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Abstract
Many inborn errors of metabolism (IEMs) are amenable to treatment; therefore, early diagnosis and treatment is imperative.
Despite recent advances, the genetic basis of many metabolic phenotypes remains unknown. For discovery purposes, whole
exome sequencing (WES) variant prioritization coupled with clinical and bioinformatics expertise is the primary method used to
identify novel disease-causing variants; however, causation is often difficult to establish due to the number of plausible variants.
Integrated analysis of untargeted metabolomics (UM) and WES or whole genome sequencing (WGS) data is a promising
systematic approach for identifying disease-causing variants. In this review, we provide a literature-based overview of UM
methods utilizing liquid chromatography mass spectrometry (LC-MS), and assess approaches to integrating WES/WGS and
LC-MS UM data for the discovery and prioritization of variants causing IEMs. To embed this integrated -omics approach in the
clinic, expansion of gene-metabolite annotations and metabolomic feature-to-metabolite mapping methods are needed.
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Introduction

Inborn errors of metabolism (IEMs) are the largest group of
genetic diseases amenable to causal therapy, and are caused by
genetic variants that disrupt the function of enzymes or other
proteins involved in cellular metabolism, leading to energy

deficit and/or accumulation of toxins (Van Bokhoven 2011;
del Rosario et al 2012; Rauch et al 2012; Ellison et al 2013).
Early diagnosis, enabled by newbornmetabolic screening pro-
grams and genetics profiling, is pivotal so that treatment can
be initiated before the onset of irreversible progressive dam-
age to the central nervous system, which in some cases can
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result in intellectual disability disorder (IDD) and damage to
additional organ systems.

There are currently more than 100 treatable IEMs, but for
many phenotypes the genetic basis remains to be discovered
(VanKarnebeek and Stockler 2012). Cases for which the caus-
al gene was recently identified have in turn provided insights
and opportunities for interventions targeting their downstream
molecular or cellular abnormalities (Collins et al 2010;
Horvath et al 2016; Karnebeek et al 2016). These efforts have
been cataloged in the online resource IEMbase, which pro-
vides further information on the etiologies and treatment of
over 500 IEM disorders (Blau et al 2014).

Whole exome sequencing (WES) is the primary tool for
discovery of the genetic basis of IEMs, and thus establishment
of a genetic-based diagnosis that, in some cases, can lead to
improved outcomes through targeted interventions. The prom-
ise of this approach was illustrated by a recent neurometabolic
gene discovery study (Tarailo-Graovac et al 2016), in which
deep phenotyping and WES achieved a diagnostic yield of
68% in patients with unexplained phenotypes, identified novel
human disease genes, and most importantly enabled targeted
intervention for improved outcomes in 44% of the patients.
Overall, published studies applyingWES coupled with variant
prioritization in patients with unexplained phenotypes are suc-
cessful in identifying the underlying cause in 16 to 68% of
patients (Tarailo-Graovac et al 2016).

However, with our current limited knowledge of vari-
ant pathogenicity and the impact of rare variants, variant
prioritization algorithms that aim to completely automate
the process of prioritization fail to identify the causal var-
iant in a substantial number of patients. Further, variants
that are identified as plausible often have a low level of
supporting evidence, and are thus not adequate to estab-
lish a genetic-based diagnosis. Using multiple types of
personalized B-omic^ data is a promising approach to ad-
dress the evidence gap in support of an IEM diagnosis.
The integration of metabolomics data with WES/WGS
data to identify genes causing IEM is a prime example
of this approach. For example, a diagnosis of maple syrup
urine disease can be supported by 1) pathogenic variants
in either DBT, BCKDHB or BCKDHA, 2) high levels of
amino acids, such as allo-isoleucine, isoleucine, leucine,
and valine, and 3) branched-chain oxoacids (Strauss et al
2013). These biochemical biomarkers can be detected in-
dividually (targeted metabolomics), or as part of a broader
characterization of the metabolome (untargeted metabolo-
mics). Recently, the unbiased approach afforded by
untargeted metabolomics has increased in popularity due
to decreasing costs, lack of required parameter tuning, and
opportunities for pathway analysis (Johnson et al 2016).
In this literature review, we provide an overview (anno
2018) of WES-enabled variant prioritization, untargeted
metabolomics methods utilizing liquid chromatography

MS (LC-MS), and assess approaches to integrating
WES/WGS and LC-MS untargeted metabolomics data
for the discovery and prioritization of variants causing
IEMs.

