means of measuring H, but such a measurement is only representative over a relatively small
area (which changes with the wind direction) around the EC system. The scale discrepancy
between eddy-covariance and satellite footprints introduces errors when evaluating satellite
products based on EC data, particularly over heterogeneous areas. Using the scintillation
technique scintillometers can provide path-averaged values of H over distances of a few
hundreds of metres up to 10 km, and are therefore suitable for validation of remote sensing
systems (Kleissl et al. 2009b). A disadvantage of this method is that, contrary to the EC
technique, which uses direct turbulence measurements, scintillometry relies on the semi-
empirical Monin–Obukhov similarity theory for the calculation of H (e.g., Hoedjes et al.
2007). Therefore it is important to assess the accuracy of H estimates made by scintillome-
ters before using them in the validation of satellite remote sensing algorithms. Several studies
have examined the accuracy of H estimates made by the large aperture scintillometer (LAS)
over different land-surface conditions with significant moisture levels: flat pastoral surfaces
(McAneny et al. 1995), a rangeland site (Hartogensis et al. 2003), a vineyard (de Bruin et al.
1995), agricultural fields in humid regions (de Bruin et al. 1995; Cain et al. 2001; Meijninger
et al. 2002; Beyrich et al. 2002; Kleissl et al. 2009a), and complex terrain (Chehbouni et al.
2000). All these studies reported that LAS gives reliable H estimates.

In this study, we report on the results of a two-day (May 28–29, 2008) field experi-
ment in which we deployed one LAS and two EC systems over a homogeneous, sparsely
vegetated, semi-arid region of New Mexico, USA in order to evaluate the accuracy of
LAS H estimates. The two EC systems quantify the relative difference in the perfor-
mance between the EC systems, and hence the limitation of the EC system in evaluating
the LAS system. This homogeneous land surface allows evaluating the accuracy of LAS
H estimates using EC sensors without introducing substantial errors, since the discrepancy
in the footprint size between LAS and EC is not an issue.

2 Field Experiment

The field site is located in the West Mesa desert around Las Cruces, New Mexico, USA
at latitude 32◦17′N, longitude 106◦55′W, and an elevation of 1,285 m above mean sea
level. It has a homogenous land cover of sparsely vegetated short shrubs locally known as

123



Intercomparison of Sensible Heat Flux 153

“Mesquite” and “Creso” with an average height of about 0.8 m. Figure 1a shows the overall
plan layout of the experiment.

2.1 Large Aperture Scintillometer Data Processing

Figure 1a shows the deployed LAS system. The LAS model used was the BLS900 (aperture
diameter of 0.145m) manufactured by Scintec and consisting of a double beam transmitter
and a receiver. We mounted the transmitter and receiver on a tower so that the beam along the
path length had an effective path height of 2.5 m above the surface based on the method given
in the Scintec manual. The separation distance (path length L) between the transmitter and
receiver was 800 m. The LAS output was recorded and stored internally as 2-min averages
using a 25 Hz transmitter setting.

The LAS transmitter emits electromagnetic radiation at 880 nm, which is scattered by
the turbulent atmosphere and part of which reaches the receiver. As shown by Wang et al.
(1978), the intensity fluctuations measured at the receiver are related to the path-averaged

Fig. 1 a Layout of the deployed large aperture scintillometer and two eddy-covariance systems in the exper-
imental site near Las Cruces, New Mexico, U.S.A. (Source of background photo is Google Earth), b location
of localized dense vegetation with respect to EC2, and c location of localized dense vegetation with respect
to EC1
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structure parameter of the refractive index of air
(
C2

n

)
. For scintillometers operating at visible

and near-infrared wavelengths, C2
n is related to the structure parameter of temperature C2

T
(Wesely 1976; Moene 2003):

C2
n = (−0.78 × 10−6 P/T 2)2

C2
T (1 + 0.03/β)2 , (1)

where P is atmospheric pressure and β is the Bowen ratio, and where the humidity correction
term is neglected for dry surface conditions. We used the Monin–Obukhov similarity theory
(Wyngaard et al. 1971) to calculate H iteratively from C2

