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Abstract
The development of metabolic oligosaccharide engineering (MOE) over the past two decades enabled the bioimaging studies of
glycosylation processes in physio-pathological contexts. Herein, we successfully applied the chemical reporter strategy to image
the fate of sialylated glycoconjugates in healthy and sialin-deficient patient fibroblasts. This chemical glycomics enrichment is a
powerful tool for tracking sialylated glycoconjugates and probing lysosomal recycling capacities. Thus, such strategies appear
fundamental for the characterization of lysosomal storage diseases.

Abbreviations
BTTAA 2-(4-((bis((1-tert-butyl-1H-1,2,3-triazol-

4-yl)methyl)amino)methyl)-1H-1,2,3-
triazol-1-yl)acetic acid

CRS Chemical reporter strategy
DMEM Dulbecco’s modified Eagle’s medium
ISSD Infantile sialic acid storage disease
ManNAc N-acetyl-D-mannosamine
Neu5Ac N-D-acetylneuraminic acid
SD Salla disease
SASDS Sialic acid storage diseases

Introduction

Sialic acid storage disease (SSD) is an autosomal recessive lyso-
somal storage disorder that mainly affects the patient’s nervous
system. This condition is generally classified into one of three
forms, namely a severe infantile SSD form (ISSD), a milder
adult form originally reported in patients from Salla in Finland
(Salla disease, SD) or an intermediate severe Salla disease (Aula
et al 1979). Recently, a literature review reported 194 patients
with SD (Barmherzig et al 2017). The main symptoms comprise
intellectual disability and global developmental delay, hypotonia,

seizures, ataxia, and muscle spasticity. While patients with SD
usually survive into adulthood, children affected with the ISSD
form display more severe symptoms, such as failure to thrive,
enlarged organs or abnormal fluid build-up, and usually live only
into early childhood. Salla disease is caused by mutations (in-
cluding R39C and K136E) in the SLC17A5 gene encoding the
transporter protein sialin of 495 amino acids (Morin et al 2004;
Miyaji et al 2011). SLC17 is a functionally diverse family of
organic anion transporters composed of nine members distribut-
ed into two subfamilies: the Na+-phosphate co-transporters and
the vesicular transporters. The vesicular transporter subfamily
includes fivemembers: the vesicular excitatory amino acid trans-
porters (SLC17A5), the vesicular glutamate transporters
(SLC17A6, SLC17A7, and SLC17A8), and the vesicular nucle-
otide transporters (SLC17A9) (Miyaji et al 2008; Togawa et al
2015). The SLC17A5 protein or sialin is found in lysosomes
where it plays a role in the export ofN-acetyl-D-neuraminic acid
(Neu5Ac) (Pietrancosta et al 2012). In human cells, Neu5Ac is
by far the most prominent member of the sialic acid family, a
group of nine-carbon sugar acids found predominantly at the
termini of cell-surface glycans that are recognized by endoge-
nous and exogenous receptors and have essential functions in
both physiological and pathological contexts. The initial steps in
biochemical diagnosis are urinalysis of Neu5Ac and also its
detection in tissue samples and cultured fibroblasts.

Metabolic labeling of glycans

In the early 1990s, Werner Reutter’s group treated rats with N-
acetyl-D-mannosamine analogues in which the acetyl group

Communicated by: Ron AWevers

* François Foulquier
francois.foulquier@univ-lille1.fr

* Christophe Biot
christophe.biot@univ-lille1.fr

1 University Lille, CNRS, UMR 8576 - UGSF - Unité de
Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France

Journal of Inherited Metabolic Disease (2018) 41:515–523
https://doi.org/10.1007/s10545-017-0118-3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10545-017-0118-3&domain=pdf
http://orcid.org/0000-0002-7396-1959