Overview of WES-enabled prioritization of causative
variants

Bioinformatic-driven variant prioritization involves multiple
filtering steps that incorporate prior knowledge about allele
population frequency and predicted pathogenicity.
Databases, such as ExAC, dbSNP, and gnomAD, provide in-
formation about allele frequencies seen in the general popula-
tion, which are then used to filter out common and likely non-
pathogenic variants in the patient (Smigielski et al 2000;
Exome Aggregate Consortium 2016). Once identified as path-
ogenic through use of in silico prediction tools (such as
PolyPhen-2 and SIFT), genomic data from the individual’s
parents is then used to filter variants according to Mendelian
models of inheritance, making the parents the individual’s
Bcontrols^(Ng and Henikoff 2003; Adzhubei et al 2013).
These different types of controls allow for the isolation of
pathogenic variants, and the assignment of mode of inheri-
tance. However, it should be noted that some studies have
questioned whether genomic databases may in fact contain
individuals with disease-associated genotypes but no clinical
presentation of the underlying disease at the time of the inclu-
sion, as more than 2.8% of the ExAC population was found to
carry likely/pathogenic genotypes reported in ClinVar,
(Tarailo-Graovac et al 2017). Continued efforts to combine
clinical and genetic data will play an important role in clari-
fying the pathogenicity and frequency of variants in genetic
backgrounds.

A sample WES variant filtering pipeline used in Tarailo-
Graovac et al 2016 is detailed in Fig. 1. In the case ofWES, in
which around 20,000 variants are observed in protein coding
regions per individual, standard filtering steps typically enable
researchers to reduce the number of variants to an order of 10
to 100 candidate variants depending on theWES study design
(e.g., access to trio data and pedigree structure) (Yang et al
2013; Belkadi et al 2015). For the challenging task of identi-
fying the needle in the haystack, i.e., the single causative var-
iant, clinical input and extensive discussion among physi-
cians, genetic counselors, and bioinformaticians is typically
needed; for genes previously unreported to cause human dis-
ease, identification of other families with similar phenotypes
and other variants in the same gene as well as in vitro func-
tional studies are required as evidence for validation of etiol-
ogy (Tarailo-Graovac et al 2016). However, for a substantial
number of cases (e.g., ~30–40%), the number of potential
candidate variants often result in long processing times and
inherent uncertainty in causation; especially for variants pre-
viously unreported in human disease, of poor sequencing
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quality or unknown significance (Bertier et al 2016). As we
discuss later, multi-omic data integration offers a promising
approach to help address this challenge.

Methods for acquisition and analysis of untargeted
metabolomics data

Since IEMs result from a malfunction of protein-coding
genes, many of which control the concentration of a variety
of metabolites, biochemical tests of known IEM-related me-
tabolites have long been performed for IEM diagnosis. The

simultaneous assay of many IEM biomarkers through the use
of untargeted metabolomics is an active research area. In this
section, we first provide an overview of existing approaches
for processing and analyzing untargeted LC-MS metabolo-
mics data for IEM diagnosis and discovery. This includes
three critical components: 1) data representation and normal-
ization, 2) identification of significant variables (Bfeatures^),
and 3) association of variables/features with known metabo-
lites. An overview of a hypothetical untargeted LC-MS pipe-
line is provided in Fig. 2.

Acquiring untargeted metabolomic data

In general, metabolomics quantifies a subset of small mole-
cules (metabolites) in a tissue or body fluid using either nu-
clear magnetic resonance (NMR) spectroscopy or mass spec-
trometry (MS) (Johnson et al 2016). NMR spectroscopy quan-
tifies solution-state molecular structures based on atom-
centered nuclear interactions. NMR spectroscopy is inexpen-
sive, capable of high throughput analysis, and highly repro-
ducible; however, it lacks sensitivity and is generally only able
to quantify metabolites of medium to high abundance. For this
reason, MS based quantification has primarily been used in
the context of IEM diagnosis and discovery.