T and additional wind speed data
through the following relationship:
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where zm(= 1.85 m) is the height above the surface at which wind speed, u, is measured,
zL AS(= 2.50m) is the effective height of the LAS above the surface, z0m(= 0.08m) is the
aerodynamic roughness length taken as 10% of the vegetation height, ψm is the momen-
tum stability correction function, and the displacement height d for sparsely vegetated short
shrubs of West Mesa desert is assumed zero following Stull (1988), u∗ is the friction velocity,
ρ is the density of air, k is the von Karman constant, and g is the gravitational acceleration.
The empirical constants CT1 and CT2 are taken as 4.9 and 6.1 respectively for the correction
function fT for unstable conditions (Andreas 1989; de Bruin et al. 1993). For a detailed
discussion of scintillometer theory and data processing, see Hill (1992); de Bruin (2002);
Hoedjes et al. (2007), and Kleissl et al. (2008).

2.2 Eddy-Covariance Data Processing

As shown in Fig. 1a, we also installed two EC systems: one EC close to the transmitter, and
the other EC close to the receiver. The EC systems were manufactured by Campbell Scien-
tific, and consist of CSAT3 Sonic Anemometer and FW05 fine-wire thermocouples. Each
EC system, hereinafter called EC1 and EC2, is set up at a height of 2 m above the ground
surface and with an average height of about 1.2 m above the top of the nearby vegetation.
In this study the EC sensors measure fluctuations of vertical wind speed and air temperature
at a sampling frequency of 20 Hz and the heat fluxes are computed at a block averaging
period of 30 min.

H from the EC system is computed as the covariance between fluctuations of vertical wind
speed and fluctuations of temperature (e.g., Stull 1988; Moncrieff et al. 1997; Van Dijk et al.
2004):

H = ρC pw′T ′, (6)

where ρ is air density C p is the specific heat capacity of air, w′T ′ is the covariance between
vertical wind speed (w) and air temperature (T), and the overbar indicates time averaging.
However, before computing H from the covariance of w and T, we applied typical cor-
rections for alignment of wind vectors with the mean flow and poor frequency response.

123



Intercomparison of Sensible Heat Flux 155

We aligned the pre-processed wind vectors to the mean stream flow by rotating them fol-
lowing the natural-wind-coordinate rotation method given by Wilczak et al. (2001). We used
the aligned wind vectors for further analysis. The EC method is known to suffer from poor
frequency response (e.g., McMillen 1988; Kaimal et al. 1989; Laubach and McNaughton
1999), so we followed the analytical approximation method given by Massman (2000) to
correct for the effect of poor frequency response.

2.3 Fooprint for EC Systems

A major challenge in using EC to validate LAS is the discrepancy in the footprint between
the two systems. Since the LAS is most sensitive in the centre of the beam, the LAS footprint
usually takes the shape of an ellipsoid with a length of about 2/3 of the transect length (Kleissl
et al. 2009b). In the convective conditions encountered at the site, the ellipsoid is located
a short distance upwind of the transect. The effect of the discrepancy on the H comparison
depends on the degree of variability of H: the effect is smaller for a spatially less variable H
(i.e. for homogeneous land-surface conditions) and the effect is greater for a spatially more
variable H. Although our study region is close to being homogeneous, there are localized
dense vegetation areas close to the EC systems (see the dark patches in Fig. 1). Are these
patches significant enough to dominate the EC footprints, making the EC systems unsuitable
for the validation of LAS H estimates? To investigate this issue, we performed a footprint
analysis of the EC systems.

As shown in Fig. 1b and c, the dark patches are located more than 80 m from EC2 and
more than 275 m from EC1. Using wind speed of 4 m s−1(which is the average wind speed
in the area at the time of measurement), out of the total footprint of EC1, 50% would be
contributed by areas within 40 to 50 m radii from EC1 and 90% would be contributed by
areas within 250 to 260 m radii from EC1. This indicates that the dark patches (which are
located more than 275 m away from the EC system and along a specific direction) do not
make a significant contribution to the footprint of EC1.