was replaced by a propanoyl group (ManNProp) (Kayser et al
1992). Their results showed that not only was ManNProp suc-
cessfully taken up by the cells, but also that it was efficiently
converted into the corresponding N-acetyl-neuraminic acid an-
alogue Neu5Prop and subsequently incorporated into
glycoconjugates. This pioneering work suggested that, owing
to the promiscuous nature of the enzymes of the Roseman-
Warren pathway that describes the de novo biosynthesis of
Neu5Ac, mannosamine analogues with a modified N-acyl
side-chain could be converted to the respective unnatural sialic
acid by the metabolic machinery of the cell and be expressed at
the cell surface. Inspired by this first example of metabolic
oligosaccharide engineering (MOE), Carolyn R. Bertozzi’s
group improved the strategy in 1997, giving birth to the chem-
ical reporter strategy that enables detection of the modified
sialoglycans (Mahal et al 1997). This methodology is divided
into two well-defined steps: (i) a synthetically modified mono-
saccharide bearing a chemical handle (the reporter) that is both
non-reactive toward living systems and absent of cells, is first
introduced into an organism (cells, living animal…). Hijacking
the natural biosynthetic pathways, the modified monosaccha-
ride is incorporated into nascent glycoconjugates and the re-
porter is exhibited at the surface of cells. (ii) the introduced
reporter is then reacted with a complementary bioorthogonal
chemical function, which itself is linked to a probe (e.g., biotin,
fluorescent dyes, crosslinking reagents) thereby allowing the
specific detection/imaging of the modified glycoconjugate
(Fig. 1). Note that the unnatural monosaccharide must contain
a modification that does not disturb its recognition by enzymes
and incorporation into glyconjugates. Pioneered by the
Bertozzi laboratory, several chemical groups and bioorthogonal
reactions have been developed in order to achieve the probe/
reporter ligation in a specific manner. MOE has been applied
widely in the last two decades, in mammalian cells (Mahal et al
1997; Vocadlo et al 2003; Hang et al 2003; Sampathkumar et al
2006; Hsu et al 2007; Laughlin et al 2008; Cole et al 2013;
Stairs et al 2013; Chuh et al 2014; Späte et al 2014; Rodriguez-
Rivera et al 2017), in bacteria, (Dumont et al 2012; Fugier et al
2015), in plants (Anderson et al 2012; Dumont et al 2016;
Sminia et al 2016) and into organs (Jiang et al 2014) or even
into animals (Laughlin and Bertozzi 2009; Jiang et al 2014; Xie
et al 2016). In addition, MOE has been used to achieve prote-
omic analysis of different glycoproteins (Woo et al 2015; Sun
et al 2016). However, among the applications of MOE, there
are only a very few reports describing the subcellular visuali-
zation of glycoconjugate trafficking, either in physiological
conditions or in pathological conditions such as glycosylation
defects. In 2013, Mbua and co-workers applied MOE to the
visualization of glycoproteins which are accumulated into ly-
sosomes of Niemann-Pick type C disease patients (Mbua et al
2013). Later that same year, we reported the use of MOE as an
evaluation tool for congenital disorders of glycosylation.
Indeed, we showed that Golgi-staining intensity after feeding

with our modified monosaccharide varied depending on the
pathology of the cell (Vanbeselaere et al 2013). More recently,
we developed an original sequential bioorthogonal dual strate-
gy (SBDS) in which we examined differences of uptake be-
tween two non-peracetylated alkyne analogues ofManNAc and
Neu5Ac, respectively, ManNAl and SiaNAl (Gilormini et al
2016). Our strategy allowed us to clearly visualize a sialin
deficiency in patient cells and to get an insight into the uptake
mechanisms of sialic acids and their precursors. Indeed, our
results strongly reinforced the hypothesis of Varki's group stat-
ing that exogenous sialic acid enters the cell via endocytosis
(Bardor et al 2005). Furthermore, we suggested that the entry of
ManNAc analogues through the plasma membrane is mediated
by a yet unknown specific transporter.

After investigating the uptake processes of ManNAc ana-
logues, we present here our application of MOE to get an in-
sight into the fate of the sialylated glycoconjugates. Although
the recycling processes of glycoconjugates are not well known,
some interesting data were reported by Reutter and co-workers
in the 1980s. The half-life times of different monosaccharides
were studied. For example, terminal monosaccharides, such as
fucose and sialic acids, showed fast half-life rates (12.5 h for L-
fucose, 30 h for Neu5Ac) compared to residues from the N-
glycan core (D-mannose, 70 to 130 h) or to the protein moiety
(100–130 h) (Kreisel et al 1980; Tauber et al 1983). From these
observations, the researchers were able to show that a single
protein could go through several cycles of sialylation during its
lifetime. Membrane glycoproteins are therefore supposed to be
able to be reinternalized by endocytosis, and deglycosylated
partially into lysosomes. These proteins subsequently join back
with the secretion pathway in the Golgi apparatus where they
can be glycosylated again (Kreisel et al 1988). New tools and
methodologies for the study and evaluation of recycling pro-
cesses and turnover rates of the glycoconjugates are of great
interest for a better understanding of these under-reported pro-
cesses. Indeed, it has been shown that turnover rates of glycans
chains were faster in tumoral cells compared to healthy cells
(Tauber et al 1989). Therefore, an extensive study of these
turnover mechanisms could provide new insights into some
pathologies and/or infections involving the glycans. In the pres-
ent work, we have applied MOE principles to compare the in
cellulo visualization of sialylated glycoconjugates between
wild-type and sialin deficient fibroblasts.