In mass-spectrometry (MS) based quantification, metabo-
lites are first chromatographically separated and quantified in
a semi-quantitative manner using high resolution mass spec-
trometers in detection modes that measure both positive and
negatively charged ions produced through electrospray ioni-
zation (ESI). MS separation techniques include liquid chro-
matography, capillary electrophoresis, gas chromatography,
and ultra-performance liquid chromatography (Zhang et al
2012). No single chromatographic separation protocol can
quantify all metabolites in a sample. Therefore, to completely
capture all metabolites, multiple chromatographic methods
must be used. For example, reverse-phase LC quantifies
non-polar to slightly polar molecules, while hydrophilic inter-
action LC detects strongly polar to slightly polar molecules
(Bajad et al 2006; Roberts et al 2012). This review will focus
on liquid chromatography coupled MS (LC-MS), as it quan-
tifies the widest range of metabolite polarity, and is widely
used. When coupled with LC, the most common means of
separation are reverse phase liquid chromatography (RPLC)
for separation of hydrophobic metabolites, and hydrophilic
interaction chromatography (HILIC) for the separation of hy-
drophilic metabolites (Zhou and Yin 2016). MS platforms
commonly used for untargeted metabolomics studies include
low resolution techniques, such as triple quadrupole (QQQ),
quadrupole-ion trap (QIT), and high resolution techniques,
such as quadrupole-time of flight (Q-TOF), quadrupole
Orbitrap (Q-Orbitrap) and Fourier transform ion cyclotron
resonance mass spectrometry (FTICR-MS).

Fig. 1 WES rare variant analysis pipeline for the detection of inborn
errors of metabolism causing neurometabolic disorders, as used in
Tarailo-Graovac et al 2016. Given raw sequencing reads for each
patient, this pipeline identifies a conservative list of candidate variants
(MAF ≤ 0.01). First, raw reads (FASTQ files) are aligned to the human
genome (hg19 or equivalent). Second, variants are annotated using
published software programs like ANNOVAR. Third, variants that do
not map to protein-coding regions, or that do not pass QC steps are
removed. Fourth, variants that do not agree with multiple inheritance
models and that would not agree with the observed phenotypic effect
are removed. Finally, rare variants are selected by removing variants
with annotated minor allele frequencies (MAF) greater than 0.01
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Processing LC-MS data

An overview of the manual and automatic components of the
LC-MS pre-processing pipeline is detailed in Fig. 3. The first
step is to convert an LC-MS-produced dataset for a single
individual into a list of Bfeatures^ (defined as the combination
of mass to charge (m/z) ratio and retention time) and their
intensities. Avariety of software packages designed to process
metabolomic data have been developed for this purpose, of
which XCMS, Mzmine2, and MAVEN are among the most
popular (Katajamaa et al 2006; Tautenhahn et al 2008;
Melamud et al 2010). Each pipeline involves three steps: 1)
Bpeak selection^, in which features are identified and quanti-
fied, 2) retention time alignment, whereby intensity profiles of
consecutive samples are aligned to allow maximal feature
overlap, and 3) adduct and isotope annotation. The most
prominent difference between existing packages involves
their approach toward assessing peak quality during the peak
selection step. Both XCMS and Mzmine2 define low quality
peaks according to a user-defined signal-to-noise ratio cutoff
threshold; in contrast, MAVEN uses a machine-learning (neu-
ral network) approach. Because an independent comparison of
MAVEN, Mzmine2, and XCMS has not yet been completed,
one recommendation is to analyze metabolomics data using
several packages and remove peaks that are not robustly iden-
tified by multiple algorithms (Tautenhahn et al 2008). This is

one of several methods that aims to minimize false positives,
as it has been shown that up to 90% of features in an LC-MS
experiment are non-biological noise or degenerate in a typical
LC-MS experiment (Mahieu and Patti 2017). Other methods
include curating databases of confirmed features identified
using different separation techniques, and removing features
not profiled in the corresponding database (Mahieu and Patti
2017). An additional approach is to confirm the presence of
the feature in a technical replicate. In practice, it is difficult to
identify the same metabolites across replicates, as retention
times may differ, and is therefore most often done in targeted
metabolomics, in which only a small subset of features are
quantified (Crews et al 2009). In addition to the above, anoth-
er method for identifying robust features involves removing
features that are not detected in a set of quality control (QC)
samples consisting of either a set number of defined metabo-
lites, or a combination of all tested samples (pooled sample)
(Brodsky et al 2010; Godzien et al 2015).

Normalizing LC-MS data

To be biologically informative, raw intensities need to be
corrected for a) batch effects, b) missing values, and c) inter-
sample variation. This section describes standard approaches
used for such normalizations.