For EC2, the dark patches only affect the footprint if the wind direction is from the south-
south-east. Figure 2 shows the relative frequency of the wind direction at EC2, for each
of the experiment dates. This Figure shows that the frequency of wind direction from the
south-south-east is 9.8% on May 28 and 3.7% on May 29, indicating that the dark patches
do not dominate the footprint of EC2.

In addition, the total precipitation measured in the area, from January 1, 2008 until the
end of the experiment, was only 5 mm and this was due to a one-day rain event on March
9, 2008. Therefore, the latent heat flux from the patches of vegetation can be assumed to be
small.

The above analysis confirms that the region covered by the LAS and EC systems is fairly
homogeneous, and hence our working assumption of using EC systems to evaluate the accu-
racy of LAS H estimates is realistic.

3 Results and Discussion

Figure 3 shows the diurnal course of 30-min averaged H obtained from the LAS (i.e. HL AS),
from the first EC system (i.e. HEC1), and from the second EC system (i.e. HEC2). All
measurements showed a similar strong diurnal cycle in H. During stable and weak unsta-
ble conditions, there was good agreement among HL AS, HEC1, and HEC2. However, during
unstable conditions, there were some differences between HL AS and HEC1, and even between
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(b) May 29, 2008 
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(a) May 28, 2008

0%

5%

10%

15%

20%

25%

NE ENE E ESE SE SSE S SSW SW WSW
Wind direction

R
el

at
iv

e 
F

re
q

u
en

cy
 o

f 
w

in
d

 d
ir

ec
ti

o
n

 

Direction of interest

Fig. 2 Relative frequency of wind direction at the EC1 location for (a) May 28, and (b) May 29, 2008

HEC1 and HEC2. Overall, HL AS tended to be slightly higher than HEC1 and HEC2 during
unstable conditions.

To statistically measure the agreement of the three instruments, we used the following
three dimensionless statistics: (1) linear correlation coefficient r, (2) bias ratio defined as
H̄L AS/H̄EC , and (3) root-mean-square error normalized by the mean HEC (nrmse). Figure 4
shows the scatterplots of HL AS vs. HEC1, and HL AS vs. HEC2, using data from both measure-
ment days, also shown in the plots are the three performance statistics. The linear correlation
coefficient between HL AS and HEC was 0.89 for EC1, and 0.79 for EC2. We found a cor-
relation of 0.87 between HEC1 and HEC2, indicating that the agreement between LAS and
EC was similar to the agreement between two EC systems. The bias was slightly positive
showing that the LAS overestimated H by 6% compared to EC1 and by 2% compared to the
EC2. EC1 underestimates H by 4% compared to EC2, indicating that the bias in H found
for the LAS is very close to the relative bias between EC1 and EC2. The overall difference,
including both systematic and random errors, between HL AS and HEC , as measured by the
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Fig. 3 Diurnal course of 30-min averaged sensible heat flux derived from LAS, EC1, and EC2, for a May
28, and b May 29, 2008

nrmse, varies between 19% and 24%, which is close to the 21% we found between HEC1

and HEC2. Therefore, the statistics reveal that, (1) the H values obtained by LAS are very
close to those obtained by EC, and (2) the difference in H between LAS and EC is very close
to the difference between the EC systems.

4 Conclusions

We have evaluated the performance of LAS in estimating H over a homogenous semi-arid
region in New Mexico, USA, by comparison with independent measurements from two
EC systems. The homogeneous land surface presented an opportunity for a realistic direct
comparison between HL AS and HEC that represent different footprint sizes and areas. Our
results reveal that the H values obtained by large aperture scintillometry are very close to those
obtained by eddy covariance, and the differences in H between LAS and EC are very close
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Fig. 4 Comparison of 30-min averages, derived from a HL AS and HEC1, and b HL AS and HEC2

to those between the EC systems. Therefore, we conclude that large aperture scintillometry
is a reliable system for measurement of sensible heat flux in a dry semiarid region.
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