Materials and methods

General methods

Chemicals reagents were purchased from Sigma Aldrich, TCI
and Carbosynth and were used with no further purification.
Anti LAMP2 was from Santa Cruz Biotechnology (Santa
Cruz, CA, USA).
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Synthetic procedures

N-(4-pentynoyl) mannosamine (ManNAl) was synthesized ac-
cording to optimized procedures (Gilormini et al 2016). The
dynamics of incorporation into glycoconjugates and their local-
ization was monitored by chemical ligation of commercially
available azido-functionalized fluorophores. We used the bio-
compatible ligand-mediated copper-catalyzed azide-alkyne
[3 + 2] cycloaddition (CuAAC) before imaging by confocal
fluorescence microscopy (Gilormini et al 2016). BTTAA was
synthesized as previously described (Besanceney-Webler et al
2011; Yang et al 2014).

Cell culture

Primary skin fibroblasts (MW28 and sialin deficient patient
cells (SLC17A5, 1-BP DEL, 533C), kindly provided by Dr.
Thierry Levade, were maintained in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal bo-
vine serum (Lonza) at 37 °C in humidity saturated 5% CO2

atmosphere. When used, chloroquine (CQ) was added to the
culture medium at the final concentration of 40 μM.

Metabolic labeling with alkyne tagged analogs

Fibroblasts were grown overnight on glass coverslips (12 mm
diameter). Medium was then changed with pre-warmed medi-
um containing 500 μMofManNAl. The labeling was stopped
at the different time points mentioned by fixing the cells with
4% paraformaldehyde (PAF). Cells were then permeabilized
in 0.5% Triton X-100 for 10 min. Permeabilized cells were
then incubated with 100 μL/coverslip of a freshly prepared
click solution (K2HPO4, 100 mM; Sodium ascorbate,
2.5 mM; CuSO4, 150 μM; BTTAA, 300 μM, AzidoFluor
545, 10 μM). CuAAC was performed during 45 min, in the
dark, at room temperature with gentle shaking. After 2 h

Fig. 1 Schematic representation of the biosynthetic (green arrow) and the
recycling (blue dashed arrow) pathways of sialic acids into mammalian
cells. The alkynyl reporter ManNAl enters the cell and is enzymatically
modified into SiaNAl in the cytosol. Then, its activation is performed in
the nucleus before transport into the Golgi and incorporation into the
glycans through the action of sialyltransferases. The incorporated

alkyne can then be detected via chemical ligation with a specific
fluorescent probe. The reinternalization of the glycoconjugates is
achieved by endocytosis. After maturation of the endosomes into
lysosomes, specific lysosomal sialidases are able to cleave the terminal
sialic acids residues which are subsequently transported from the
lysosome to the cytosol by the specific transporter sialin
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saturation in blocking buffer (0.2% gelatin, 1% BSA and 2%
normal goat serum (Invitrogen) in PBS), fixed cells were in-
cubated at room temperature for 1 h with Alexa 488-, Alexa
568-, and Alexa 700-conjugated secondary antibodies
(Molecular Probes) diluted at 1/600 in blocking buffer.

Imaging

Immunostaining and fluorescent proteins were detected
through an inverted Leica TCS-SP5 confocal microscope.
Pictures were taken by using Leica Application suite
Advanced Fluorescence (LAS AF) software (Leica
Microsystems Wetzlar, Germany). For comparison purposes,
each picture was taken under the same settings. For quantifi-
cation, we used the Leica TCS-SP5 intensity plotting tool that
provides relative fluorescence intensities in different collec-
tion channels over a region of interest (ROI). A plot of fluo-
rescence intensity in a ROI corresponding to the Golgi region
was performed for each cell. For image analysis, three differ-
ent fields of two independent experiments were examined.
Around 100 cells were quantified. The LAS AF pictures were
then exported in TIFF format and processed with Adobe
Photoshop 7.0.