Fig. 2 Sample LC-MS
metabolomics analysis pipeline.
Briefly, raw metabolomics data
can be processed using freely
available processing software
(e.g., XCMS), annotated (e.g.,
CAMERA), normalized (e.g.,
through use of internal standards),
and filtered. Differentially
abundant metabolites can be
isolated using univariate or
multivariate tests. Biological
interpretation such as pathway
analysis can be performed using
published metabolomic databases
(e.g., HMDB, BioCyc, METLIN)

Fig. 3 Untargeted metabolomics pre-processing pipeline. A combination of automated and manual steps are used to prepare metabolomics data for
downstream analysis. The algorithms listed are only examples of tools that could be used in each step
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As a first step, raw intensities of each feature produced
from data processing packages typically need to be corrected
for systematic variation due to batch effects. In metabolomics
data, a common type of batch effect is Bchemical drift^. This
drift—caused by changes in signal that occur as metabolites
interact with each other while waiting to be analyzed—can be
corrected if QC samples are analyzed in between experimental
samples (Vaikenborg et al 2009; Shen et al 2016). While these
corrections are not always performed, they have been shown
to minimize inter-batch variation (Alonso-herranz et al 2015).
Dimensionality reduction approaches such as PCA allow for
visualizing systematic trends in high-dimensional data, and
thus are powerful tools for assessing batch effects.

Missing values can result from a variety of processes, and
thus require a nuanced approach. Specifically, a missing value,
which is an intensity of zero or infinity, can be created from a
metabolite existing in one sample but 1) not existing in another,
2) existing at a concentration below an instrument’s limit of
detection or 3) existing at a concentration above an instrument’s
limit of detection. The problem of missing values can best be
improved by increasing the sensitivity of detection of the MS
platform. Numerous strategies have been developed to reduce
missing values through a group of analytic techniques called
missing value imputation (MVI). The utility of these techniques
has empirically been found to depend on whether univariate or
multivariate techniques are used to detect differentially abun-
dant features (Karpievitch et al 2012).

Subsequently to above, both sample-wise and feature-wise
normalization methods that concurrently consider multiple
samples, are typically applied to adjust for technical and bio-
logical variation. Sample-wise normalization methods involve
constructing scaling factors for each sample, and include
quantile, linear baseline, total ion count (TIC), and LOESS
normalization (Wu and Li 2016). These methods adjust for
technical factors that may have affected the entire sample.
Feature-wise normalization methods involve constructing scal-
ing factors for each feature, and include centering, scaling, and
transformations (Bolstad et al 2003; van den Berg et al 2006).
These approaches minimize the intensity differences between
metabolites with low or high abundance, allowing relative per-
turbations of each metabolite to be compared. Usually, both
sample-wise and feature-wise normalization methods are ap-
plied during pre-processing; however, the type of each is data-
set dependent, as no gold standard approach exists.

Testing for significant features in IEM studies

In a typical experimental design relevant to IEMs, one typi-
cally measures metabolomics data for a set of patients only or
a set of patients and some controls (i.e., case/control design).
Because each case is likely unique (i.e., may represent a
unique disease caused by a rare genetic variant), data is usu-
ally analyzed for one patient at a time and compared against a)

controls or b) other patients. Both parametric (e.g., t-test,
ANOVA) and non-parametric (e.g., Mann-Whitney U-test,
Wilcoxon-signed rank and Kruskal-Wallis) tests can be used
to identify differentially abundant features in a given patient
sample. When pursuing parametric tests, which typically have
more statistical power compared to non-parametric tests, care
must be taken to transform data so that it is distributed accord-
ing to the expectation of the test (e.g., Gaussian for t-test).
Correction for multiple testing must also be performed in a
way that balances the generation of false positives and false
negatives. In contrast to studies of common disease, with this
type of analysis, one seeks to identify Boutlier^ features, as
they highlight abnormal metabolites that may be pathogenic.
Thus, availability of biological and technical replicates is im-
portant in confirming that a given metabolite value is a Bbio-
logical^ outlier, rather than an artifact of technical variation.

In metabolomic studies, selection of Bcontrol^ samples (or
comparators) that are as similar as possible to the patient being
studied is paramount to reducing noise. This is difficult due to
the numerous factors that influence the metabolome (i.e., age,
sex, ethnicity, food consumption, and time of day). Selection of
controls often depends on patient availability, and the type of
bio-fluid analyzed; finding suitable controls is much easier for
analysis of urine samples, and much more difficult for plasma
and CSF samples, due to the relative ease at which these sam-
ples can be provided. Because the metabolome has been esti-
mated to have a median heritability of approximately 50%, the
trio structure has been suggested as a possible replacement for
the classical case-control design, as it may enable the removal
of metabolomic features attributable to non-disease related her-
itable phenotypes, allowing researchers to isolate features relat-
ed to a specific neurometabolic phenotype. When IEMs are
predominantly recessive, parents would likely show an abnor-
mal profile for metabolites related to a heterozygous gene var-
iant, which due to the effects of a suspected knock-down, would
be magnified in the bi-allelic patient (Long et al 2017).
However, due to inherent uncertainty in quantification, the sig-
nificant impact of age, gender and diet, and varying heritability
of each metabolite, the human metabolome needs to be ex-
plored further before the trio structure can be robustly used in
this manner. Overall, like any other omics study of dynamic
molecular traits, experimental designs that enable robust statis-
tical adjustments for the effect of demographical and environ-
mental factors are of key importance for identifying meaningful
disease-associated metabolites. At the least, care should be tak-
en to utilize metabolomic controls that share as many charac-
teristics as possible with the population being studied.

Annotating features: adducts, isotopes, and metabolites

Once features have been identified, they can be annotated as
an adduct or isotope of a particular metabolite. An adduct is an
ionized metabolite that has become associated with another
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ion through electrospray ionization (ESI), most commonly
H+, Na+, K+, and H20. An isotope is a metabolite that is com-
posed of elements that are not in their most abundant form. A
metabolite’s most abundant isotopic form generally corre-
sponds to its most abundant features. The most readily quan-
tifiable adduct depends on the chromatographic separation
performed (Keller et al 2008). Annotation of isotopes and
adducts corresponding to a particular metabolite reduces the
multiple testing burden by enabling the removal of features
belonging to the same metabolite. Removal of redundant fea-
tures is performed at the discretion of the researcher, as no
standard filtering approach exists. In Mzmine2 and MAVEN
packages, adduct and isotope annotation is performed auto-
matically, whereas if XCMS is utilized, an external package
(such as CAMERA) must be used to make these annotations
(Kuhl et al 2012).

The putative metabolite mass annotated in the peak-
annotation step described earlier is used to map a specific
feature to known metabolite(s). Databases that include mass,
adduct, spectra, and structure data are then used to match
metabolite masses to known metabolites that fall within the
specific mass accuracy of the mass spectrometer used. Several
such databases exist, such as the Human Metabolome
Database (HMDB), Recon2, BioCyc, and METLIN (Petri
and Schmidt-Dannert 2004; Smith et al 2005; Wishart et al
2007; Thiele et al 2013). The HMDB in particular contains
information on endogenous, food-based and drug-related me-
tabolites found in urine, CSF, and plasma of humans. The fact
that only metabolites found in humans are profiled makes this
database particularly useful for mapping features identified
through untargeted metabolomic methods, as the entire data-
base can be utilized without a priori knowledge of each me-
tabolite’s origin. At the time of writing of this manuscript, it
contains over 114,100 metabolites annotated with structure
and chemical properties, a portion of which are also associated
with specific genes (n = 5701). Of these metabolites, 19.5%
have been detected in a biofluid, and 81.5% are predicted or
expected. Its sister database, the Small Molecule Pathway
Database (SMPDB), annotates a portion of genes and metab-
olites to specific small molecule pathways. Together, the
HMDB and SMPDB facilitate biological interpretation at the
gene and pathway level. Limitations of these databases in-
clude the relatively small number of detected and quantified
metabolites, as well as the relevant paucity of genes annotated
to both HMDB and SMPDB.

Confirming the Btrue^ identity of a specific feature is chal-
lenging because each neutral mass can be annotated to multi-
ple isobaric metabolites, (i.e., one-to-many mapping).
Narrowing down the identity of a given feature is currently
an active area of research (Li et al 2013; Pirhaji et al 2016).
Public databases that contain metabolite masses and MS/MS
spectra can assist in confirming metabolite identities, in cases
where mass spectra are available (Wishart et al 2007).

Additionally, Binternal standards^, or radiolabeled compounds
that can be easily identified through isotopic analysis, have
been used to aid feature identification in targeted metabolomics
as well as untargeted lipidomics (detection of all lipids in the
metabolome), as they allow researchers to benchmark when
certain ions elute over time (i.e., their retention time) (Sysi-
Aho et al 2007; Ejigu et al 2013; Weindl et al 2015).
Validation of the mapping between a feature and its assigned
metabolite can be achieved by analyzing a purchased chemical
standard through identical processing techniques, and compar-
ing its m/z ratio, potential ion-source fragments, and retention
time to that of an experimentally-derived feature.