Sialidase treatment

Control fibroblasts were grown overnight on glass coverslips
(12 mm diameter). Medium was then changed with pre-
warmed medium containing 500 μM of SiaNAl overnight.
After fixation with paraformaldehyde 4%, cells were treated
to recombinant sialidase C from C. perfringens (Prozyme #
GK80030) in PBS for 1 h at 37 °C. Cells were subsequently
washed with PBS, permeabilized with Triton X-100 0.5% for
10 min, and finally stained following our CuAAC procedure
previously described.

Statistics

None of the experiments were blinded and no statistical
methods were used to pre-determine sample size for in vitro
experiments.

Results and discussion

Pulse chase experiment

In order to investigate the dynamics of sialylated
glycoconjugate recycling, we applied our metabolic labeling
strategy to pulse−chase experiments using ManNAl as the
reporter. Fibroblasts from both healthy and sialin deficient
patient were cultured in the presence of 500 μM of our
alkyne tagged sugar ManNAl in DMEM for 8 h (pulse).

ManNAl containing medium was then replaced by DMEM
and the fibroblasts were grown for up to 72 h (chase). After
0, 6, 12, 24, 48 or 72 h, cells were fixed, permeabilized, and
reacted with the fluorescent probe azidoFluor 545 in the pres-
ence of CuSO4 (150 μM) and of the tris(triazolylmethyl)amine
ligand BTTAA (300 μM). All the conditions were imaged by
confocal microscopy and are presented in Fig. 2. At T0, mean-
ing after 8 h of incubation with ManNAl, both healthy and
sialin deficient fibroblasts show a red stained Golgi-like
perinuclear area. After 6 h of chase, differences are observed
between the two cell lines. In control cells, Golgi staining
decreases slowly and a clear labeling of the plasma membrane
can be observed after 12 h of chase. As glycoconjugates are
known to be sialylated in the Golgi and subsequently ad-
dressed to the plasma membrane, our observations between
T0 and T12 are consistent with the literature. At T24, there is a
strong decrease of the total signal which significantly
reappears at T48 and finally vanishes at T72. These data
strongly suggest that the alkyne-tagged neo-sialylated
glycoconjugates are reinternalized by endocytosis and sub-
mitted to enzymatic cleavage of terminal sialic acids in the
lysosomes. Indeed, it is important to stress that cell samples
are permeabilized and washed several times after staining
procedures: as a consequence, free soluble alkynyl monosac-
charides are washed away and thereby not detected during
confocal microscopy image acquisition. The signal observed
in these experiments exclusively corresponds to poly- or
oligosaccharidic glycoconjugates that are metabolically la-
beled with the alkyne reporter. The reappearance of the fluo-
rescence signal between T24 and T48 therefore strongly sug-
gests that our alkyne reporter is re-introduced into the meta-
bolic pathway (after degradation of the glycoconjugate it was
first incorporated into) and recycled once again in the
glycoconjugate metabolism, explaining the increase of the
signal at T48. After 72 h, no staining can be observed any-
more, probably because of the catabolism of the alkyne
monosaccharide combined to signal dilution due to cellular
growth. This is to our knowledge the first time that the turn-
over of sialoconjugates is imaged by MOE strategy. At this
point, confirmation was needed to evaluate the potential non-
recognition of our alkynyl analog by sialidase(s). Indeed,
there is evidence that the chemical modification of sialic acids
on the C5 position affects their recognition and releasing by
bacterial sialidases (Cao et al 2009; Heise et al 2017). We
thus incubated control fibroblasts with 500 μM of SiaNAl
overnight. Then cells were fixed and treated with
Arthrobacter ureafaciens sialidase before our staining proce-
dure with CuAAC. The use of the sialidase induced an almost
complete disappearance of the signal compared to the same
treatment without sialidase (Fig. 3). This result confirms the
tolerance of sialidase for our alkyne reporter and then en-
forces our hypothesis concerning the visualization of sialic
acid turnover.
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Sialin deficient cells present a completely different pattern.
The function of sialin is to transport free sialic acid out of the
lysosome after it is cleaved from sialylated glyconconjugates
undergoing degradation. The total lack of signal at T48 and T72
therefore reflects the absence of sialin: the lack of this lysosom-
al transporter prevents the export of free sialic acid from lyso-
somes to the cytosol and thus its recycling into “second gener-
ation” neoglycoconjugates. However, the localization of
glycoconjugates in sialin deficient cells between T0 and T12
raises some interrogations. While the vesicular punctuated
staining was barely visible in control cells, it was obvious in
sialin deficient cells after 6 h of metabolic incorporation

suggesting that sialoglycoonjugates never reached the cellular
membrane but transited through vesicles.