Identifying IEMs through untargeted metabolomic analysis

The creation of processing tools and metabolomic databases
has greatly facilitated the use of untargeted metabolomics in
diagnosing IEMs. Both univariate and multivariate tests have
been used to identify biomarkers of IEMs through untargeted
metabolomics (Wikoff et al 2007; Dercksen et al 2013; Venter
et al 2014; Najdekr et al 2015; Abella et al, 2016; Kennedy et al
2017; Pappan et al 2017). Many of these identified biomarkers
have been added to newborn IEM screenings, enabling the
detection of a wider variety of IEMs. Recently, untargeted
metabolomics demonstrated its utility as a replacement for tra-
ditional newborn dry blood spot screenings, as it was success-
fully used to identify 20 of 21 IEMs (with each IEM represent-
ed by more than two patients) (Miller et al 2015). Challenges
with this method include separating noise (unrelated food and
environmental influences) from disease signal and identifying
isobaric compounds. Because of these challenges, untargeted
metabolomics alone is unlikely to usurp traditional genomics-
based methods that identify causative genes for novel IEMs.
However, cross-omic studies that integrate genomics and
metabolomics have been initiated for this purpose. The bene-
fits and drawbacks of integrating genetic andmetabolomic data
for the purpose of identifying both known and unknown IEMs
are addressed in the subsequent section.

Integrating genomics and metabolomics

Development of models and algorithms for integrated
analysis of genomics and metabolomics data is an active
area of research. To perform an up-to-date review of pub-
lished articles pertaining to the integration of genomics
and metabolomics data, the Pubmed NCBI database and
Google Scholar databases were queried for all articles
published between Jan 1966 and July 2017 that contained
the phrases Bmetabolomics^ and Bwhole exome sequenc-
ing^, Bmetabolomics^ and Bwhole genome sequencing^ or
Bmetabolomics^ and Bgenomics^. Conference abstracts as
well as articles utilizing targeted metabolomics were ex-
cluded, leaving a total of 17 articles for review.
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Integration of genomic and metabolomic data has been
performed for two primary purposes: to identify 1) metaboli-
cally active loci and 2) genes relevant to a disease phenotype.
Most existing methods for combining genomic and
metabolomic data conceptually follow from the former pur-
pose. These studies aim to increase our understanding of ge-
netically determined metabolic phenotypes at the population
level. Specifically, population-based studies have combined
genotyping microarray data (Gieger et al 2008; Hicks et al
2009; Illig et al 2010; Suhre et al 2011; Demirkan et al
2012; Tukiainen et al 2012; Kettunen et al 2012; Shin et al
2014; Draisma et al 2015; Rhee et al 2016; Long et al 2017) or
WES/WGS data (Guo et al 2015; Yazdani et al 2016; Yu et al
2016) with metabolomics data, using quantitative trait loci
(QTL) analysis, to metabolically identify loci and characterize
the impact of common genetic variation (also known as heri-
tability) on metabolite abundance. In so-called metabolite
QTL (mQTL) analysis, linear regression is used to associate
genetic variants with individual metabolite intensities (or me-
tabolite ratios) for 2000 to 8000 subjects, allowing for the
identification of metabolites associated with genetic loci. To
reduce spurious associations, most studies restrict their analy-
sis to common variants (e.g., MAF ≥ 5%) in addition to
restricting the analysis to pairs of variants and metabolic loci
that are located near each other (i.e., Bcis^ association analy-
sis) (Tukiainen et al 2012). Such mQTL analyses have iden-
tified numerous disease biomarkers by associating variants in
known disease-causing genes with metabolites. In all studies
examined, loci strongly associated with metabolite intensities
or ratios—termed Bmetabotypes^—have predominantly been
found to map close to or in genes associated with enzymes,
transporters, and regulators of metabolism, facilitating biolog-
ical interpretation. Associations between variants in genes of
unknown function and metabolites are more difficult to inter-
pret, and have required additional experimental investigation.

Consistent with transcriptomic-based QTL studies (e.g.,
eQTL studies), it has been reported that, on average, genetic
variation is a stronger predictor of metabolite variance across
individuals, compared to demographic and symptom-based
clinical covariates (Rhee et al 2013; Shin et al 2014).
Heritability estimates have varied across classes of metabo-
lites. Shin et al found the heritability of amino acids (e.g.,
carnosine, h2 = 0.86, P = 6.8 × 10−4) to be higher than lipids
(e.g., lysophosphatidylcholine, h2 = 0.46, P = 2.0 × 10−7), and
that of essential amino acids (mean h2 = 0.29) to be lower than
non-essential amino acids (mean h2 = 0.53), suggesting that
some metabolites are more influenced by genomic variation
than others, as one might expect (Shin et al 2014).

Rare variants (0.5% ≤minor allele frequency (MAF) ≥ 5%)
have been found to have a larger effect size than common
variants (MAF > 5%) (Long et al 2017). However, because
association analysis (e.g., mQTL analysis) is statistically chal-
lenging and underpowered in the rare disease setting (e.g.,

when a variant has only been observed once), the effects of
rare variants have primarily been studied manually by consid-
ering their predicted effects. Long et al identified the effect of
17 rare coding variants (SnpEff annotations, such as Bstop^,
Bmissense^ or Bframe^) by first manually identifying an outlier
metabolite that based on biological plausibility could be af-
fected by the variant, and then confirming the presence of this
putative rare variant and outlier metabolite combination in at
least one other sample (Long et al 2017). Guo et al examined
the effect of rare coding variants by assessing the overlap of
genes in perturbed metabolic pathways (i.e biochemical path-
ways with at least one outlier metabolite) with rare exon var-
iants (Guo et al 2015). These studies indeed show that rare
variants can have a large effect on metabolic variation, but the
small number of rare variant-metabolite relationships yet iden-
tified suggest that clarifying their role in a systematic manner
will likely require a more nuanced approach.

Studies aiming to explore rare disease using smaller sample
sizes have used metabolomics in conjunction with curated bio-
chemical knowledge for the second purpose (mentioned above):
deriving disease-specific biological insights. In a Bpathway
based approach^, genes in enriched metabolic pathways were
found to harbor variants that explained the patient’s biochemical
phenotype (Guo et al 2015). Several studies have also reported
untargeted metabolomics’ utility in quantifying gene-associated
metabolites to provide evidence a variant is disease-causing
(Gauba et al 2012; Abella et al, 2016; Pappan et al 2017). An
example of this approach is our group’s recent study, which
used untargeted metabolomics to demonstrate that a bi-allelic
variant in N-acetylneuraminic acid synthase (NANS) in patients
with infantile-onset severe developmental delay and skeletal
dysplasia was reflected in high levels of N-acetylneuraminic
acid (Van Karnebeek et al, 2016). Confirmation of high levels
of this enzymatic substrate of NANS suggested that the clinical
phenotype was likely caused by an enzymatic deficiency in
NANS. Normalization of skeletal dysplasia in a zebrafish model
with knocked-out nansa and nansb (zebrafish orthologs for
human NANS) occurred after supplementation with sialic acid,
shedding light on a possible treatment. These findings support
the idea that metabolomics and genomics (i.e., mircorarrays/
WES/WGS) can synergize and an integrated approach can be
used to facilitate variant filtering and improve diagnosis and
IEM discovery. As of yet, genome-wide integration has mainly
been performed for exploratory purposes. Challenges facing the
integration of these two -omic technologies must be addressed
before use in clinical diagnostics.

Major challenges to the integration
of genomics and LC-MS metabolomics

Challenges to streamlining the multi-omic approach for IEMs
exist. These can broadly be divided into those concerning the
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technical aspects of metabolite quantification and identifica-
tion, and those concerning the biological interpretation of re-
sults. On the technical side, it is currently impossible to know
the number of unique metabolites in the typical plasma/CSF/
urine metabolome, as no LC-MS protocol is capable of iden-
tifying all metabolites. This means that for experiments
aiming to capture an unbiased snapshot of the metabolome,
a combination of chromatography techniques must be used.
Comparisons across platforms are difficult to make, as little is
known about how results from different analytic techniques
can be compared, although some efforts have been made
(Büscher et al 2009; Yet et al 2016; Leuthold et al 2017).
Further, only approximately 65% of metabolites are quantifi-
able in all three body fluids (plasma, urine, and CSF), indicat-
ing that care must also be taken to select the relevant biofluid
(Kennedy et al 2017). Additionally, different pre-processing
algorithms may have a large effect on feature detection and
adduct annotation. This renders analysis reproducibility diffi-
cult. On the biological interpretation side, there is a lack of
established methods for mapping a genomic perturbation to its
downstream (directly and indirectly) impacted metabolites in
the rare disease context. mQTL studies are underpowered,
particularly for those caused by rare variants, making it diffi-
cult for small studies to form novel IEM insights. Finally,
diagnostic analyses are limited by incomplete annotation of
gene-metabolite associations in databases such as the HMDB
(at time of writing, only 5701 genes are associated with me-
tabolites in the HMDB).