Colocalization with Lamp-2

Suspecting that this vesicular staining co-localized with lyso-
somes, we repeated the MOE experiment with ManNAl using
LAMP-2 as a lysosomal membrane marker (Fig. 4). While no
co-localization could be identified between LAMP-2 and our
reporter in control cells, we observed a co-staining in sialin
deficient fibroblasts. Since no labeling would be observed if
the sialic acid residues were cleaved and released as free

Fig. 2 Fibroblasts from healthy
individuals and sialin deficient
patient were metabolically labeled
with 500 μM of ManNAl for 8 h
(T0) and then chased for 6, 12, 24,
48 and 72 h. The sialylated
glycoconjugates (in red) were
visualized by confocal
microscopy after staining with
azido 545 fluorescent probe
(Scale bar, 25 μm)
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monosaccharides owing to the washing protocol, we thus
conjectured that this lysosomal fluorescence signal reflected
the accumulation of sialylated glycoconjugates in the lyso-
somes. This accumulation could be due to a dysfunction of
the lysosomal sialidases, enzymes that hydrolyze the

glycosidic linkages of the terminal sialic acid residues of
glycoconjugates. The optimal pH for lysosomal sialidase ac-
tivity has been reported between 4.2 and 4.6 (Thomas et al
1979). Under physiological conditions, Neu5Ac is present as
the negatively charged carboxylate conjugate base form. This

Fig. 3 Fibroblasts from healthy
individual were metabolically
labeled with 500 μM of SiaNAl
overnight and then fixed and
submitted to CuAAC reaction
with Azido 545 fluorescent probe
(red signal) and DAPI (blue
signal). Immediately after
fixation, cells were submitted to
either no treatment (a) or
Arthrobacter ureafaciens
sialidase treatment (b) (Scale bar,
20 μm)

Fig. 4 Fibroblasts from healthy individuals and sialin deficient patient
were metabolically labeled with 500 μM of ManNAl for 3, 6, and 8 h
respectively and stained with azido 545 fluorescent probe (sialic acid in
glycoconjugates in red) or antibodies against a lysosomal marker

(LAMP-2 in green). Staining was then visualized using confocal
microscopy. It could be noticed that this co-localization of the MOE
signal with the lysosomal LAMP-2 marker was seen in all investigated
cells (Scale bar, 25 μm)
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led us to the hypothesis that the accumulation of free sialic
acid in the lysosomes could have an influence on the lysosom-
al pH thereby hindering sialidase activity.

Chloroquine treatment

To prove our hypothesis, we decided to artificially in-
crease the lysosomal pH of fibroblasts. To this end, we
used the antimalarial drug chloroquine (CQ), a diprotic
weak base (pKa 8.4 and 10.8) that is also known as a
lysosomotropic agent, preferentially accumulating in ly-
sosomes by pH trapping. Fibroblast cells were treated
with 40 μM chloroquine for 16 h in order to inhibit
lysosomal degradation before incubation with ManNAl.
After the usual staining process, cells were observed by
confocal microscopy (Fig. 5). A clear increase of lyso-
somal staining intensity was observed in both control
and sialin deficient fibroblasts while no changes were
noted in the Golgi apparatus. These data show that,
while the sialic acid biosynthetic pathway remains un-
changed, the pH increase induced by CQ clearly leads

to an accumulation of sialylated glycoconjugates in the
lysosomes, with or without sialin activity.

Conclusion

In conclusion, we proposed here a MOE procedure, coupled
with biorthogonal ligation for the visualization of the
recycling and turnover of sialic acids. The use of sialin-
deficient cells allowed us to image the glycoconjugate
recycling pathway. The chemical reporter strategy, applied to
the visualization of intracellular processes and combined to
traditional methodologies, clearly has the potential to provide
exciting insights into glycosylation mechanisms.
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