The challenges facing use of metabolomics in IEM
diagnositics are best illustrated through the exploration of four
cases reported in our TIDEX neurometabolic gene discovery
study (Tarailo-Graovac et al, 2016), each with a known IEM-
causing variant: a CPT1A variant, NANS variant, DYRK1A
variant, and SCN2A variant, respectively (Table 1). CPT1A
(carnitine O-palmitoyltransferase 1, liver isoform) and NANS
(N-acetylneuraminate synthase) are enzymes that catalyze
highly specific interactions, and do not share many metabo-
lites with other genes. In contrast, SCN2A (sodium channel
protein type 2 subunit alpha), a transmembrane sodium ion

transporter, interacts with the common metabolites ATP, sodi-
um and water, and DYRK1A (dual specificity tyrosine-
phosphorylation-regulated kinase 1A), a phosphotransferase,
also interacts with ATP and ADP. The metabolites associated
with SCN2A andDYRK1Awould be less likely to be identified
as differentially abundant, as ATP and ADP are used in mul-
tiple metabolic pathways and are under strong homeostatic
control. This is echoed by Nicholson et al, who notes that
unlike in eQTL studies, there is not a one-to-one mapping
between a metabolite and a gene (Nicholson et al 2011).
Because more statistical tests are performed in mQTL studies,
effect sizes must be larger to reach statistical significance. This
suggests that even when a robust snapshot of the metabolome
is procured using multiple metabolomic techniques, metabo-
lomics may only be useful in confirming perturbations/
validating deleterious impact in genes that interact with me-
tabolites under weak homeostatic control, as they are likely to
have larger effect sizes. Metabolomics would, therefore, not
be of use in the prioritization of SCN2A and DYRK1A. Future
work is needed to address these challenges, and to formally
understand in which situations metabolomics is of most value.

Future directions

In order for successful integration of genomics and LC-MS
based metabolomics in the clinical diagnostics of IEMs, several
areas of improvement must be addressed. First, existing feature
detection and adduct/isotope annotation methods must be re-
fined and benchmarked for use in clinical metabolomics.
Several publicly available databases with known chemical
compositions have been generated for this purpose (Kenar
et al 2014). Second, exploration of gene-metabolite associations
through mQTL studies followed by biochemical validation is
needed to expand annotations in databases such as the HMDB.
Due to the magnitude of this task, and relevance to other fields,
a large-scale collaboration between geneticists and clinical
chemists aiming to map the human genome onto the human
metabolome may prove worthwhile. This type of effort may

Table 1 Identified IEM genes, their functions, and number of associated metabolites (as listed in the Human Metabolome Database)

Gene Function Number of annotated
metabolites

CPT1A (carnitine O-palmitoyltransferase 1, liver isoform) Catalyzes the transfer of the acyl group of long-chain fatty
acid-CoA conjugates onto carnitine, an essential step for
the mitochondrial uptake of long-chain fatty acids and
their subsequent beta-oxidation in the mitochondrion

13,757

NANS (N-acetylneuraminate synthase) Produces phosphorylated and unphosphorylated forms of
N-acetylneuraminic acid (Neu5Ac) and 2-keto-3-deoxy-
D-glycero-D-galacto-nononic acid (KDN)

9

DYRK1A (dual specificity tyrosine-phosphorylation-
regulated kinase 1A)

Phosphotransferase 2

SCN2A (sodium channel protein type 2 subunit alpha) Sodium ion membrane transporter 5
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also elucidate which genetic perturbations are most easily de-
tectable through metabolomic analysis; thereby, clarifying in-
nate biases in integrated omics analyses. Third, additional com-
putational methods that integrate genetics and metabolomics
data must be explored. Toward this end, network models that
take into account the interactions between genes and metabo-
lites have been used to identify metabolic pathways perturbed
in disease (Krumsiek et al 2012; Li et al 2013; Pirhaji et al
2016). So far, these methods have primarily been used to iden-
tify signatures in relatively common diseases. Building integrat-
ed genomic and metabolomic networks in the rare disease con-
text may prove difficult; therefore, further research is needed.
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